"...lm-evaluation-harness.git" did not exist on "44124d95a25195da0a3d129dddabb37c43ba5ce2"
run_mlm_flax.py 38.7 KB
Newer Older
1
#!/usr/bin/env python
2
# coding=utf-8
3
# Copyright 2021 The HuggingFace Team All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for masked language modeling (BERT, ALBERT, RoBERTa...) with whole word masking on a
text file or a dataset.

Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
21
https://huggingface.co/models?filter=fill-mask
22
"""
Suraj Patil's avatar
Suraj Patil committed
23
import json
24
import logging
Suraj Patil's avatar
Suraj Patil committed
25
import math
26
27
import os
import sys
28
import time
29
import warnings
30
31
from dataclasses import asdict, dataclass, field
from enum import Enum
32
from itertools import chain
33
34
35
36
37

# You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments.
from pathlib import Path
from typing import Dict, List, Optional, Tuple

38
import flax
39
40
import jax
import jax.numpy as jnp
41
import numpy as np
42
import optax
43
from datasets import load_dataset
44
from flax import jax_utils, traverse_util
45
from flax.jax_utils import pad_shard_unpad
46
47
from flax.training import train_state
from flax.training.common_utils import get_metrics, onehot, shard
48
from huggingface_hub import Repository, create_repo
49
50
from tqdm import tqdm

51
52
from transformers import (
    CONFIG_MAPPING,
53
    FLAX_MODEL_FOR_MASKED_LM_MAPPING,
54
55
    AutoConfig,
    AutoTokenizer,
56
    FlaxAutoModelForMaskedLM,
57
58
59
60
61
62
    HfArgumentParser,
    PreTrainedTokenizerBase,
    TensorType,
    is_tensorboard_available,
    set_seed,
)
63
from transformers.utils import send_example_telemetry
64
65


66
MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_MASKED_LM_MAPPING.keys())
67
68
69
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)


70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
@dataclass
class TrainingArguments:
    output_dir: str = field(
        metadata={"help": "The output directory where the model predictions and checkpoints will be written."},
    )
    overwrite_output_dir: bool = field(
        default=False,
        metadata={
            "help": (
                "Overwrite the content of the output directory. "
                "Use this to continue training if output_dir points to a checkpoint directory."
            )
        },
    )
    do_train: bool = field(default=False, metadata={"help": "Whether to run training."})
    do_eval: bool = field(default=False, metadata={"help": "Whether to run eval on the dev set."})
    per_device_train_batch_size: int = field(
        default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."}
    )
    per_device_eval_batch_size: int = field(
        default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."}
    )
    learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."})
    weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."})
    adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"})
    adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"})
    adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."})
    adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."})
    num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."})
    warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."})
    logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."})
    save_steps: int = field(default=500, metadata={"help": "Save checkpoint every X updates steps."})
    eval_steps: int = field(default=None, metadata={"help": "Run an evaluation every X steps."})
    seed: int = field(default=42, metadata={"help": "Random seed that will be set at the beginning of training."})
    push_to_hub: bool = field(
        default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."}
    )
    hub_model_id: str = field(
        default=None, metadata={"help": "The name of the repository to keep in sync with the local `output_dir`."}
    )
    hub_token: str = field(default=None, metadata={"help": "The token to use to push to the Model Hub."})
Karim Foda's avatar
Karim Foda committed
111
112
113
114
115
116
    gradient_checkpointing: bool = field(
        default=False,
        metadata={
            "help": "If True, use gradient checkpointing to save memory at the expense of slower backward pass."
        },
    )
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

    def __post_init__(self):
        if self.output_dir is not None:
            self.output_dir = os.path.expanduser(self.output_dir)

    def to_dict(self):
        """
        Serializes this instance while replace `Enum` by their values (for JSON serialization support). It obfuscates
        the token values by removing their value.
        """
        d = asdict(self)
        for k, v in d.items():
            if isinstance(v, Enum):
                d[k] = v.value
            if isinstance(v, list) and len(v) > 0 and isinstance(v[0], Enum):
                d[k] = [x.value for x in v]
            if k.endswith("_token"):
                d[k] = f"<{k.upper()}>"
        return d


138
139
140
141
142
143
144
145
146
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """

    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
147
148
149
            "help": (
                "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."
            )
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
        },
    )
    model_type: Optional[str] = field(
        default=None,
        metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
169
170
171
    dtype: Optional[str] = field(
        default="float32",
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
172
173
174
175
            "help": (
                "Floating-point format in which the model weights should be initialized and trained. Choose one of"
                " `[float32, float16, bfloat16]`."
            )
176
177
        },
    )
178
179
    token: str = field(
        default=None,
180
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
181
            "help": (
182
183
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
Sylvain Gugger's avatar
Sylvain Gugger committed
184
            )
185
186
        },
    )
187
188
189
190
191
192
    use_auth_token: bool = field(
        default=None,
        metadata={
            "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
        },
    )
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
    )
    train_ref_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input train ref data file for whole word masking in Chinese."},
    )
    validation_ref_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."},
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
223
224
225
226
227
228
    validation_split_percentage: Optional[int] = field(
        default=5,
        metadata={
            "help": "The percentage of the train set used as validation set in case there's no validation split"
        },
    )
229
230
231
    max_seq_length: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
232
233
234
235
            "help": (
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated. Default to the max input length of the model."
            )
236
237
238
239
240
241
242
243
244
245
246
247
        },
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    mlm_probability: float = field(
        default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
    )
    pad_to_max_length: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
248
249
250
251
            "help": (
                "Whether to pad all samples to `max_seq_length`. "
                "If False, will pad the samples dynamically when batching to the maximum length in the batch."
            )
252
253
        },
    )
254
255
256
257
    line_by_line: bool = field(
        default=False,
        metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
    )
258
259
260
261
262
263
264
265
266
267
268
269
270

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."


271
@flax.struct.dataclass
272
273
274
275
276
277
278
279
280
class FlaxDataCollatorForLanguageModeling:
    """
    Data collator used for language modeling. Inputs are dynamically padded to the maximum length of a batch if they
    are not all of the same length.

    Args:
        tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`):
            The tokenizer used for encoding the data.
        mlm_probability (:obj:`float`, `optional`, defaults to 0.15):
281
            The probability with which to (randomly) mask tokens in the input.
282
283
284
285
286
287
288
289
290
291
292
293
294

    .. note::

        For best performance, this data collator should be used with a dataset having items that are dictionaries or
        BatchEncoding, with the :obj:`"special_tokens_mask"` key, as returned by a
        :class:`~transformers.PreTrainedTokenizer` or a :class:`~transformers.PreTrainedTokenizerFast` with the
        argument :obj:`return_special_tokens_mask=True`.
    """

    tokenizer: PreTrainedTokenizerBase
    mlm_probability: float = 0.15

    def __post_init__(self):
295
        if self.tokenizer.mask_token is None:
296
297
298
299
300
301
302
303
304
305
306
            raise ValueError(
                "This tokenizer does not have a mask token which is necessary for masked language modeling. "
                "You should pass `mlm=False` to train on causal language modeling instead."
            )

    def __call__(self, examples: List[Dict[str, np.ndarray]], pad_to_multiple_of: int) -> Dict[str, np.ndarray]:
        # Handle dict or lists with proper padding and conversion to tensor.
        batch = self.tokenizer.pad(examples, pad_to_multiple_of=pad_to_multiple_of, return_tensors=TensorType.NUMPY)

        # If special token mask has been preprocessed, pop it from the dict.
        special_tokens_mask = batch.pop("special_tokens_mask", None)
307
308
309
310

        batch["input_ids"], batch["labels"] = self.mask_tokens(
            batch["input_ids"], special_tokens_mask=special_tokens_mask
        )
311
312
313
314
        return batch

    def mask_tokens(
        self, inputs: np.ndarray, special_tokens_mask: Optional[np.ndarray]
315
    ) -> Tuple[np.ndarray, np.ndarray]:
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
        """
        Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
        """
        labels = inputs.copy()
        # We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`)
        probability_matrix = np.full(labels.shape, self.mlm_probability)
        special_tokens_mask = special_tokens_mask.astype("bool")

        probability_matrix[special_tokens_mask] = 0.0
        masked_indices = np.random.binomial(1, probability_matrix).astype("bool")
        labels[~masked_indices] = -100  # We only compute loss on masked tokens

        # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
        indices_replaced = np.random.binomial(1, np.full(labels.shape, 0.8)).astype("bool") & masked_indices
        inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token)

        # 10% of the time, we replace masked input tokens with random word
        indices_random = np.random.binomial(1, np.full(labels.shape, 0.5)).astype("bool")
        indices_random &= masked_indices & ~indices_replaced

        random_words = np.random.randint(self.tokenizer.vocab_size, size=labels.shape, dtype="i4")
        inputs[indices_random] = random_words[indices_random]

        # The rest of the time (10% of the time) we keep the masked input tokens unchanged
        return inputs, labels


343
344
345
def generate_batch_splits(samples_idx: np.ndarray, batch_size: int, drop_last=True) -> np.ndarray:
    """Generate batches of data for a specified batch size from sample indices. If the dataset size is not divisible by
    the batch size and `drop_last` is `True`, the last incomplete batch is dropped. Else, it is returned."""
346
    num_samples = len(samples_idx)
347
348
349
350
351
352
353
354
355
356
    if drop_last:
        samples_to_remove = num_samples % batch_size
        if samples_to_remove != 0:
            samples_idx = samples_idx[:-samples_to_remove]
        sections_split = num_samples // batch_size
        samples_idx = samples_idx.reshape((sections_split, batch_size))
    else:
        sections_split = math.ceil(num_samples / batch_size)
        samples_idx = np.array_split(samples_idx, sections_split)
    return samples_idx
357
358


359
def write_train_metric(summary_writer, train_metrics, train_time, step):
360
361
362
363
364
365
366
367
    summary_writer.scalar("train_time", train_time, step)

    train_metrics = get_metrics(train_metrics)
    for key, vals in train_metrics.items():
        tag = f"train_{key}"
        for i, val in enumerate(vals):
            summary_writer.scalar(tag, val, step - len(vals) + i + 1)

368
369

def write_eval_metric(summary_writer, eval_metrics, step):
370
371
372
373
    for metric_name, value in eval_metrics.items():
        summary_writer.scalar(f"eval_{metric_name}", value, step)


Suraj Patil's avatar
Suraj Patil committed
374
def main():
375
376
377
378
379
380
381
382
383
384
385
386
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

387
388
389
390
391
392
    if model_args.use_auth_token is not None:
        warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
        if model_args.token is not None:
            raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
        model_args.token = model_args.use_auth_token

393
394
395
396
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_mlm", model_args, data_args, framework="flax")

397
398
399
400
401
402
403
404
405
406
407
408
409
    if (
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
    ):
        raise ValueError(
            f"Output directory ({training_args.output_dir}) already exists and is not empty."
            "Use --overwrite_output_dir to overcome."
        )

    # Setup logging
    logging.basicConfig(
410
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
411
        level=logging.INFO,
412
413
414
415
416
417
418
        datefmt="[%X]",
    )

    # Log on each process the small summary:
    logger = logging.getLogger(__name__)

    # Set the verbosity to info of the Transformers logger (on main process only):
419
    logger.info(f"Training/evaluation parameters {training_args}")
420
421
422
423

    # Set seed before initializing model.
    set_seed(training_args.seed)

424
425
    # Handle the repository creation
    if training_args.push_to_hub:
426
427
428
429
430
431
432
433
        # Retrieve of infer repo_name
        repo_name = training_args.hub_model_id
        if repo_name is None:
            repo_name = Path(training_args.output_dir).absolute().name
        # Create repo and retrieve repo_id
        repo_id = create_repo(repo_name, exist_ok=True, token=training_args.hub_token).repo_id
        # Clone repo locally
        repo = Repository(training_args.output_dir, clone_from=repo_id, token=training_args.hub_token)
434

435
436
437
438
439
440
441
442
443
444
445
    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantees that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
446
447
448
449
        datasets = load_dataset(
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
450
            token=model_args.token,
451
        )
452

453
454
455
456
457
        if "validation" not in datasets.keys():
            datasets["validation"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[:{data_args.validation_split_percentage}%]",
458
                cache_dir=model_args.cache_dir,
459
                token=model_args.token,
460
461
462
463
464
            )
            datasets["train"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[{data_args.validation_split_percentage}%:]",
465
                cache_dir=model_args.cache_dir,
466
                token=model_args.token,
467
            )
468
469
470
471
472
473
474
475
476
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        extension = data_args.train_file.split(".")[-1]
        if extension == "txt":
            extension = "text"
477
478
479
480
        datasets = load_dataset(
            extension,
            data_files=data_files,
            cache_dir=model_args.cache_dir,
481
            token=model_args.token,
482
        )
483
484
485
486
487
488
489

        if "validation" not in datasets.keys():
            datasets["validation"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
490
                token=model_args.token,
491
492
493
494
495
496
            )
            datasets["train"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
497
                token=model_args.token,
498
            )
499
500
501
502
503
504
505
506
507
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer

    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    if model_args.config_name:
508
509
510
        config = AutoConfig.from_pretrained(
            model_args.config_name,
            cache_dir=model_args.cache_dir,
511
            token=model_args.token,
512
        )
513
    elif model_args.model_name_or_path:
514
515
516
        config = AutoConfig.from_pretrained(
            model_args.model_name_or_path,
            cache_dir=model_args.cache_dir,
517
            token=model_args.token,
518
        )
519
520
521
522
523
524
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")

    if model_args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(
525
526
527
            model_args.tokenizer_name,
            cache_dir=model_args.cache_dir,
            use_fast=model_args.use_fast_tokenizer,
528
            token=model_args.token,
529
530
531
        )
    elif model_args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(
532
533
534
            model_args.model_name_or_path,
            cache_dir=model_args.cache_dir,
            use_fast=model_args.use_fast_tokenizer,
535
            token=model_args.token,
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
        )
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    if training_args.do_train:
        column_names = datasets["train"].column_names
    else:
        column_names = datasets["validation"].column_names
    text_column_name = "text" if "text" in column_names else column_names[0]

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
    max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

    if data_args.line_by_line:
        # When using line_by_line, we just tokenize each nonempty line.
        padding = "max_length" if data_args.pad_to_max_length else False

        def tokenize_function(examples):
            # Remove empty lines
            examples = [line for line in examples if len(line) > 0 and not line.isspace()]
            return tokenizer(
                examples,
                return_special_tokens_mask=True,
                padding=padding,
                truncation=True,
                max_length=max_seq_length,
            )

        tokenized_datasets = datasets.map(
            tokenize_function,
            input_columns=[text_column_name],
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not data_args.overwrite_cache,
575
576
        )

577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
    else:
        # Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
        # We use `return_special_tokens_mask=True` because DataCollatorForLanguageModeling (see below) is more
        # efficient when it receives the `special_tokens_mask`.
        def tokenize_function(examples):
            return tokenizer(examples[text_column_name], return_special_tokens_mask=True)

        tokenized_datasets = datasets.map(
            tokenize_function,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not data_args.overwrite_cache,
        )

        # Main data processing function that will concatenate all texts from our dataset and generate chunks of
        # max_seq_length.
        def group_texts(examples):
            # Concatenate all texts.
596
            concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
597
598
599
            total_length = len(concatenated_examples[list(examples.keys())[0]])
            # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
            # customize this part to your needs.
600
601
            if total_length >= max_seq_length:
                total_length = (total_length // max_seq_length) * max_seq_length
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
            # Split by chunks of max_len.
            result = {
                k: [t[i : i + max_seq_length] for i in range(0, total_length, max_seq_length)]
                for k, t in concatenated_examples.items()
            }
            return result

        # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a
        # remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value
        # might be slower to preprocess.
        #
        # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
        # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
        tokenized_datasets = tokenized_datasets.map(
            group_texts,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            load_from_cache_file=not data_args.overwrite_cache,
        )
621
622

    # Enable tensorboard only on the master node
623
    has_tensorboard = is_tensorboard_available()
624
    if has_tensorboard and jax.process_index() == 0:
625
626
627
628
629
630
631
632
633
634
635
636
637
638
        try:
            from flax.metrics.tensorboard import SummaryWriter

            summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir))
        except ImportError as ie:
            has_tensorboard = False
            logger.warning(
                f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
            )
    else:
        logger.warning(
            "Unable to display metrics through TensorBoard because the package is not installed: "
            "Please run pip install tensorboard to enable."
        )
639
640
641
642
643
644
645
646
647

    # Data collator
    # This one will take care of randomly masking the tokens.
    data_collator = FlaxDataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=data_args.mlm_probability)

    # Initialize our training
    rng = jax.random.PRNGKey(training_args.seed)
    dropout_rngs = jax.random.split(rng, jax.local_device_count())

648
649
    if model_args.model_name_or_path:
        model = FlaxAutoModelForMaskedLM.from_pretrained(
650
651
652
653
            model_args.model_name_or_path,
            config=config,
            seed=training_args.seed,
            dtype=getattr(jnp, model_args.dtype),
654
            token=model_args.token,
655
656
657
        )
    else:
        model = FlaxAutoModelForMaskedLM.from_config(
658
659
660
            config,
            seed=training_args.seed,
            dtype=getattr(jnp, model_args.dtype),
661
        )
662

Karim Foda's avatar
Karim Foda committed
663
664
665
    if training_args.gradient_checkpointing:
        model.enable_gradient_checkpointing()

666
667
668
    # Store some constant
    num_epochs = int(training_args.num_train_epochs)
    train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
669
670
    per_device_eval_batch_size = int(training_args.per_device_eval_batch_size)
    eval_batch_size = per_device_eval_batch_size * jax.device_count()
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686

    num_train_steps = len(tokenized_datasets["train"]) // train_batch_size * num_epochs

    # Create learning rate schedule
    warmup_fn = optax.linear_schedule(
        init_value=0.0, end_value=training_args.learning_rate, transition_steps=training_args.warmup_steps
    )
    decay_fn = optax.linear_schedule(
        init_value=training_args.learning_rate,
        end_value=0,
        transition_steps=num_train_steps - training_args.warmup_steps,
    )
    linear_decay_lr_schedule_fn = optax.join_schedules(
        schedules=[warmup_fn, decay_fn], boundaries=[training_args.warmup_steps]
    )

687
688
689
690
691
692
    # We use Optax's "masking" functionality to not apply weight decay
    # to bias and LayerNorm scale parameters. decay_mask_fn returns a
    # mask boolean with the same structure as the parameters.
    # The mask is True for parameters that should be decayed.
    def decay_mask_fn(params):
        flat_params = traverse_util.flatten_dict(params)
693
694
        # find out all LayerNorm parameters
        layer_norm_candidates = ["layernorm", "layer_norm", "ln"]
695
696
697
698
699
700
        layer_norm_named_params = {
            layer[-2:]
            for layer_norm_name in layer_norm_candidates
            for layer in flat_params.keys()
            if layer_norm_name in "".join(layer).lower()
        }
701
        flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_named_params) for path in flat_params}
702
703
        return traverse_util.unflatten_dict(flat_mask)

704
    # create adam optimizer
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
    if training_args.adafactor:
        # We use the default parameters here to initialize adafactor,
        # For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74
        optimizer = optax.adafactor(
            learning_rate=linear_decay_lr_schedule_fn,
        )
    else:
        optimizer = optax.adamw(
            learning_rate=linear_decay_lr_schedule_fn,
            b1=training_args.adam_beta1,
            b2=training_args.adam_beta2,
            eps=training_args.adam_epsilon,
            weight_decay=training_args.weight_decay,
            mask=decay_mask_fn,
        )
720

721
    # Setup train state
722
    state = train_state.TrainState.create(apply_fn=model.__call__, params=model.params, tx=optimizer)
723

724
725
726
    # Define gradient update step fn
    def train_step(state, batch, dropout_rng):
        dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)
727

728
729
        def loss_fn(params):
            labels = batch.pop("labels")
730

731
732
733
734
735
736
737
            logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]

            # compute loss, ignore padded input tokens
            label_mask = jnp.where(labels > 0, 1.0, 0.0)
            loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask

            # take average
738
739
            loss = loss.sum()
            num_labels = label_mask.sum()
740

741
            return loss, num_labels
742

743
744
745
746
747
748
749
750
751
752
753
        grad_fn = jax.value_and_grad(loss_fn, has_aux=True)
        (loss, num_labels), grad = grad_fn(state.params)
        num_labels = jax.lax.psum(num_labels, "batch")

        # true loss = total loss / total samples
        loss = jax.lax.psum(loss, "batch")
        loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss)

        # true grad = total grad / total samples
        grad = jax.lax.psum(grad, "batch")
        grad = jax.tree_util.tree_map(lambda x: x / num_labels, grad)
754
        new_state = state.apply_gradients(grads=grad)
755

756
        metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789

        return new_state, metrics, new_dropout_rng

    # Create parallel version of the train step
    p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))

    # Define eval fn
    def eval_step(params, batch):
        labels = batch.pop("labels")

        logits = model(**batch, params=params, train=False)[0]

        # compute loss, ignore padded input tokens
        label_mask = jnp.where(labels > 0, 1.0, 0.0)
        loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask

        # compute accuracy
        accuracy = jnp.equal(jnp.argmax(logits, axis=-1), labels) * label_mask

        # summarize metrics
        metrics = {"loss": loss.sum(), "accuracy": accuracy.sum(), "normalizer": label_mask.sum()}
        metrics = jax.lax.psum(metrics, axis_name="batch")

        return metrics

    p_eval_step = jax.pmap(eval_step, "batch", donate_argnums=(0,))

    # Replicate the train state on each device
    state = jax_utils.replicate(state)

    train_time = 0
    epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
    for epoch in epochs:
790
        # ======================== Training ================================
791
        train_start = time.time()
792
        train_metrics = []
793

794
        # Create sampling rng
795
        rng, input_rng = jax.random.split(rng)
796
797

        # Generate an epoch by shuffling sampling indices from the train dataset
798
        num_train_samples = len(tokenized_datasets["train"])
799
800
        # Avoid using jax.numpy here in case of TPU training
        train_samples_idx = np.random.permutation(np.arange(num_train_samples))
801
        train_batch_idx = generate_batch_splits(train_samples_idx, train_batch_size)
802
803

        # Gather the indexes for creating the batch and do a training step
804
        for step, batch_idx in enumerate(tqdm(train_batch_idx, desc="Training...", position=1)):
805
806
807
808
            samples = [tokenized_datasets["train"][int(idx)] for idx in batch_idx]
            model_inputs = data_collator(samples, pad_to_multiple_of=16)

            # Model forward
809
810
811
            model_inputs = shard(model_inputs.data)
            state, train_metric, dropout_rngs = p_train_step(state, model_inputs, dropout_rngs)
            train_metrics.append(train_metric)
812

813
            cur_step = epoch * (num_train_samples // train_batch_size) + step
814

815
            if cur_step % training_args.logging_steps == 0 and cur_step > 0:
816
817
818
819
820
821
822
                # Save metrics
                train_metric = jax_utils.unreplicate(train_metric)
                train_time += time.time() - train_start
                if has_tensorboard and jax.process_index() == 0:
                    write_train_metric(summary_writer, train_metrics, train_time, cur_step)

                epochs.write(
Sylvain Gugger's avatar
Sylvain Gugger committed
823
824
                    f"Step... ({cur_step} | Loss: {train_metric['loss']}, Learning Rate:"
                    f" {train_metric['learning_rate']})"
825
826
827
                )

                train_metrics = []
828

829
830
831
            if cur_step % training_args.eval_steps == 0 and cur_step > 0:
                # ======================== Evaluating ==============================
                num_eval_samples = len(tokenized_datasets["validation"])
832
833
                # Avoid using jax.numpy here in case of TPU training
                eval_samples_idx = np.arange(num_eval_samples)
834
                eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size, drop_last=False)
835
836
837
838
839
840
841

                eval_metrics = []
                for i, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=2)):
                    samples = [tokenized_datasets["validation"][int(idx)] for idx in batch_idx]
                    model_inputs = data_collator(samples, pad_to_multiple_of=16)

                    # Model forward
842
843
844
                    metrics = pad_shard_unpad(p_eval_step, static_return=True)(
                        state.params, model_inputs.data, min_device_batch=per_device_eval_batch_size
                    )
845
846
847
848
                    eval_metrics.append(metrics)

                # normalize eval metrics
                eval_metrics = get_metrics(eval_metrics)
849
                eval_metrics = jax.tree_util.tree_map(jnp.sum, eval_metrics)
850
                eval_normalizer = eval_metrics.pop("normalizer")
851
                eval_metrics = jax.tree_util.tree_map(lambda x: x / eval_normalizer, eval_metrics)
852
853
854

                # Update progress bar
                epochs.desc = f"Step... ({cur_step} | Loss: {eval_metrics['loss']}, Acc: {eval_metrics['accuracy']})"
855

856
857
858
859
860
861
862
                # Save metrics
                if has_tensorboard and jax.process_index() == 0:
                    write_eval_metric(summary_writer, eval_metrics, cur_step)

            if cur_step % training_args.save_steps == 0 and cur_step > 0:
                # save checkpoint after each epoch and push checkpoint to the hub
                if jax.process_index() == 0:
863
                    params = jax.device_get(jax.tree_util.tree_map(lambda x: x[0], state.params))
864
865
866
867
                    model.save_pretrained(training_args.output_dir, params=params)
                    tokenizer.save_pretrained(training_args.output_dir)
                    if training_args.push_to_hub:
                        repo.push_to_hub(commit_message=f"Saving weights and logs of step {cur_step}", blocking=False)
Suraj Patil's avatar
Suraj Patil committed
868
869
870
871

    # Eval after training
    if training_args.do_eval:
        num_eval_samples = len(tokenized_datasets["validation"])
872
873
        # Avoid using jax.numpy here in case of TPU training
        eval_samples_idx = np.arange(num_eval_samples)
874
        eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size, drop_last=False)
Suraj Patil's avatar
Suraj Patil committed
875
876
877
878
879
880
881

        eval_metrics = []
        for _, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=2)):
            samples = [tokenized_datasets["validation"][int(idx)] for idx in batch_idx]
            model_inputs = data_collator(samples, pad_to_multiple_of=16)

            # Model forward
882
883
884
            metrics = pad_shard_unpad(p_eval_step, static_return=True)(
                state.params, model_inputs.data, min_device_batch=per_device_eval_batch_size
            )
Suraj Patil's avatar
Suraj Patil committed
885
886
887
888
            eval_metrics.append(metrics)

        # normalize eval metrics
        eval_metrics = get_metrics(eval_metrics)
889
        eval_metrics = jax.tree_util.tree_map(lambda metric: jnp.sum(metric).item(), eval_metrics)
Suraj Patil's avatar
Suraj Patil committed
890
        eval_normalizer = eval_metrics.pop("normalizer")
891
        eval_metrics = jax.tree_util.tree_map(lambda x: x / eval_normalizer, eval_metrics)
Suraj Patil's avatar
Suraj Patil committed
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907

        try:
            perplexity = math.exp(eval_metrics["loss"])
        except OverflowError:
            perplexity = float("inf")
        eval_metrics["perplexity"] = perplexity

        if jax.process_index() == 0:
            eval_metrics = {f"eval_{metric_name}": value for metric_name, value in eval_metrics.items()}
            path = os.path.join(training_args.output_dir, "eval_results.json")
            with open(path, "w") as f:
                json.dump(eval_metrics, f, indent=4, sort_keys=True)


if __name__ == "__main__":
    main()