run_mlm_flax.py 39.5 KB
Newer Older
1
#!/usr/bin/env python
2
# coding=utf-8
3
# Copyright 2021 The HuggingFace Team All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for masked language modeling (BERT, ALBERT, RoBERTa...) with whole word masking on a
text file or a dataset.

Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
21
https://huggingface.co/models?filter=fill-mask
22
"""
Suraj Patil's avatar
Suraj Patil committed
23
import json
24
import logging
Suraj Patil's avatar
Suraj Patil committed
25
import math
26
27
import os
import sys
28
import time
29
import warnings
30
31
from dataclasses import asdict, dataclass, field
from enum import Enum
32
from itertools import chain
33
34
35
36
37

# You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments.
from pathlib import Path
from typing import Dict, List, Optional, Tuple

38
import flax
39
40
import jax
import jax.numpy as jnp
41
import numpy as np
42
import optax
43
from datasets import load_dataset
44
from flax import jax_utils, traverse_util
45
from flax.jax_utils import pad_shard_unpad
46
47
from flax.training import train_state
from flax.training.common_utils import get_metrics, onehot, shard
48
from huggingface_hub import Repository, create_repo
49
50
from tqdm import tqdm

51
52
from transformers import (
    CONFIG_MAPPING,
53
    FLAX_MODEL_FOR_MASKED_LM_MAPPING,
54
55
    AutoConfig,
    AutoTokenizer,
56
    FlaxAutoModelForMaskedLM,
57
58
59
60
61
62
    HfArgumentParser,
    PreTrainedTokenizerBase,
    TensorType,
    is_tensorboard_available,
    set_seed,
)
63
from transformers.utils import send_example_telemetry
64
65


66
MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_MASKED_LM_MAPPING.keys())
67
68
69
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)


70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
@dataclass
class TrainingArguments:
    output_dir: str = field(
        metadata={"help": "The output directory where the model predictions and checkpoints will be written."},
    )
    overwrite_output_dir: bool = field(
        default=False,
        metadata={
            "help": (
                "Overwrite the content of the output directory. "
                "Use this to continue training if output_dir points to a checkpoint directory."
            )
        },
    )
    do_train: bool = field(default=False, metadata={"help": "Whether to run training."})
    do_eval: bool = field(default=False, metadata={"help": "Whether to run eval on the dev set."})
    per_device_train_batch_size: int = field(
        default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."}
    )
    per_device_eval_batch_size: int = field(
        default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."}
    )
    learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."})
    weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."})
    adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"})
    adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"})
    adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."})
    adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."})
    num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."})
    warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."})
    logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."})
    save_steps: int = field(default=500, metadata={"help": "Save checkpoint every X updates steps."})
    eval_steps: int = field(default=None, metadata={"help": "Run an evaluation every X steps."})
    seed: int = field(default=42, metadata={"help": "Random seed that will be set at the beginning of training."})
    push_to_hub: bool = field(
        default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."}
    )
    hub_model_id: str = field(
        default=None, metadata={"help": "The name of the repository to keep in sync with the local `output_dir`."}
    )
    hub_token: str = field(default=None, metadata={"help": "The token to use to push to the Model Hub."})
Karim Foda's avatar
Karim Foda committed
111
112
113
114
115
116
    gradient_checkpointing: bool = field(
        default=False,
        metadata={
            "help": "If True, use gradient checkpointing to save memory at the expense of slower backward pass."
        },
    )
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

    def __post_init__(self):
        if self.output_dir is not None:
            self.output_dir = os.path.expanduser(self.output_dir)

    def to_dict(self):
        """
        Serializes this instance while replace `Enum` by their values (for JSON serialization support). It obfuscates
        the token values by removing their value.
        """
        d = asdict(self)
        for k, v in d.items():
            if isinstance(v, Enum):
                d[k] = v.value
            if isinstance(v, list) and len(v) > 0 and isinstance(v[0], Enum):
                d[k] = [x.value for x in v]
            if k.endswith("_token"):
                d[k] = f"<{k.upper()}>"
        return d


138
139
140
141
142
143
144
145
146
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """

    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
147
148
149
            "help": (
                "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."
            )
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
        },
    )
    model_type: Optional[str] = field(
        default=None,
        metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
169
170
171
    dtype: Optional[str] = field(
        default="float32",
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
172
173
174
175
            "help": (
                "Floating-point format in which the model weights should be initialized and trained. Choose one of"
                " `[float32, float16, bfloat16]`."
            )
176
177
        },
    )
178
179
    token: str = field(
        default=None,
180
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
181
            "help": (
182
183
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
Sylvain Gugger's avatar
Sylvain Gugger committed
184
            )
185
186
        },
    )
187
188
189
190
191
192
    use_auth_token: bool = field(
        default=None,
        metadata={
            "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
        },
    )
193
194
195
196
197
198
199
200
201
202
    trust_remote_code: bool = field(
        default=False,
        metadata={
            "help": (
                "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option"
                "should only be set to `True` for repositories you trust and in which you have read the code, as it will"
                "execute code present on the Hub on your local machine."
            )
        },
    )
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
    )
    train_ref_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input train ref data file for whole word masking in Chinese."},
    )
    validation_ref_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."},
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
233
234
235
236
237
238
    validation_split_percentage: Optional[int] = field(
        default=5,
        metadata={
            "help": "The percentage of the train set used as validation set in case there's no validation split"
        },
    )
239
240
241
    max_seq_length: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
242
243
244
245
            "help": (
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated. Default to the max input length of the model."
            )
246
247
248
249
250
251
252
253
254
255
256
257
        },
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    mlm_probability: float = field(
        default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
    )
    pad_to_max_length: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
258
259
260
261
            "help": (
                "Whether to pad all samples to `max_seq_length`. "
                "If False, will pad the samples dynamically when batching to the maximum length in the batch."
            )
262
263
        },
    )
264
265
266
267
    line_by_line: bool = field(
        default=False,
        metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
    )
268
269
270
271
272
273
274
275
276
277
278
279
280

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."


281
@flax.struct.dataclass
282
283
284
285
286
287
288
289
290
class FlaxDataCollatorForLanguageModeling:
    """
    Data collator used for language modeling. Inputs are dynamically padded to the maximum length of a batch if they
    are not all of the same length.

    Args:
        tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`):
            The tokenizer used for encoding the data.
        mlm_probability (:obj:`float`, `optional`, defaults to 0.15):
291
            The probability with which to (randomly) mask tokens in the input.
292
293
294
295
296
297
298
299
300
301
302
303
304

    .. note::

        For best performance, this data collator should be used with a dataset having items that are dictionaries or
        BatchEncoding, with the :obj:`"special_tokens_mask"` key, as returned by a
        :class:`~transformers.PreTrainedTokenizer` or a :class:`~transformers.PreTrainedTokenizerFast` with the
        argument :obj:`return_special_tokens_mask=True`.
    """

    tokenizer: PreTrainedTokenizerBase
    mlm_probability: float = 0.15

    def __post_init__(self):
305
        if self.tokenizer.mask_token is None:
306
307
308
309
310
311
312
313
314
315
316
            raise ValueError(
                "This tokenizer does not have a mask token which is necessary for masked language modeling. "
                "You should pass `mlm=False` to train on causal language modeling instead."
            )

    def __call__(self, examples: List[Dict[str, np.ndarray]], pad_to_multiple_of: int) -> Dict[str, np.ndarray]:
        # Handle dict or lists with proper padding and conversion to tensor.
        batch = self.tokenizer.pad(examples, pad_to_multiple_of=pad_to_multiple_of, return_tensors=TensorType.NUMPY)

        # If special token mask has been preprocessed, pop it from the dict.
        special_tokens_mask = batch.pop("special_tokens_mask", None)
317
318
319
320

        batch["input_ids"], batch["labels"] = self.mask_tokens(
            batch["input_ids"], special_tokens_mask=special_tokens_mask
        )
321
322
323
324
        return batch

    def mask_tokens(
        self, inputs: np.ndarray, special_tokens_mask: Optional[np.ndarray]
325
    ) -> Tuple[np.ndarray, np.ndarray]:
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
        """
        Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
        """
        labels = inputs.copy()
        # We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`)
        probability_matrix = np.full(labels.shape, self.mlm_probability)
        special_tokens_mask = special_tokens_mask.astype("bool")

        probability_matrix[special_tokens_mask] = 0.0
        masked_indices = np.random.binomial(1, probability_matrix).astype("bool")
        labels[~masked_indices] = -100  # We only compute loss on masked tokens

        # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
        indices_replaced = np.random.binomial(1, np.full(labels.shape, 0.8)).astype("bool") & masked_indices
        inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token)

        # 10% of the time, we replace masked input tokens with random word
        indices_random = np.random.binomial(1, np.full(labels.shape, 0.5)).astype("bool")
        indices_random &= masked_indices & ~indices_replaced

        random_words = np.random.randint(self.tokenizer.vocab_size, size=labels.shape, dtype="i4")
        inputs[indices_random] = random_words[indices_random]

        # The rest of the time (10% of the time) we keep the masked input tokens unchanged
        return inputs, labels


353
354
355
def generate_batch_splits(samples_idx: np.ndarray, batch_size: int, drop_last=True) -> np.ndarray:
    """Generate batches of data for a specified batch size from sample indices. If the dataset size is not divisible by
    the batch size and `drop_last` is `True`, the last incomplete batch is dropped. Else, it is returned."""
356
    num_samples = len(samples_idx)
357
358
359
360
361
362
363
364
365
366
    if drop_last:
        samples_to_remove = num_samples % batch_size
        if samples_to_remove != 0:
            samples_idx = samples_idx[:-samples_to_remove]
        sections_split = num_samples // batch_size
        samples_idx = samples_idx.reshape((sections_split, batch_size))
    else:
        sections_split = math.ceil(num_samples / batch_size)
        samples_idx = np.array_split(samples_idx, sections_split)
    return samples_idx
367
368


369
def write_train_metric(summary_writer, train_metrics, train_time, step):
370
371
372
373
374
375
376
377
    summary_writer.scalar("train_time", train_time, step)

    train_metrics = get_metrics(train_metrics)
    for key, vals in train_metrics.items():
        tag = f"train_{key}"
        for i, val in enumerate(vals):
            summary_writer.scalar(tag, val, step - len(vals) + i + 1)

378
379

def write_eval_metric(summary_writer, eval_metrics, step):
380
381
382
383
    for metric_name, value in eval_metrics.items():
        summary_writer.scalar(f"eval_{metric_name}", value, step)


Suraj Patil's avatar
Suraj Patil committed
384
def main():
385
386
387
388
389
390
391
392
393
394
395
396
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

397
398
399
400
401
402
    if model_args.use_auth_token is not None:
        warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
        if model_args.token is not None:
            raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
        model_args.token = model_args.use_auth_token

403
404
405
406
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_mlm", model_args, data_args, framework="flax")

407
408
409
410
411
412
413
414
415
416
417
418
419
    if (
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
    ):
        raise ValueError(
            f"Output directory ({training_args.output_dir}) already exists and is not empty."
            "Use --overwrite_output_dir to overcome."
        )

    # Setup logging
    logging.basicConfig(
420
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
421
        level=logging.INFO,
422
423
424
425
426
427
428
        datefmt="[%X]",
    )

    # Log on each process the small summary:
    logger = logging.getLogger(__name__)

    # Set the verbosity to info of the Transformers logger (on main process only):
429
    logger.info(f"Training/evaluation parameters {training_args}")
430
431
432
433

    # Set seed before initializing model.
    set_seed(training_args.seed)

434
435
    # Handle the repository creation
    if training_args.push_to_hub:
436
437
438
439
440
441
442
443
        # Retrieve of infer repo_name
        repo_name = training_args.hub_model_id
        if repo_name is None:
            repo_name = Path(training_args.output_dir).absolute().name
        # Create repo and retrieve repo_id
        repo_id = create_repo(repo_name, exist_ok=True, token=training_args.hub_token).repo_id
        # Clone repo locally
        repo = Repository(training_args.output_dir, clone_from=repo_id, token=training_args.hub_token)
444

445
446
447
448
449
450
451
452
453
454
455
    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantees that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
456
457
458
459
        datasets = load_dataset(
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
460
            token=model_args.token,
461
        )
462

463
464
465
466
467
        if "validation" not in datasets.keys():
            datasets["validation"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[:{data_args.validation_split_percentage}%]",
468
                cache_dir=model_args.cache_dir,
469
                token=model_args.token,
470
471
472
473
474
            )
            datasets["train"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[{data_args.validation_split_percentage}%:]",
475
                cache_dir=model_args.cache_dir,
476
                token=model_args.token,
477
            )
478
479
480
481
482
483
484
485
486
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        extension = data_args.train_file.split(".")[-1]
        if extension == "txt":
            extension = "text"
487
488
489
490
        datasets = load_dataset(
            extension,
            data_files=data_files,
            cache_dir=model_args.cache_dir,
491
            token=model_args.token,
492
        )
493
494
495
496
497
498
499

        if "validation" not in datasets.keys():
            datasets["validation"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
500
                token=model_args.token,
501
502
503
504
505
506
            )
            datasets["train"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
507
                token=model_args.token,
508
            )
509
510
511
512
513
514
515
516
517
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer

    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    if model_args.config_name:
518
519
520
        config = AutoConfig.from_pretrained(
            model_args.config_name,
            cache_dir=model_args.cache_dir,
521
            token=model_args.token,
522
            trust_remote_code=model_args.trust_remote_code,
523
        )
524
    elif model_args.model_name_or_path:
525
526
527
        config = AutoConfig.from_pretrained(
            model_args.model_name_or_path,
            cache_dir=model_args.cache_dir,
528
            token=model_args.token,
529
            trust_remote_code=model_args.trust_remote_code,
530
        )
531
532
533
534
535
536
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")

    if model_args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(
537
538
539
            model_args.tokenizer_name,
            cache_dir=model_args.cache_dir,
            use_fast=model_args.use_fast_tokenizer,
540
            token=model_args.token,
541
            trust_remote_code=model_args.trust_remote_code,
542
543
544
        )
    elif model_args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(
545
546
547
            model_args.model_name_or_path,
            cache_dir=model_args.cache_dir,
            use_fast=model_args.use_fast_tokenizer,
548
            token=model_args.token,
549
            trust_remote_code=model_args.trust_remote_code,
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
        )
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    if training_args.do_train:
        column_names = datasets["train"].column_names
    else:
        column_names = datasets["validation"].column_names
    text_column_name = "text" if "text" in column_names else column_names[0]

565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
    max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

    if data_args.line_by_line:
        # When using line_by_line, we just tokenize each nonempty line.
        padding = "max_length" if data_args.pad_to_max_length else False

        def tokenize_function(examples):
            # Remove empty lines
            examples = [line for line in examples if len(line) > 0 and not line.isspace()]
            return tokenizer(
                examples,
                return_special_tokens_mask=True,
                padding=padding,
                truncation=True,
                max_length=max_seq_length,
            )

        tokenized_datasets = datasets.map(
            tokenize_function,
            input_columns=[text_column_name],
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not data_args.overwrite_cache,
589
590
        )

591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
    else:
        # Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
        # We use `return_special_tokens_mask=True` because DataCollatorForLanguageModeling (see below) is more
        # efficient when it receives the `special_tokens_mask`.
        def tokenize_function(examples):
            return tokenizer(examples[text_column_name], return_special_tokens_mask=True)

        tokenized_datasets = datasets.map(
            tokenize_function,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not data_args.overwrite_cache,
        )

        # Main data processing function that will concatenate all texts from our dataset and generate chunks of
        # max_seq_length.
        def group_texts(examples):
            # Concatenate all texts.
610
            concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
611
612
613
            total_length = len(concatenated_examples[list(examples.keys())[0]])
            # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
            # customize this part to your needs.
614
615
            if total_length >= max_seq_length:
                total_length = (total_length // max_seq_length) * max_seq_length
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
            # Split by chunks of max_len.
            result = {
                k: [t[i : i + max_seq_length] for i in range(0, total_length, max_seq_length)]
                for k, t in concatenated_examples.items()
            }
            return result

        # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a
        # remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value
        # might be slower to preprocess.
        #
        # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
        # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
        tokenized_datasets = tokenized_datasets.map(
            group_texts,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            load_from_cache_file=not data_args.overwrite_cache,
        )
635
636

    # Enable tensorboard only on the master node
637
    has_tensorboard = is_tensorboard_available()
638
    if has_tensorboard and jax.process_index() == 0:
639
640
641
642
643
644
645
646
647
648
649
650
651
652
        try:
            from flax.metrics.tensorboard import SummaryWriter

            summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir))
        except ImportError as ie:
            has_tensorboard = False
            logger.warning(
                f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
            )
    else:
        logger.warning(
            "Unable to display metrics through TensorBoard because the package is not installed: "
            "Please run pip install tensorboard to enable."
        )
653
654
655
656
657
658
659
660
661

    # Data collator
    # This one will take care of randomly masking the tokens.
    data_collator = FlaxDataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=data_args.mlm_probability)

    # Initialize our training
    rng = jax.random.PRNGKey(training_args.seed)
    dropout_rngs = jax.random.split(rng, jax.local_device_count())

662
663
    if model_args.model_name_or_path:
        model = FlaxAutoModelForMaskedLM.from_pretrained(
664
665
666
667
            model_args.model_name_or_path,
            config=config,
            seed=training_args.seed,
            dtype=getattr(jnp, model_args.dtype),
668
            token=model_args.token,
669
            trust_remote_code=model_args.trust_remote_code,
670
671
672
        )
    else:
        model = FlaxAutoModelForMaskedLM.from_config(
673
674
675
            config,
            seed=training_args.seed,
            dtype=getattr(jnp, model_args.dtype),
676
            trust_remote_code=model_args.trust_remote_code,
677
        )
678

Karim Foda's avatar
Karim Foda committed
679
680
681
    if training_args.gradient_checkpointing:
        model.enable_gradient_checkpointing()

682
683
684
    # Store some constant
    num_epochs = int(training_args.num_train_epochs)
    train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
685
686
    per_device_eval_batch_size = int(training_args.per_device_eval_batch_size)
    eval_batch_size = per_device_eval_batch_size * jax.device_count()
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702

    num_train_steps = len(tokenized_datasets["train"]) // train_batch_size * num_epochs

    # Create learning rate schedule
    warmup_fn = optax.linear_schedule(
        init_value=0.0, end_value=training_args.learning_rate, transition_steps=training_args.warmup_steps
    )
    decay_fn = optax.linear_schedule(
        init_value=training_args.learning_rate,
        end_value=0,
        transition_steps=num_train_steps - training_args.warmup_steps,
    )
    linear_decay_lr_schedule_fn = optax.join_schedules(
        schedules=[warmup_fn, decay_fn], boundaries=[training_args.warmup_steps]
    )

703
704
705
706
707
708
    # We use Optax's "masking" functionality to not apply weight decay
    # to bias and LayerNorm scale parameters. decay_mask_fn returns a
    # mask boolean with the same structure as the parameters.
    # The mask is True for parameters that should be decayed.
    def decay_mask_fn(params):
        flat_params = traverse_util.flatten_dict(params)
709
710
        # find out all LayerNorm parameters
        layer_norm_candidates = ["layernorm", "layer_norm", "ln"]
711
712
713
714
715
716
        layer_norm_named_params = {
            layer[-2:]
            for layer_norm_name in layer_norm_candidates
            for layer in flat_params.keys()
            if layer_norm_name in "".join(layer).lower()
        }
717
        flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_named_params) for path in flat_params}
718
719
        return traverse_util.unflatten_dict(flat_mask)

720
    # create adam optimizer
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
    if training_args.adafactor:
        # We use the default parameters here to initialize adafactor,
        # For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74
        optimizer = optax.adafactor(
            learning_rate=linear_decay_lr_schedule_fn,
        )
    else:
        optimizer = optax.adamw(
            learning_rate=linear_decay_lr_schedule_fn,
            b1=training_args.adam_beta1,
            b2=training_args.adam_beta2,
            eps=training_args.adam_epsilon,
            weight_decay=training_args.weight_decay,
            mask=decay_mask_fn,
        )
736

737
    # Setup train state
738
    state = train_state.TrainState.create(apply_fn=model.__call__, params=model.params, tx=optimizer)
739

740
741
742
    # Define gradient update step fn
    def train_step(state, batch, dropout_rng):
        dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)
743

744
745
        def loss_fn(params):
            labels = batch.pop("labels")
746

747
748
749
750
751
752
753
            logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]

            # compute loss, ignore padded input tokens
            label_mask = jnp.where(labels > 0, 1.0, 0.0)
            loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask

            # take average
754
755
            loss = loss.sum()
            num_labels = label_mask.sum()
756

757
            return loss, num_labels
758

759
760
761
762
763
764
765
766
767
768
769
        grad_fn = jax.value_and_grad(loss_fn, has_aux=True)
        (loss, num_labels), grad = grad_fn(state.params)
        num_labels = jax.lax.psum(num_labels, "batch")

        # true loss = total loss / total samples
        loss = jax.lax.psum(loss, "batch")
        loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss)

        # true grad = total grad / total samples
        grad = jax.lax.psum(grad, "batch")
        grad = jax.tree_util.tree_map(lambda x: x / num_labels, grad)
770
        new_state = state.apply_gradients(grads=grad)
771

772
        metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805

        return new_state, metrics, new_dropout_rng

    # Create parallel version of the train step
    p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))

    # Define eval fn
    def eval_step(params, batch):
        labels = batch.pop("labels")

        logits = model(**batch, params=params, train=False)[0]

        # compute loss, ignore padded input tokens
        label_mask = jnp.where(labels > 0, 1.0, 0.0)
        loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask

        # compute accuracy
        accuracy = jnp.equal(jnp.argmax(logits, axis=-1), labels) * label_mask

        # summarize metrics
        metrics = {"loss": loss.sum(), "accuracy": accuracy.sum(), "normalizer": label_mask.sum()}
        metrics = jax.lax.psum(metrics, axis_name="batch")

        return metrics

    p_eval_step = jax.pmap(eval_step, "batch", donate_argnums=(0,))

    # Replicate the train state on each device
    state = jax_utils.replicate(state)

    train_time = 0
    epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
    for epoch in epochs:
806
        # ======================== Training ================================
807
        train_start = time.time()
808
        train_metrics = []
809

810
        # Create sampling rng
811
        rng, input_rng = jax.random.split(rng)
812
813

        # Generate an epoch by shuffling sampling indices from the train dataset
814
        num_train_samples = len(tokenized_datasets["train"])
815
816
        # Avoid using jax.numpy here in case of TPU training
        train_samples_idx = np.random.permutation(np.arange(num_train_samples))
817
        train_batch_idx = generate_batch_splits(train_samples_idx, train_batch_size)
818
819

        # Gather the indexes for creating the batch and do a training step
820
        for step, batch_idx in enumerate(tqdm(train_batch_idx, desc="Training...", position=1)):
821
822
823
824
            samples = [tokenized_datasets["train"][int(idx)] for idx in batch_idx]
            model_inputs = data_collator(samples, pad_to_multiple_of=16)

            # Model forward
825
826
827
            model_inputs = shard(model_inputs.data)
            state, train_metric, dropout_rngs = p_train_step(state, model_inputs, dropout_rngs)
            train_metrics.append(train_metric)
828

829
            cur_step = epoch * (num_train_samples // train_batch_size) + step
830

831
            if cur_step % training_args.logging_steps == 0 and cur_step > 0:
832
833
834
835
836
837
838
                # Save metrics
                train_metric = jax_utils.unreplicate(train_metric)
                train_time += time.time() - train_start
                if has_tensorboard and jax.process_index() == 0:
                    write_train_metric(summary_writer, train_metrics, train_time, cur_step)

                epochs.write(
Sylvain Gugger's avatar
Sylvain Gugger committed
839
840
                    f"Step... ({cur_step} | Loss: {train_metric['loss']}, Learning Rate:"
                    f" {train_metric['learning_rate']})"
841
842
843
                )

                train_metrics = []
844

845
846
847
            if cur_step % training_args.eval_steps == 0 and cur_step > 0:
                # ======================== Evaluating ==============================
                num_eval_samples = len(tokenized_datasets["validation"])
848
849
                # Avoid using jax.numpy here in case of TPU training
                eval_samples_idx = np.arange(num_eval_samples)
850
                eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size, drop_last=False)
851
852
853
854
855
856
857

                eval_metrics = []
                for i, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=2)):
                    samples = [tokenized_datasets["validation"][int(idx)] for idx in batch_idx]
                    model_inputs = data_collator(samples, pad_to_multiple_of=16)

                    # Model forward
858
859
860
                    metrics = pad_shard_unpad(p_eval_step, static_return=True)(
                        state.params, model_inputs.data, min_device_batch=per_device_eval_batch_size
                    )
861
862
863
864
                    eval_metrics.append(metrics)

                # normalize eval metrics
                eval_metrics = get_metrics(eval_metrics)
865
                eval_metrics = jax.tree_util.tree_map(jnp.sum, eval_metrics)
866
                eval_normalizer = eval_metrics.pop("normalizer")
867
                eval_metrics = jax.tree_util.tree_map(lambda x: x / eval_normalizer, eval_metrics)
868
869
870

                # Update progress bar
                epochs.desc = f"Step... ({cur_step} | Loss: {eval_metrics['loss']}, Acc: {eval_metrics['accuracy']})"
871

872
873
874
875
876
877
878
                # Save metrics
                if has_tensorboard and jax.process_index() == 0:
                    write_eval_metric(summary_writer, eval_metrics, cur_step)

            if cur_step % training_args.save_steps == 0 and cur_step > 0:
                # save checkpoint after each epoch and push checkpoint to the hub
                if jax.process_index() == 0:
879
                    params = jax.device_get(jax.tree_util.tree_map(lambda x: x[0], state.params))
880
881
882
883
                    model.save_pretrained(training_args.output_dir, params=params)
                    tokenizer.save_pretrained(training_args.output_dir)
                    if training_args.push_to_hub:
                        repo.push_to_hub(commit_message=f"Saving weights and logs of step {cur_step}", blocking=False)
Suraj Patil's avatar
Suraj Patil committed
884
885
886
887

    # Eval after training
    if training_args.do_eval:
        num_eval_samples = len(tokenized_datasets["validation"])
888
889
        # Avoid using jax.numpy here in case of TPU training
        eval_samples_idx = np.arange(num_eval_samples)
890
        eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size, drop_last=False)
Suraj Patil's avatar
Suraj Patil committed
891
892
893
894
895
896
897

        eval_metrics = []
        for _, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=2)):
            samples = [tokenized_datasets["validation"][int(idx)] for idx in batch_idx]
            model_inputs = data_collator(samples, pad_to_multiple_of=16)

            # Model forward
898
899
900
            metrics = pad_shard_unpad(p_eval_step, static_return=True)(
                state.params, model_inputs.data, min_device_batch=per_device_eval_batch_size
            )
Suraj Patil's avatar
Suraj Patil committed
901
902
903
904
            eval_metrics.append(metrics)

        # normalize eval metrics
        eval_metrics = get_metrics(eval_metrics)
905
        eval_metrics = jax.tree_util.tree_map(lambda metric: jnp.sum(metric).item(), eval_metrics)
Suraj Patil's avatar
Suraj Patil committed
906
        eval_normalizer = eval_metrics.pop("normalizer")
907
        eval_metrics = jax.tree_util.tree_map(lambda x: x / eval_normalizer, eval_metrics)
Suraj Patil's avatar
Suraj Patil committed
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923

        try:
            perplexity = math.exp(eval_metrics["loss"])
        except OverflowError:
            perplexity = float("inf")
        eval_metrics["perplexity"] = perplexity

        if jax.process_index() == 0:
            eval_metrics = {f"eval_{metric_name}": value for metric_name, value in eval_metrics.items()}
            path = os.path.join(training_args.output_dir, "eval_results.json")
            with open(path, "w") as f:
                json.dump(eval_metrics, f, indent=4, sort_keys=True)


if __name__ == "__main__":
    main()