run_pplm.py 25.6 KB
Newer Older
Piero Molino's avatar
Piero Molino committed
1
#! /usr/bin/env python3
Julien Chaumond's avatar
Julien Chaumond committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# coding=utf-8
# Copyright 2018 The Uber AI Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: add code for training a custom discriminator

"""
Example command with bag of words:
python examples/run_pplm.py -B space --cond_text "The president" --length 100 --gamma 1.5 --num_iterations 3 --num_samples 10 --stepsize 0.01 --window_length 5 --kl_scale 0.01 --gm_scale 0.95

Example command with discriminator:
python examples/run_pplm.py -D sentiment --label_class 3 --cond_text "The lake" --length 10 --gamma 1.0 --num_iterations 30 --num_samples 10 --stepsize 0.01 --kl_scale 0.01 --gm_scale 0.95
"""

import argparse
from operator import add
from typing import List, Optional, Tuple, Union

import numpy as np
import torch
import torch.nn.functional as F
from torch.autograd import Variable
from tqdm import trange

37
from examples.run_pplm_discrim_train import ClassificationHead
Julien Chaumond's avatar
Julien Chaumond committed
38
39
40
41
42
43
44
45
from transformers import GPT2Tokenizer
from transformers.file_utils import cached_path
from transformers.modeling_gpt2 import GPT2LMHeadModel

PPLM_BOW = 1
PPLM_DISCRIM = 2
PPLM_BOW_DISCRIM = 3
SMALL_CONST = 1e-15
46
BIG_CONST = 1e10
Julien Chaumond's avatar
Julien Chaumond committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
TOKENIZER = GPT2Tokenizer.from_pretrained("gpt2-medium")

BAG_OF_WORDS_ARCHIVE_MAP = {
    'kitchen': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/kitchen.txt",
    'legal': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/legal.txt",
    'military': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/military.txt",
    'monsters': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/monsters.txt",
    'politics': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/politics.txt",
    'positive_words': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/positive_words.txt",
    'religion': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/religion.txt",
    'science': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/science.txt",
    'space': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/space.txt",
    'technology': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/technology.txt",
}

DISCRIMINATOR_MODELS_PARAMS = {
    "clickbait": {
        "url": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/discriminators/clickbait_classifierhead.pt",
        "class_size": 2,
        "embed_size": 1024,
        "class_vocab": {"non_clickbait": 0, "clickbait": 1},
        "default_class": 1,
    },
    "sentiment": {
Piero Molino's avatar
Piero Molino committed
71
        "url": "http://s.yosinski.com/SST_classifier_head.pt",
Julien Chaumond's avatar
Julien Chaumond committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
        "class_size": 5,
        "embed_size": 1024,
        "class_vocab": {"very_positive": 2, "very_negative": 3},
        "default_class": 3,
    },
    "toxicity": {
        "url": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/discriminators/toxicity_classifierhead.pt",
        "class_size": 2,
        "embed_size": 1024,
        "class_vocab": {"non_toxic": 0, "toxic": 1},
        "default_class": 0,
    },
}


Piero Molino's avatar
Piero Molino committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
def to_var(x, requires_grad=False, volatile=False):
    if torch.cuda.is_available():
        x = x.cuda()
    return Variable(x, requires_grad=requires_grad, volatile=volatile)


def top_k_filter(logits, k, probs=False):
    """
    Masks everything but the k top entries as -infinity (1e10).
    Used to mask logits such that e^-infinity -> 0 won't contribute to the
    sum of the denominator.
    """
    if k == 0:
        return logits
    else:
        values = torch.topk(logits, k)[0]
        batch_mins = values[:, -1].view(-1, 1).expand_as(logits)
        if probs:
            return torch.where(logits < batch_mins,
                               torch.ones_like(logits) * 0.0, logits)
107
108
        return torch.where(logits < batch_mins,
                           torch.ones_like(logits) * -BIG_CONST,
Piero Molino's avatar
Piero Molino committed
109
110
111
                           logits)


112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
def perturb_past(
        past,
        model,
        prev,
        unpert_past=None,
        unpert_logits=None,
        accumulated_hidden=None,
        grad_norms=None,
        stepsize=0.01,
        classifier=None,
        label_class=None,
        one_hot_bows_vectors=None,
        loss_type=0,
        num_iterations=3,
        kl_scale=0.01,
        window_length=0,
        horizon_length=1,
        decay=False,
        gamma=1.5,
):
Piero Molino's avatar
Piero Molino committed
132
133
134
135
    # Generate inital perturbed past
    past_perturb_orig = [
        (np.random.uniform(0.0, 0.0, p.shape).astype('float32'))
        for p in past]
Julien Chaumond's avatar
Julien Chaumond committed
136
137
138
139

    if accumulated_hidden is None:
        accumulated_hidden = 0

140
    if decay:
141
        decay_mask = torch.arange(0., 1.0 + SMALL_CONST, 1.0 / (window_length))[
Piero Molino's avatar
Piero Molino committed
142
                     1:]
Julien Chaumond's avatar
Julien Chaumond committed
143
144
145
    else:
        decay_mask = 1.0

Piero Molino's avatar
Piero Molino committed
146
147
148
149
150
151
152
153
154
155
156
    # Generate a mask is gradient perturbated is based on a past window
    _, _, _, current_length, _ = past[0].shape

    if current_length > window_length and window_length > 0:
        ones_key_val_shape = tuple(past[0].shape[:-2]) + tuple(
            [window_length]) + tuple(
            past[0].shape[-1:])

        zeros_key_val_shape = tuple(past[0].shape[:-2]) + tuple(
            [current_length - window_length]) + tuple(
            past[0].shape[-1:])
Julien Chaumond's avatar
Julien Chaumond committed
157
158
159
160
161

        ones_mask = torch.ones(ones_key_val_shape)
        ones_mask = decay_mask * ones_mask.permute(0, 1, 2, 4, 3)
        ones_mask = ones_mask.permute(0, 1, 2, 4, 3)

Piero Molino's avatar
Piero Molino committed
162
163
        window_mask = torch.cat((ones_mask, torch.zeros(zeros_key_val_shape)),
                                dim=-2).cuda()
Julien Chaumond's avatar
Julien Chaumond committed
164
165
166
167
    else:
        window_mask = torch.ones_like(past[0]).cuda()

    loss_per_iter = []
168
    for i in range(num_iterations):
Julien Chaumond's avatar
Julien Chaumond committed
169
        print("Iteration ", i + 1)
Piero Molino's avatar
Piero Molino committed
170
171
        past_perturb = [torch.from_numpy(p_) for p_ in past_perturb_orig]
        past_perturb = [to_var(p_, requires_grad=True) for p_ in past_perturb]
Julien Chaumond's avatar
Julien Chaumond committed
172

Piero Molino's avatar
Piero Molino committed
173
        perturbed_past = list(map(add, past, past_perturb))
Julien Chaumond's avatar
Julien Chaumond committed
174

Piero Molino's avatar
Piero Molino committed
175
        _, _, _, current_length, _ = past_perturb[0].shape
Julien Chaumond's avatar
Julien Chaumond committed
176

Piero Molino's avatar
Piero Molino committed
177
178
        # _, future_past = model(prev, past=perturbed_past)
        # hidden = model.hidden_states
Julien Chaumond's avatar
Julien Chaumond committed
179

Piero Molino's avatar
Piero Molino committed
180
181
182
183
184
185
186
187
188
189
190
        # Piero modified model call
        logits, _, all_hidden = model(prev, past=perturbed_past)
        hidden = all_hidden[-1]
        new_accumulated_hidden = accumulated_hidden + torch.sum(hidden,
                                                                dim=1).detach()

        # TODO: Check the layer-norm consistency of this with trained discriminator
        logits = logits[:, -1, :]
        probabs = F.softmax(logits, dim=-1)
        loss = 0.0
        loss_list = []
191
192
        if loss_type == 1 or loss_type == 3:
            for one_hot_good in one_hot_bows_vectors:
Piero Molino's avatar
Piero Molino committed
193
194
195
196
197
198
199
200
201
                good_logits = torch.mm(probabs, torch.t(one_hot_good))
                loss_word = good_logits
                loss_word = torch.sum(loss_word)
                loss_word = -torch.log(loss_word)
                # loss_word = torch.sum(loss_word) /torch.sum(one_hot_good)
                loss += loss_word
                loss_list.append(loss_word)
            print(" pplm_bow_loss:", loss.data.cpu().numpy())

202
        if loss_type == 2 or loss_type == 3:
Julien Chaumond's avatar
Julien Chaumond committed
203
            ce_loss = torch.nn.CrossEntropyLoss()
204
205
            new_true_past = unpert_past
            for i in range(horizon_length):
Piero Molino's avatar
Piero Molino committed
206
207
208
209
210
211
212
213
214
215
216
                future_probabs = F.softmax(logits, dim=-1)  # Get softmax
                future_probabs = torch.unsqueeze(future_probabs, dim=1)

                # _, new_true_past = model(future_probabs, past=new_true_past)
                # future_hidden = model.hidden_states  # Get expected hidden states

                # Piero modified model call
                wte = model.resize_token_embeddings()
                inputs_embeds = torch.matmul(future_probabs, wte.weight.data)
                _, new_true_past, future_hidden = model(
                    past=new_true_past,
Julien Chaumond's avatar
Julien Chaumond committed
217
218
                    inputs_embeds=inputs_embeds
                )
Piero Molino's avatar
Piero Molino committed
219
220
221
222
                future_hidden = future_hidden[-1]

                new_accumulated_hidden = new_accumulated_hidden + torch.sum(
                    future_hidden, dim=1)
Julien Chaumond's avatar
Julien Chaumond committed
223

Piero Molino's avatar
Piero Molino committed
224
            predicted_sentiment = classifier(new_accumulated_hidden / (
225
                    current_length + 1 + horizon_length))
Julien Chaumond's avatar
Julien Chaumond committed
226

227
            label = torch.tensor([label_class], device='cuda',
Piero Molino's avatar
Piero Molino committed
228
229
                                 dtype=torch.long)
            discrim_loss = ce_loss(predicted_sentiment, label)
Julien Chaumond's avatar
Julien Chaumond committed
230
            print(" pplm_discrim_loss:", discrim_loss.data.cpu().numpy())
Piero Molino's avatar
Piero Molino committed
231
232
            loss += discrim_loss
            loss_list.append(discrim_loss)
Julien Chaumond's avatar
Julien Chaumond committed
233

Piero Molino's avatar
Piero Molino committed
234
235
        kl_loss = 0.0
        if kl_scale > 0.0:
236
            p = (F.softmax(unpert_logits[:, -1, :], dim=-1))
237
            p = p + SMALL_CONST * (p <= SMALL_CONST).type(
Piero Molino's avatar
Piero Molino committed
238
                torch.FloatTensor).cuda().detach()
239
            correction = SMALL_CONST * (probabs <= SMALL_CONST).type(
Piero Molino's avatar
Piero Molino committed
240
241
                torch.FloatTensor).cuda().detach()
            corrected_probabs = probabs + correction.detach()
Rosanne Liu's avatar
Rosanne Liu committed
242
            kl_loss = kl_scale * (
Piero Molino's avatar
Piero Molino committed
243
                (corrected_probabs * (corrected_probabs / p).log()).sum())
Julien Chaumond's avatar
Julien Chaumond committed
244
            print(' kl_loss', (kl_loss).data.cpu().numpy())
Piero Molino's avatar
Piero Molino committed
245
            loss += kl_loss  # + discrim_loss
Julien Chaumond's avatar
Julien Chaumond committed
246
247

        loss_per_iter.append(loss.data.cpu().numpy())
Piero Molino's avatar
Piero Molino committed
248

Julien Chaumond's avatar
Julien Chaumond committed
249
250
        print(' pplm_loss', (loss - kl_loss).data.cpu().numpy())

Rosanne Liu's avatar
Rosanne Liu committed
251
        loss.backward()
252
        if grad_norms is not None and loss_type == 1:
Julien Chaumond's avatar
Julien Chaumond committed
253
254
            grad_norms = [
                torch.max(grad_norms[index], torch.norm(p_.grad * window_mask))
Piero Molino's avatar
Piero Molino committed
255
256
                for index, p_ in
                enumerate(past_perturb)]
Julien Chaumond's avatar
Julien Chaumond committed
257
        else:
258
            grad_norms = [(torch.norm(p_.grad * window_mask) + SMALL_CONST) for
Piero Molino's avatar
Piero Molino committed
259
                          index, p_ in enumerate(past_perturb)]
Julien Chaumond's avatar
Julien Chaumond committed
260
261

        grad = [
Piero Molino's avatar
Piero Molino committed
262
            -stepsize * (p_.grad * window_mask / grad_norms[
263
                index] ** gamma).data.cpu().numpy()
Piero Molino's avatar
Piero Molino committed
264
265
            for index, p_ in enumerate(past_perturb)]
        past_perturb_orig = list(map(add, grad, past_perturb_orig))
Julien Chaumond's avatar
Julien Chaumond committed
266

Piero Molino's avatar
Piero Molino committed
267
        for p_ in past_perturb:
Julien Chaumond's avatar
Julien Chaumond committed
268
269
270
            p_.grad.data.zero_()

        new_past = []
Piero Molino's avatar
Piero Molino committed
271
272
273
        for p in past:
            new_past.append(p.detach())

Julien Chaumond's avatar
Julien Chaumond committed
274
275
        past = new_past

Piero Molino's avatar
Piero Molino committed
276
277
278
    past_perturb = [torch.from_numpy(p_) for p_ in past_perturb_orig]
    past_perturb = [to_var(p_, requires_grad=True) for p_ in past_perturb]
    perturbed_past = list(map(add, past, past_perturb))
Julien Chaumond's avatar
Julien Chaumond committed
279

Piero Molino's avatar
Piero Molino committed
280
    return perturbed_past, new_accumulated_hidden, grad_norms, loss_per_iter
Julien Chaumond's avatar
Julien Chaumond committed
281
282
283


def get_classifier(
Piero Molino's avatar
Piero Molino committed
284
285
        name: Optional[str], label_class: Union[str, int],
        device: Union[str, torch.device]
Julien Chaumond's avatar
Julien Chaumond committed
286
287
288
289
290
291
292
293
294
295
) -> Tuple[Optional[ClassificationHead], Optional[int]]:
    if name is None:
        return None, None

    params = DISCRIMINATOR_MODELS_PARAMS[name]
    classifier = ClassificationHead(
        class_size=params['class_size'],
        embed_size=params['embed_size']
    ).to(device)
    resolved_archive_file = cached_path(params["url"])
Piero Molino's avatar
Piero Molino committed
296
297
    classifier.load_state_dict(
        torch.load(resolved_archive_file, map_location=device))
Julien Chaumond's avatar
Julien Chaumond committed
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
    classifier.eval()

    if isinstance(label_class, str):
        if label_class in params["class_vocab"]:
            label_id = params["class_vocab"][label_class]
        else:
            label_id = params["default_class"]
            print("label_class {} not in class_vocab".format(label_class))
            print("available values are: {}".format(params["class_vocab"]))
            print("using default class {}".format(label_id))

    elif isinstance(label_class, int):
        if label_class in set(params["class_vocab"].values()):
            label_id = label_class
        else:
            label_id = params["default_class"]
            print("label_class {} not in class_vocab".format(label_class))
            print("available values are: {}".format(params["class_vocab"]))
            print("using default class {}".format(label_id))

    else:
        label_id = params["default_class"]

    return classifier, label_id


Piero Molino's avatar
Piero Molino committed
324
325
def get_bag_of_words_indices(bag_of_words_ids_or_paths: List[str]) -> List[
    List[List[int]]]:
Julien Chaumond's avatar
Julien Chaumond committed
326
327
328
329
330
331
332
    bow_indices = []
    for id_or_path in bag_of_words_ids_or_paths:
        if id_or_path in BAG_OF_WORDS_ARCHIVE_MAP:
            filepath = cached_path(BAG_OF_WORDS_ARCHIVE_MAP[id_or_path])
        else:
            filepath = id_or_path
        with open(filepath, "r") as f:
Piero Molino's avatar
Piero Molino committed
333
334
335
336
            words = f.read().strip().split("\n")
        bow_indices.append(
            [TOKENIZER.encode(word.strip(), add_prefix_space=True) for word in
             words])
Julien Chaumond's avatar
Julien Chaumond committed
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
    return bow_indices


def build_bows_one_hot_vectors(bow_indices):
    if bow_indices is None:
        return None

    one_hot_bows_vectors = []
    for single_bow in bow_indices:
        single_bow = list(filter(lambda x: len(x) <= 1, single_bow))
        single_bow = torch.tensor(single_bow).cuda()
        num_words = single_bow.shape[0]
        one_hot_bow = torch.zeros(num_words, TOKENIZER.vocab_size).cuda()
        one_hot_bow.scatter_(1, single_bow, 1)
        one_hot_bows_vectors.append(one_hot_bow)
    return one_hot_bows_vectors


355
def full_text_generation(
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
        model,
        context=None,
        num_samples=1,
        device="cuda",
        sample=True,
        discrim=None,
        label_class=None,
        bag_of_words=None,
        length=100,
        grad_length=10000,
        stepsize=0.02,
        num_iterations=3,
        temperature=1.0,
        gm_scale=0.9,
        kl_scale=0.01,
        top_k=10,
        window_length=0,
        horizon_length=1,
        decay=False,
        gamma=1.5,
        **kwargs
):
Julien Chaumond's avatar
Julien Chaumond committed
378
    classifier, class_id = get_classifier(
379
380
        discrim,
        label_class,
Julien Chaumond's avatar
Julien Chaumond committed
381
382
383
        device
    )

384
385
386
    bow_indices = []
    if bag_of_words:
        bow_indices = get_bag_of_words_indices(bag_of_words.split(";"))
Piero Molino's avatar
Piero Molino committed
387

388
    if bag_of_words and classifier:
Julien Chaumond's avatar
Julien Chaumond committed
389
        print("Both PPLM-BoW and PPLM-Discrim are on. This is not optimized.")
390
        loss_type = PPLM_BOW_DISCRIM
Julien Chaumond's avatar
Julien Chaumond committed
391

392
393
    elif bag_of_words:
        loss_type = PPLM_BOW
Julien Chaumond's avatar
Julien Chaumond committed
394
395
396
        print("Using PPLM-BoW")

    elif classifier is not None:
397
        loss_type = PPLM_DISCRIM
Julien Chaumond's avatar
Julien Chaumond committed
398
399
400
        print("Using PPLM-Discrim")

    else:
401
        raise Exception("Specify either a bag of words or a discriminator")
Julien Chaumond's avatar
Julien Chaumond committed
402

403
    unpert_gen_tok_text, _, _ = generate_text_pplm(
404
405
406
407
408
409
        model=model,
        context=context,
        device=device,
        length=length,
        perturb=False
    )
Julien Chaumond's avatar
Julien Chaumond committed
410
411
    torch.cuda.empty_cache()

412
413
414
    pert_gen_tok_texts = []
    discrim_losses = []
    losses_in_time = []
Piero Molino's avatar
Piero Molino committed
415

416
    for i in range(num_samples):
417
        pert_gen_tok_text, discrim_loss, loss_in_time = generate_text_pplm(
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
            model=model,
            context=context,
            device=device,
            sample=sample,
            perturb=True,
            bow_indices=bow_indices,
            classifier=classifier,
            label_class=class_id,
            loss_type=loss_type,
            length=length,
            grad_length=grad_length,
            stepsize=stepsize,
            num_iterations=num_iterations,
            temperature=temperature,
            gm_scale=gm_scale,
            kl_scale=kl_scale,
            top_k=top_k,
            window_length=window_length,
            horizon_length=horizon_length,
            decay=decay,
            gamma=gamma,
        )
440
        pert_gen_tok_texts.append(pert_gen_tok_text)
Julien Chaumond's avatar
Julien Chaumond committed
441
        if classifier is not None:
442
443
            discrim_losses.append(discrim_loss.data.cpu().numpy())
        losses_in_time.append(loss_in_time)
Julien Chaumond's avatar
Julien Chaumond committed
444
445
446

    torch.cuda.empty_cache()

447
    return unpert_gen_tok_text, pert_gen_tok_texts, discrim_losses, losses_in_time
Julien Chaumond's avatar
Julien Chaumond committed
448

449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473

def generate_text_pplm(
        model,
        context=None,
        past=None,
        device="cuda",
        sample=True,
        perturb=True,
        classifier=None,
        label_class=None,
        bow_indices=None,
        loss_type=0,
        length=100,
        grad_length=10000,
        stepsize=0.02,
        num_iterations=3,
        temperature=1.0,
        gm_scale=0.9,
        kl_scale=0.01,
        top_k=10,
        window_length=0,
        horizon_length=1,
        decay=False,
        gamma=1.5,
):
474
475
476
477
478
    output_so_far = (
        torch.tensor(context, device=device, dtype=torch.long).unsqueeze(0)
        if context
        else None
    )
Julien Chaumond's avatar
Julien Chaumond committed
479

480
481
482
    # collect one hot vectors for bags of words
    one_hot_bows_vectors = build_bows_one_hot_vectors(bow_indices)

Julien Chaumond's avatar
Julien Chaumond committed
483
    grad_norms = None
484
    unpert_discrim_loss = 0
Julien Chaumond's avatar
Julien Chaumond committed
485
    loss_in_time = []
486
    for i in trange(length, ascii=True):
Julien Chaumond's avatar
Julien Chaumond committed
487
488

        # Get past/probs for current output, except for last word
489
        # Note that GPT takes 2 inputs: past + current_token
Julien Chaumond's avatar
Julien Chaumond committed
490

491
492
493
494
        # run model forward to obtain unperturbed
        if past is None and output_so_far is not None:
            last = output_so_far[:, -1:]
            _, past, _ = model(output_so_far[:, :-1])
Piero Molino's avatar
Piero Molino committed
495

496
497
        unpert_logits, unpert_past, unpert_all_hidden = model(output_so_far)
        unpert_last_hidden = unpert_all_hidden[-1]
Piero Molino's avatar
Piero Molino committed
498

499
        # check if we are abowe grad max length
500
501
        if i >= grad_length:
            current_stepsize = stepsize * 0
Julien Chaumond's avatar
Julien Chaumond committed
502
        else:
503
            current_stepsize = stepsize
Julien Chaumond's avatar
Julien Chaumond committed
504

505
        # modify the past if necessary
506
        if not perturb or num_iterations == 0:
507
            pert_past = past
Julien Chaumond's avatar
Julien Chaumond committed
508
509

        else:
510
            accumulated_hidden = unpert_last_hidden[:, :-1, :]
Julien Chaumond's avatar
Julien Chaumond committed
511
512
            accumulated_hidden = torch.sum(accumulated_hidden, dim=1)

513
            pert_past, _, grad_norms, loss_this_iter = perturb_past(
514
515
                past,
                model,
516
                last,
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
                unpert_past=unpert_past,
                unpert_logits=unpert_logits,
                accumulated_hidden=accumulated_hidden,
                grad_norms=grad_norms,
                stepsize=current_stepsize,
                classifier=classifier,
                label_class=label_class,
                one_hot_bows_vectors=one_hot_bows_vectors,
                loss_type=loss_type,
                num_iterations=num_iterations,
                kl_scale=kl_scale,
                window_length=window_length,
                horizon_length=horizon_length,
                decay=decay,
                gamma=gamma,
            )
533
            loss_in_time.append(loss_this_iter)
Piero Molino's avatar
Piero Molino committed
534

535
536
537
        pert_logits, past, pert_all_hidden = model(last, past=pert_past)
        pert_logits = pert_logits[:, -1, :] / temperature  # + SMALL_CONST
        pert_probs = F.softmax(pert_logits, dim=-1)
Julien Chaumond's avatar
Julien Chaumond committed
538
539

        if classifier is not None:
Piero Molino's avatar
Piero Molino committed
540
            ce_loss = torch.nn.CrossEntropyLoss()
541
            prediction = classifier(torch.mean(unpert_last_hidden, dim=1))
542
            label = torch.tensor([label_class], device='cuda',
Piero Molino's avatar
Piero Molino committed
543
                                 dtype=torch.long)
544
545
546
547
548
            unpert_discrim_loss = ce_loss(prediction, label)
            print(
                "unperturbed discrim loss",
                unpert_discrim_loss.data.cpu().numpy()
            )
Julien Chaumond's avatar
Julien Chaumond committed
549
        else:
550
            unpert_discrim_loss = 0
Piero Molino's avatar
Piero Molino committed
551
552

        # Fuse the modified model and original model
Julien Chaumond's avatar
Julien Chaumond committed
553
554
        if perturb:

555
            unpert_probs = F.softmax(unpert_logits[:, -1, :], dim=-1)
Piero Molino's avatar
Piero Molino committed
556

557
558
559
            pert_probs = ((pert_probs ** gm_scale) * (
                    unpert_probs ** (1 - gm_scale)))  # + SMALL_CONST
            pert_probs = top_k_filter(pert_probs, k=top_k,
560
                                     probs=True)  # + SMALL_CONST
Julien Chaumond's avatar
Julien Chaumond committed
561

562
563
564
            # rescale
            if torch.sum(pert_probs) <= 1:
                pert_probs = pert_probs / torch.sum(pert_probs)
Julien Chaumond's avatar
Julien Chaumond committed
565
566

        else:
567
568
            pert_logits = top_k_filter(pert_logits, k=top_k)  # + SMALL_CONST
            pert_probs = F.softmax(pert_logits, dim=-1)
Julien Chaumond's avatar
Julien Chaumond committed
569

570
        # sample or greedy
Julien Chaumond's avatar
Julien Chaumond committed
571
        if sample:
572
573
            last = torch.multinomial(pert_probs, num_samples=1)

Julien Chaumond's avatar
Julien Chaumond committed
574
        else:
575
576
577
578
579
580
581
582
583
584
585
            _, last = torch.topk(pert_probs, k=1, dim=-1)

        # update context/output_so_far appending the new token
        output_so_far = (
            last if output_so_far is None
            else torch.cat((output_so_far, last), dim=1)
        )

        print(TOKENIZER.decode(output_so_far.tolist()[0]))

    return output_so_far, unpert_discrim_loss, loss_in_time
Julien Chaumond's avatar
Julien Chaumond committed
586
587
588
589


def run_model():
    parser = argparse.ArgumentParser()
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
    parser.add_argument(
        "--model_path",
        "-M",
        type=str,
        default="gpt2-medium",
        help="pretrained model name or path to local checkpoint",
    )
    parser.add_argument(
        "--bag_of_words",
        "-B",
        type=str,
        default=None,
        help="Bags of words used for PPLM-BoW. "
             "Either a BOW id (see list in code) or a filepath. "
             "Multiple BoWs separated by ;",
    )
    parser.add_argument(
        "--discrim",
        "-D",
        type=str,
        default=None,
        choices=("clickbait", "sentiment", "toxicity"),
        help="Discriminator to use for loss-type 2",
    )
    parser.add_argument(
        "--label_class",
        type=int,
        default=-1,
        help="Class label used for the discriminator",
    )
    parser.add_argument("--stepsize", type=float, default=0.02)
Julien Chaumond's avatar
Julien Chaumond committed
621
622
623
624
625
626
    parser.add_argument("--length", type=int, default=100)
    parser.add_argument("--seed", type=int, default=0)
    parser.add_argument("--temperature", type=float, default=1.0)
    parser.add_argument("--top_k", type=int, default=10)
    parser.add_argument("--gm_scale", type=float, default=0.9)
    parser.add_argument("--kl_scale", type=float, default=0.01)
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
    parser.add_argument("--no_cuda", action="store_true", help="no cuda")
    parser.add_argument(
        "--uncond", action="store_true",
        help="Generate from end-of-text as prefix"
    )
    parser.add_argument(
        "--cond_text", type=str, default="The lake",
        help="Prefix texts to condition on"
    )
    parser.add_argument("--num_iterations", type=int, default=3)
    parser.add_argument("--grad_length", type=int, default=10000)
    parser.add_argument(
        "--num_samples",
        type=int,
        default=1,
        help="Number of samples to generate from the modified latents",
    )
    parser.add_argument(
        "--horizon_length",
        type=int,
        default=1,
        help="Length of future to optimize over",
    )
    parser.add_argument(
        "--window_length",
        type=int,
        default=0,
        help="Length of past which is being optimized; "
             "0 corresponds to infinite window length",
    )
    parser.add_argument("--decay", action="store_true",
                        help="whether to decay or not")
    parser.add_argument("--gamma", type=float, default=1.5)
    parser.add_argument("--colorama", action="store_true", help="colors keywords")
Julien Chaumond's avatar
Julien Chaumond committed
661
662
663

    args = parser.parse_args()

664
    # set Random seed
Julien Chaumond's avatar
Julien Chaumond committed
665
666
667
    torch.manual_seed(args.seed)
    np.random.seed(args.seed)

668
669
    # set the device
    device = "cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu"
Julien Chaumond's avatar
Julien Chaumond committed
670

671
    # load pretrained model
Julien Chaumond's avatar
Julien Chaumond committed
672
673
674
675
676
677
678
    model = GPT2LMHeadModel.from_pretrained(
        args.model_path,
        output_hidden_states=True
    )
    model.to(device)
    model.eval()

Piero Molino's avatar
Piero Molino committed
679
    # Freeze GPT-2 weights
Julien Chaumond's avatar
Julien Chaumond committed
680
681
682
    for param in model.parameters():
        param.requires_grad = False

683
    # figure out conditioning text
Julien Chaumond's avatar
Julien Chaumond committed
684
    if args.uncond:
685
686
687
        tokenized_cond_text = TOKENIZER.encode(
            [TOKENIZER.bos_token]
        )
Julien Chaumond's avatar
Julien Chaumond committed
688
689
690
    else:
        raw_text = args.cond_text
        while not raw_text:
691
            print("Did you forget to add `--cond_text`? ")
Julien Chaumond's avatar
Julien Chaumond committed
692
            raw_text = input("Model prompt >>> ")
693
        tokenized_cond_text = TOKENIZER.encode(TOKENIZER.bos_token + raw_text)
Piero Molino's avatar
Piero Molino committed
694

695
696
697
    print("= Prefix of sentence =")
    print(TOKENIZER.decode(tokenized_cond_text))
    print()
Piero Molino's avatar
Piero Molino committed
698

699
    # generate unperturbed and perturbed texts
Piero Molino's avatar
Piero Molino committed
700

701
702
703
704
705
706
707
708
    # full_text_generation returns:
    # unpert_gen_tok_text, pert_gen_tok_texts, discrim_losses, losses_in_time
    unpert_gen_tok_text, pert_gen_tok_texts, _, _ = full_text_generation(
        model=model, context=tokenized_cond_text, device=device, **vars(args)
    )

    # untokenize unperturbed text
    unpert_gen_text = TOKENIZER.decode(unpert_gen_tok_text.tolist()[0])
Piero Molino's avatar
Piero Molino committed
709

710
711
712
713
    print("=" * 80)
    print("= Unperturbed generated text =")
    print(unpert_gen_text)
    print()
Piero Molino's avatar
Piero Molino committed
714

715
716
    generated_texts = []

717
718
719
720
721
722
723
724
    bow_word_ids = set()
    if args.bag_of_words and args.colorama:
        bow_indices = get_bag_of_words_indices(args.bag_of_words.split(";"))
        for single_bow_list in bow_indices:
            # filtering all words in the list composed of more than 1 token
            filtered = list(filter(lambda x: len(x) <= 1, single_bow_list))
            # w[0] because we are sure w has only 1 item because previous fitler
            bow_word_ids.update(w[0] for w in filtered)
725
726
727
728
729

    # iterate through the perturbed texts
    for i, pert_gen_tok_text in enumerate(pert_gen_tok_texts):
        try:
            # untokenize unperturbed text
Piero Molino's avatar
Piero Molino committed
730
731
732
            if args.colorama:
                import colorama

733
734
                pert_gen_text = ''
                for word_id in pert_gen_tok_text.tolist()[0]:
735
                    if word_id in bow_word_ids:
736
737
738
739
740
                        pert_gen_text += '{}{}{}'.format(
                            colorama.Fore.RED,
                            TOKENIZER.decode([word_id]),
                            colorama.Style.RESET_ALL
                        )
Piero Molino's avatar
Piero Molino committed
741
                    else:
742
                        pert_gen_text += TOKENIZER.decode([word_id])
Piero Molino's avatar
Piero Molino committed
743
            else:
744
                pert_gen_text = TOKENIZER.decode(pert_gen_tok_text.tolist()[0])
Julien Chaumond's avatar
Julien Chaumond committed
745

746
747
748
749
750
            print("= Perturbed generated text {} =".format(i + 1))
            print(pert_gen_text)
            print()
        except:
            pass
Julien Chaumond's avatar
Julien Chaumond committed
751

752
753
754
755
        # keep the prefix, perturbed seq, original seq for each index
        generated_texts.append(
            (tokenized_cond_text, pert_gen_tok_text, unpert_gen_tok_text)
        )
Julien Chaumond's avatar
Julien Chaumond committed
756

Piero Molino's avatar
Piero Molino committed
757
    return
Julien Chaumond's avatar
Julien Chaumond committed
758
759


Piero Molino's avatar
Piero Molino committed
760
if __name__ == '__main__':
Julien Chaumond's avatar
Julien Chaumond committed
761
    run_model()