run_pplm.py 26.8 KB
Newer Older
Piero Molino's avatar
Piero Molino committed
1
#! /usr/bin/env python3
Julien Chaumond's avatar
Julien Chaumond committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# coding=utf-8
# Copyright 2018 The Uber AI Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: add code for training a custom discriminator

"""
Example command with bag of words:
python examples/run_pplm.py -B space --cond_text "The president" --length 100 --gamma 1.5 --num_iterations 3 --num_samples 10 --stepsize 0.01 --window_length 5 --kl_scale 0.01 --gm_scale 0.95

Example command with discriminator:
python examples/run_pplm.py -D sentiment --label_class 3 --cond_text "The lake" --length 10 --gamma 1.0 --num_iterations 30 --num_samples 10 --stepsize 0.01 --kl_scale 0.01 --gm_scale 0.95
"""

import argparse
from operator import add
from typing import List, Optional, Tuple, Union

import numpy as np
import torch
import torch.nn.functional as F
from torch.autograd import Variable
from tqdm import trange

37
from examples.run_pplm_discrim_train import ClassificationHead
Julien Chaumond's avatar
Julien Chaumond committed
38
39
40
41
42
43
44
45
from transformers import GPT2Tokenizer
from transformers.file_utils import cached_path
from transformers.modeling_gpt2 import GPT2LMHeadModel

PPLM_BOW = 1
PPLM_DISCRIM = 2
PPLM_BOW_DISCRIM = 3
SMALL_CONST = 1e-15
46
BIG_CONST = 1e10
Julien Chaumond's avatar
Julien Chaumond committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
TOKENIZER = GPT2Tokenizer.from_pretrained("gpt2-medium")

BAG_OF_WORDS_ARCHIVE_MAP = {
    'kitchen': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/kitchen.txt",
    'legal': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/legal.txt",
    'military': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/military.txt",
    'monsters': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/monsters.txt",
    'politics': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/politics.txt",
    'positive_words': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/positive_words.txt",
    'religion': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/religion.txt",
    'science': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/science.txt",
    'space': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/space.txt",
    'technology': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/technology.txt",
}

DISCRIMINATOR_MODELS_PARAMS = {
    "clickbait": {
        "url": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/discriminators/clickbait_classifierhead.pt",
        "class_size": 2,
        "embed_size": 1024,
        "class_vocab": {"non_clickbait": 0, "clickbait": 1},
        "default_class": 1,
    },
    "sentiment": {
Piero Molino's avatar
Piero Molino committed
71
        "url": "http://s.yosinski.com/SST_classifier_head.pt",
Julien Chaumond's avatar
Julien Chaumond committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
        "class_size": 5,
        "embed_size": 1024,
        "class_vocab": {"very_positive": 2, "very_negative": 3},
        "default_class": 3,
    },
    "toxicity": {
        "url": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/discriminators/toxicity_classifierhead.pt",
        "class_size": 2,
        "embed_size": 1024,
        "class_vocab": {"non_toxic": 0, "toxic": 1},
        "default_class": 0,
    },
}


Piero Molino's avatar
Piero Molino committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
def to_var(x, requires_grad=False, volatile=False):
    if torch.cuda.is_available():
        x = x.cuda()
    return Variable(x, requires_grad=requires_grad, volatile=volatile)


def top_k_filter(logits, k, probs=False):
    """
    Masks everything but the k top entries as -infinity (1e10).
    Used to mask logits such that e^-infinity -> 0 won't contribute to the
    sum of the denominator.
    """
    if k == 0:
        return logits
    else:
        values = torch.topk(logits, k)[0]
        batch_mins = values[:, -1].view(-1, 1).expand_as(logits)
        if probs:
            return torch.where(logits < batch_mins,
                               torch.ones_like(logits) * 0.0, logits)
107
108
        return torch.where(logits < batch_mins,
                           torch.ones_like(logits) * -BIG_CONST,
Piero Molino's avatar
Piero Molino committed
109
110
111
                           logits)


112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
def perturb_past(
        past,
        model,
        prev,
        unpert_past=None,
        unpert_logits=None,
        accumulated_hidden=None,
        grad_norms=None,
        stepsize=0.01,
        classifier=None,
        label_class=None,
        one_hot_bows_vectors=None,
        loss_type=0,
        num_iterations=3,
        kl_scale=0.01,
        window_length=0,
        horizon_length=1,
        decay=False,
        gamma=1.5,
):
Piero Molino's avatar
Piero Molino committed
132
133
134
135
    # Generate inital perturbed past
    past_perturb_orig = [
        (np.random.uniform(0.0, 0.0, p.shape).astype('float32'))
        for p in past]
Julien Chaumond's avatar
Julien Chaumond committed
136
137
138
139

    if accumulated_hidden is None:
        accumulated_hidden = 0

140
    if decay:
141
        decay_mask = torch.arange(0., 1.0 + SMALL_CONST, 1.0 / (window_length))[
Piero Molino's avatar
Piero Molino committed
142
                     1:]
Julien Chaumond's avatar
Julien Chaumond committed
143
144
145
    else:
        decay_mask = 1.0

Piero Molino's avatar
Piero Molino committed
146
147
148
149
150
151
152
153
154
155
156
    # Generate a mask is gradient perturbated is based on a past window
    _, _, _, current_length, _ = past[0].shape

    if current_length > window_length and window_length > 0:
        ones_key_val_shape = tuple(past[0].shape[:-2]) + tuple(
            [window_length]) + tuple(
            past[0].shape[-1:])

        zeros_key_val_shape = tuple(past[0].shape[:-2]) + tuple(
            [current_length - window_length]) + tuple(
            past[0].shape[-1:])
Julien Chaumond's avatar
Julien Chaumond committed
157
158
159
160
161

        ones_mask = torch.ones(ones_key_val_shape)
        ones_mask = decay_mask * ones_mask.permute(0, 1, 2, 4, 3)
        ones_mask = ones_mask.permute(0, 1, 2, 4, 3)

Piero Molino's avatar
Piero Molino committed
162
163
        window_mask = torch.cat((ones_mask, torch.zeros(zeros_key_val_shape)),
                                dim=-2).cuda()
Julien Chaumond's avatar
Julien Chaumond committed
164
165
166
167
    else:
        window_mask = torch.ones_like(past[0]).cuda()

    loss_per_iter = []
168
    for i in range(num_iterations):
Julien Chaumond's avatar
Julien Chaumond committed
169
        print("Iteration ", i + 1)
Piero Molino's avatar
Piero Molino committed
170
171
        past_perturb = [torch.from_numpy(p_) for p_ in past_perturb_orig]
        past_perturb = [to_var(p_, requires_grad=True) for p_ in past_perturb]
Julien Chaumond's avatar
Julien Chaumond committed
172

Piero Molino's avatar
Piero Molino committed
173
        perturbed_past = list(map(add, past, past_perturb))
Julien Chaumond's avatar
Julien Chaumond committed
174

Piero Molino's avatar
Piero Molino committed
175
        _, _, _, current_length, _ = past_perturb[0].shape
Julien Chaumond's avatar
Julien Chaumond committed
176

Piero Molino's avatar
Piero Molino committed
177
178
        # _, future_past = model(prev, past=perturbed_past)
        # hidden = model.hidden_states
Julien Chaumond's avatar
Julien Chaumond committed
179

Piero Molino's avatar
Piero Molino committed
180
181
182
183
184
185
186
187
188
189
190
        # Piero modified model call
        logits, _, all_hidden = model(prev, past=perturbed_past)
        hidden = all_hidden[-1]
        new_accumulated_hidden = accumulated_hidden + torch.sum(hidden,
                                                                dim=1).detach()

        # TODO: Check the layer-norm consistency of this with trained discriminator
        logits = logits[:, -1, :]
        probabs = F.softmax(logits, dim=-1)
        loss = 0.0
        loss_list = []
191
192
        if loss_type == 1 or loss_type == 3:
            for one_hot_good in one_hot_bows_vectors:
Piero Molino's avatar
Piero Molino committed
193
194
195
196
197
198
199
200
201
                good_logits = torch.mm(probabs, torch.t(one_hot_good))
                loss_word = good_logits
                loss_word = torch.sum(loss_word)
                loss_word = -torch.log(loss_word)
                # loss_word = torch.sum(loss_word) /torch.sum(one_hot_good)
                loss += loss_word
                loss_list.append(loss_word)
            print(" pplm_bow_loss:", loss.data.cpu().numpy())

202
        if loss_type == 2 or loss_type == 3:
Julien Chaumond's avatar
Julien Chaumond committed
203
            ce_loss = torch.nn.CrossEntropyLoss()
204
205
            new_true_past = unpert_past
            for i in range(horizon_length):
Piero Molino's avatar
Piero Molino committed
206
207
208
209
210
211
212
213
214
215
216
                future_probabs = F.softmax(logits, dim=-1)  # Get softmax
                future_probabs = torch.unsqueeze(future_probabs, dim=1)

                # _, new_true_past = model(future_probabs, past=new_true_past)
                # future_hidden = model.hidden_states  # Get expected hidden states

                # Piero modified model call
                wte = model.resize_token_embeddings()
                inputs_embeds = torch.matmul(future_probabs, wte.weight.data)
                _, new_true_past, future_hidden = model(
                    past=new_true_past,
Julien Chaumond's avatar
Julien Chaumond committed
217
218
                    inputs_embeds=inputs_embeds
                )
Piero Molino's avatar
Piero Molino committed
219
220
221
222
                future_hidden = future_hidden[-1]

                new_accumulated_hidden = new_accumulated_hidden + torch.sum(
                    future_hidden, dim=1)
Julien Chaumond's avatar
Julien Chaumond committed
223

Piero Molino's avatar
Piero Molino committed
224
            predicted_sentiment = classifier(new_accumulated_hidden / (
225
                    current_length + 1 + horizon_length))
Julien Chaumond's avatar
Julien Chaumond committed
226

227
            label = torch.tensor([label_class], device='cuda',
Piero Molino's avatar
Piero Molino committed
228
229
                                 dtype=torch.long)
            discrim_loss = ce_loss(predicted_sentiment, label)
Julien Chaumond's avatar
Julien Chaumond committed
230
            print(" pplm_discrim_loss:", discrim_loss.data.cpu().numpy())
Piero Molino's avatar
Piero Molino committed
231
232
            loss += discrim_loss
            loss_list.append(discrim_loss)
Julien Chaumond's avatar
Julien Chaumond committed
233

Piero Molino's avatar
Piero Molino committed
234
235
        kl_loss = 0.0
        if kl_scale > 0.0:
236
            p = (F.softmax(unpert_logits[:, -1, :], dim=-1))
237
            p = p + SMALL_CONST * (p <= SMALL_CONST).type(
Piero Molino's avatar
Piero Molino committed
238
                torch.FloatTensor).cuda().detach()
239
            correction = SMALL_CONST * (probabs <= SMALL_CONST).type(
Piero Molino's avatar
Piero Molino committed
240
241
                torch.FloatTensor).cuda().detach()
            corrected_probabs = probabs + correction.detach()
Rosanne Liu's avatar
Rosanne Liu committed
242
            kl_loss = kl_scale * (
Piero Molino's avatar
Piero Molino committed
243
                (corrected_probabs * (corrected_probabs / p).log()).sum())
Julien Chaumond's avatar
Julien Chaumond committed
244
            print(' kl_loss', (kl_loss).data.cpu().numpy())
Piero Molino's avatar
Piero Molino committed
245
            loss += kl_loss  # + discrim_loss
Julien Chaumond's avatar
Julien Chaumond committed
246
247

        loss_per_iter.append(loss.data.cpu().numpy())
Piero Molino's avatar
Piero Molino committed
248

Julien Chaumond's avatar
Julien Chaumond committed
249
250
        print(' pplm_loss', (loss - kl_loss).data.cpu().numpy())

Rosanne Liu's avatar
Rosanne Liu committed
251
        loss.backward()
252
        if grad_norms is not None and loss_type == 1:
Julien Chaumond's avatar
Julien Chaumond committed
253
254
            grad_norms = [
                torch.max(grad_norms[index], torch.norm(p_.grad * window_mask))
Piero Molino's avatar
Piero Molino committed
255
256
                for index, p_ in
                enumerate(past_perturb)]
Julien Chaumond's avatar
Julien Chaumond committed
257
        else:
258
            grad_norms = [(torch.norm(p_.grad * window_mask) + SMALL_CONST) for
Piero Molino's avatar
Piero Molino committed
259
                          index, p_ in enumerate(past_perturb)]
Julien Chaumond's avatar
Julien Chaumond committed
260
261

        grad = [
Piero Molino's avatar
Piero Molino committed
262
            -stepsize * (p_.grad * window_mask / grad_norms[
263
                index] ** gamma).data.cpu().numpy()
Piero Molino's avatar
Piero Molino committed
264
265
            for index, p_ in enumerate(past_perturb)]
        past_perturb_orig = list(map(add, grad, past_perturb_orig))
Julien Chaumond's avatar
Julien Chaumond committed
266

Piero Molino's avatar
Piero Molino committed
267
        for p_ in past_perturb:
Julien Chaumond's avatar
Julien Chaumond committed
268
269
270
            p_.grad.data.zero_()

        new_past = []
Piero Molino's avatar
Piero Molino committed
271
272
273
        for p in past:
            new_past.append(p.detach())

Julien Chaumond's avatar
Julien Chaumond committed
274
275
        past = new_past

Piero Molino's avatar
Piero Molino committed
276
277
278
    past_perturb = [torch.from_numpy(p_) for p_ in past_perturb_orig]
    past_perturb = [to_var(p_, requires_grad=True) for p_ in past_perturb]
    perturbed_past = list(map(add, past, past_perturb))
Julien Chaumond's avatar
Julien Chaumond committed
279

Piero Molino's avatar
Piero Molino committed
280
    return perturbed_past, new_accumulated_hidden, grad_norms, loss_per_iter
Julien Chaumond's avatar
Julien Chaumond committed
281
282
283


def get_classifier(
Piero Molino's avatar
Piero Molino committed
284
285
        name: Optional[str], label_class: Union[str, int],
        device: Union[str, torch.device]
Julien Chaumond's avatar
Julien Chaumond committed
286
287
288
289
290
291
292
293
294
295
) -> Tuple[Optional[ClassificationHead], Optional[int]]:
    if name is None:
        return None, None

    params = DISCRIMINATOR_MODELS_PARAMS[name]
    classifier = ClassificationHead(
        class_size=params['class_size'],
        embed_size=params['embed_size']
    ).to(device)
    resolved_archive_file = cached_path(params["url"])
Piero Molino's avatar
Piero Molino committed
296
297
    classifier.load_state_dict(
        torch.load(resolved_archive_file, map_location=device))
Julien Chaumond's avatar
Julien Chaumond committed
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
    classifier.eval()

    if isinstance(label_class, str):
        if label_class in params["class_vocab"]:
            label_id = params["class_vocab"][label_class]
        else:
            label_id = params["default_class"]
            print("label_class {} not in class_vocab".format(label_class))
            print("available values are: {}".format(params["class_vocab"]))
            print("using default class {}".format(label_id))

    elif isinstance(label_class, int):
        if label_class in set(params["class_vocab"].values()):
            label_id = label_class
        else:
            label_id = params["default_class"]
            print("label_class {} not in class_vocab".format(label_class))
            print("available values are: {}".format(params["class_vocab"]))
            print("using default class {}".format(label_id))

    else:
        label_id = params["default_class"]

    return classifier, label_id


Piero Molino's avatar
Piero Molino committed
324
325
def get_bag_of_words_indices(bag_of_words_ids_or_paths: List[str]) -> List[
    List[List[int]]]:
Julien Chaumond's avatar
Julien Chaumond committed
326
327
328
329
330
331
332
    bow_indices = []
    for id_or_path in bag_of_words_ids_or_paths:
        if id_or_path in BAG_OF_WORDS_ARCHIVE_MAP:
            filepath = cached_path(BAG_OF_WORDS_ARCHIVE_MAP[id_or_path])
        else:
            filepath = id_or_path
        with open(filepath, "r") as f:
Piero Molino's avatar
Piero Molino committed
333
334
335
336
            words = f.read().strip().split("\n")
        bow_indices.append(
            [TOKENIZER.encode(word.strip(), add_prefix_space=True) for word in
             words])
Julien Chaumond's avatar
Julien Chaumond committed
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
    return bow_indices


def build_bows_one_hot_vectors(bow_indices):
    if bow_indices is None:
        return None

    one_hot_bows_vectors = []
    for single_bow in bow_indices:
        single_bow = list(filter(lambda x: len(x) <= 1, single_bow))
        single_bow = torch.tensor(single_bow).cuda()
        num_words = single_bow.shape[0]
        one_hot_bow = torch.zeros(num_words, TOKENIZER.vocab_size).cuda()
        one_hot_bow.scatter_(1, single_bow, 1)
        one_hot_bows_vectors.append(one_hot_bow)
    return one_hot_bows_vectors


355
def full_text_generation(
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
        model,
        context=None,
        num_samples=1,
        device="cuda",
        sample=True,
        discrim=None,
        label_class=None,
        bag_of_words=None,
        length=100,
        grad_length=10000,
        stepsize=0.02,
        num_iterations=3,
        temperature=1.0,
        gm_scale=0.9,
        kl_scale=0.01,
        top_k=10,
        window_length=0,
        horizon_length=1,
        decay=False,
        gamma=1.5,
        **kwargs
):
Julien Chaumond's avatar
Julien Chaumond committed
378
    classifier, class_id = get_classifier(
379
380
        discrim,
        label_class,
Julien Chaumond's avatar
Julien Chaumond committed
381
382
383
        device
    )

384
385
386
    bow_indices = []
    if bag_of_words:
        bow_indices = get_bag_of_words_indices(bag_of_words.split(";"))
Piero Molino's avatar
Piero Molino committed
387

388
    if bag_of_words and classifier:
Julien Chaumond's avatar
Julien Chaumond committed
389
        print("Both PPLM-BoW and PPLM-Discrim are on. This is not optimized.")
390
        loss_type = PPLM_BOW_DISCRIM
Julien Chaumond's avatar
Julien Chaumond committed
391

392
393
    elif bag_of_words:
        loss_type = PPLM_BOW
Julien Chaumond's avatar
Julien Chaumond committed
394
395
396
        print("Using PPLM-BoW")

    elif classifier is not None:
397
        loss_type = PPLM_DISCRIM
Julien Chaumond's avatar
Julien Chaumond committed
398
399
400
        print("Using PPLM-Discrim")

    else:
401
        raise Exception("Specify either a bag of words or a discriminator")
Julien Chaumond's avatar
Julien Chaumond committed
402

403
    unpert_gen_tok_text, _, _ = generate_text_pplm(
404
405
406
407
408
409
        model=model,
        context=context,
        device=device,
        length=length,
        perturb=False
    )
Julien Chaumond's avatar
Julien Chaumond committed
410
411
    torch.cuda.empty_cache()

412
413
414
    pert_gen_tok_texts = []
    discrim_losses = []
    losses_in_time = []
Piero Molino's avatar
Piero Molino committed
415

416
    for i in range(num_samples):
417
        pert_gen_tok_text, discrim_loss, loss_in_time = generate_text_pplm(
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
            model=model,
            context=context,
            device=device,
            sample=sample,
            perturb=True,
            bow_indices=bow_indices,
            classifier=classifier,
            label_class=class_id,
            loss_type=loss_type,
            length=length,
            grad_length=grad_length,
            stepsize=stepsize,
            num_iterations=num_iterations,
            temperature=temperature,
            gm_scale=gm_scale,
            kl_scale=kl_scale,
            top_k=top_k,
            window_length=window_length,
            horizon_length=horizon_length,
            decay=decay,
            gamma=gamma,
        )
440
        pert_gen_tok_texts.append(pert_gen_tok_text)
Julien Chaumond's avatar
Julien Chaumond committed
441
        if classifier is not None:
442
443
            discrim_losses.append(discrim_loss.data.cpu().numpy())
        losses_in_time.append(loss_in_time)
Julien Chaumond's avatar
Julien Chaumond committed
444
445
446

    torch.cuda.empty_cache()

447
    return unpert_gen_tok_text, pert_gen_tok_texts, discrim_losses, losses_in_time
Julien Chaumond's avatar
Julien Chaumond committed
448

449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473

def generate_text_pplm(
        model,
        context=None,
        past=None,
        device="cuda",
        sample=True,
        perturb=True,
        classifier=None,
        label_class=None,
        bow_indices=None,
        loss_type=0,
        length=100,
        grad_length=10000,
        stepsize=0.02,
        num_iterations=3,
        temperature=1.0,
        gm_scale=0.9,
        kl_scale=0.01,
        top_k=10,
        window_length=0,
        horizon_length=1,
        decay=False,
        gamma=1.5,
):
Piero Molino's avatar
Piero Molino committed
474
475
    output = torch.tensor(context, device=device, dtype=torch.long).unsqueeze(
        0) if context else None
Julien Chaumond's avatar
Julien Chaumond committed
476

477
478
479
    # collect one hot vectors for bags of words
    one_hot_bows_vectors = build_bows_one_hot_vectors(bow_indices)

Julien Chaumond's avatar
Julien Chaumond committed
480
481
    grad_norms = None
    loss_in_time = []
482
    for i in trange(length, ascii=True):
Julien Chaumond's avatar
Julien Chaumond committed
483
484

        # Get past/probs for current output, except for last word
Piero Molino's avatar
Piero Molino committed
485
486
        # Note that GPT takes 2 inputs: past + current-token
        # Therefore, use everything from before current i/p token to generate relevant past
Julien Chaumond's avatar
Julien Chaumond committed
487

Piero Molino's avatar
Piero Molino committed
488
489
490
491
492
        if past is None and output is not None:
            prev = output[:, -1:]
            # _, past = model(output[:, :-1])
            # original_probs, true_past = model(output)
            # true_hidden = model.hidden_states
Julien Chaumond's avatar
Julien Chaumond committed
493

Piero Molino's avatar
Piero Molino committed
494
495
            # Piero modified model call
            _, past, _ = model(output[:, :-1])
496
            unpert_logits, unpert_past, unpert_all_hidden = model(output)
Piero Molino's avatar
Piero Molino committed
497
            true_hidden = unpert_all_hidden[-1]
Julien Chaumond's avatar
Julien Chaumond committed
498
499

        else:
Piero Molino's avatar
Piero Molino committed
500
501
            # original_probs, true_past = model(output)
            # true_hidden = model.hidden_states
Julien Chaumond's avatar
Julien Chaumond committed
502

Piero Molino's avatar
Piero Molino committed
503
            # Piero modified model call
504
            unpert_logits, unpert_past, unpert_all_hidden = model(output)
Piero Molino's avatar
Piero Molino committed
505
506
507
508
            true_hidden = unpert_all_hidden[-1]

        # Modify the past if necessary

509
510
        if i >= grad_length:
            current_stepsize = stepsize * 0
Julien Chaumond's avatar
Julien Chaumond committed
511
        else:
512
            current_stepsize = stepsize
Julien Chaumond's avatar
Julien Chaumond committed
513

514
        if not perturb or num_iterations == 0:
Piero Molino's avatar
Piero Molino committed
515
            perturbed_past = past
Julien Chaumond's avatar
Julien Chaumond committed
516
517

        else:
Piero Molino's avatar
Piero Molino committed
518
519
520
            # Piero modified model call
            # accumulated_hidden = model.hidden_states[:, :-1, :]
            accumulated_hidden = true_hidden[:, :-1, :]
Julien Chaumond's avatar
Julien Chaumond committed
521
522
            accumulated_hidden = torch.sum(accumulated_hidden, dim=1)

523
            perturbed_past, _, grad_norms, loss_per_iter = perturb_past(
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
                past,
                model,
                prev,
                unpert_past=unpert_past,
                unpert_logits=unpert_logits,
                accumulated_hidden=accumulated_hidden,
                grad_norms=grad_norms,
                stepsize=current_stepsize,
                classifier=classifier,
                label_class=label_class,
                one_hot_bows_vectors=one_hot_bows_vectors,
                loss_type=loss_type,
                num_iterations=num_iterations,
                kl_scale=kl_scale,
                window_length=window_length,
                horizon_length=horizon_length,
                decay=decay,
                gamma=gamma,
            )
Piero Molino's avatar
Piero Molino committed
543
544
545
546
547
548
549
            loss_in_time.append(loss_per_iter)

        # Piero modified model call
        logits, past, pert_all_hidden = model(prev, past=perturbed_past)
        # test_logits = F.softmax(test_logits[:, -1, :], dim=-1)
        # likelywords = torch.topk(test_logits, k=10, dim=-1)
        # print(TOKENIZER.decode(likelywords[1].tolist()[0]))
Julien Chaumond's avatar
Julien Chaumond committed
550
551

        if classifier is not None:
Piero Molino's avatar
Piero Molino committed
552
553
            ce_loss = torch.nn.CrossEntropyLoss()
            predicted_sentiment = classifier(torch.mean(true_hidden, dim=1))
554
            label = torch.tensor([label_class], device='cuda',
Piero Molino's avatar
Piero Molino committed
555
556
557
                                 dtype=torch.long)
            true_discrim_loss = ce_loss(predicted_sentiment, label)
            print("true discrim loss", true_discrim_loss.data.cpu().numpy())
Julien Chaumond's avatar
Julien Chaumond committed
558
        else:
Piero Molino's avatar
Piero Molino committed
559
560
561
562
563
            true_discrim_loss = 0

        # Piero modified model call
        # hidden = model.hidden_states  # update hidden
        # logits = model.forward_hidden(hidden)
564
        logits = logits[:, -1, :] / temperature  # + SMALL_CONST
Piero Molino's avatar
Piero Molino committed
565

566
        # logits = top_k_filter(logits, k=args.top_k)  # + SMALL_CONST
Julien Chaumond's avatar
Julien Chaumond committed
567

Piero Molino's avatar
Piero Molino committed
568
569
570
        log_probs = F.softmax(logits, dim=-1)

        # Fuse the modified model and original model
Julien Chaumond's avatar
Julien Chaumond committed
571
572
        if perturb:

573
            # original_probs = top_k_filter(original_probs[:, -1, :]) #+ SMALL_CONST
574
            unpert_logits = F.softmax(unpert_logits[:, -1, :], dim=-1)
Piero Molino's avatar
Piero Molino committed
575
576
577
578
            # likelywords = torch.topk(original_probs, k=10, dim=-1)
            # print(TOKENIZER.decode(likelywords[1].tolist()[0]))

            log_probs = ((log_probs ** gm_scale) * (
579
                    unpert_logits ** (1 - gm_scale)))  # + SMALL_CONST
Julien Chaumond's avatar
Julien Chaumond committed
580

581
            log_probs = top_k_filter(log_probs, k=top_k,
582
                                     probs=True)  # + SMALL_CONST
Julien Chaumond's avatar
Julien Chaumond committed
583

Piero Molino's avatar
Piero Molino committed
584
585
            if torch.sum(log_probs) <= 1:
                log_probs = log_probs / torch.sum(log_probs)
Julien Chaumond's avatar
Julien Chaumond committed
586
587

        else:
588
            logits = top_k_filter(logits, k=top_k)  # + SMALL_CONST
Piero Molino's avatar
Piero Molino committed
589
            log_probs = F.softmax(logits, dim=-1)
Julien Chaumond's avatar
Julien Chaumond committed
590
591

        if sample:
Piero Molino's avatar
Piero Molino committed
592
593
594
595
            # likelywords = torch.topk(log_probs, k=args.top_k, dim=-1)
            # print(TOKENIZER.decode(likelywords[1].tolist()[0]))
            # print(likelywords[0].tolist())
            prev = torch.multinomial(log_probs, num_samples=1)
Julien Chaumond's avatar
Julien Chaumond committed
596
        else:
Piero Molino's avatar
Piero Molino committed
597
598
599
600
601
602
            _, prev = torch.topk(log_probs, k=1, dim=-1)
        # if perturb:
        #     prev = future
        output = prev if output is None else torch.cat((output, prev),
                                                       dim=1)  # update output
        print(TOKENIZER.decode(output.tolist()[0]))
Julien Chaumond's avatar
Julien Chaumond committed
603

Piero Molino's avatar
Piero Molino committed
604
    return output, true_discrim_loss, loss_in_time
Julien Chaumond's avatar
Julien Chaumond committed
605
606
607
608


def run_model():
    parser = argparse.ArgumentParser()
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
    parser.add_argument(
        "--model_path",
        "-M",
        type=str,
        default="gpt2-medium",
        help="pretrained model name or path to local checkpoint",
    )
    parser.add_argument(
        "--bag_of_words",
        "-B",
        type=str,
        default=None,
        help="Bags of words used for PPLM-BoW. "
             "Either a BOW id (see list in code) or a filepath. "
             "Multiple BoWs separated by ;",
    )
    parser.add_argument(
        "--discrim",
        "-D",
        type=str,
        default=None,
        choices=("clickbait", "sentiment", "toxicity"),
        help="Discriminator to use for loss-type 2",
    )
    parser.add_argument(
        "--label_class",
        type=int,
        default=-1,
        help="Class label used for the discriminator",
    )
    parser.add_argument("--stepsize", type=float, default=0.02)
Julien Chaumond's avatar
Julien Chaumond committed
640
641
642
643
644
645
    parser.add_argument("--length", type=int, default=100)
    parser.add_argument("--seed", type=int, default=0)
    parser.add_argument("--temperature", type=float, default=1.0)
    parser.add_argument("--top_k", type=int, default=10)
    parser.add_argument("--gm_scale", type=float, default=0.9)
    parser.add_argument("--kl_scale", type=float, default=0.01)
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
    parser.add_argument("--no_cuda", action="store_true", help="no cuda")
    parser.add_argument(
        "--uncond", action="store_true",
        help="Generate from end-of-text as prefix"
    )
    parser.add_argument(
        "--cond_text", type=str, default="The lake",
        help="Prefix texts to condition on"
    )
    parser.add_argument("--num_iterations", type=int, default=3)
    parser.add_argument("--grad_length", type=int, default=10000)
    parser.add_argument(
        "--num_samples",
        type=int,
        default=1,
        help="Number of samples to generate from the modified latents",
    )
    parser.add_argument(
        "--horizon_length",
        type=int,
        default=1,
        help="Length of future to optimize over",
    )
    parser.add_argument(
        "--window_length",
        type=int,
        default=0,
        help="Length of past which is being optimized; "
             "0 corresponds to infinite window length",
    )
    parser.add_argument("--decay", action="store_true",
                        help="whether to decay or not")
    parser.add_argument("--gamma", type=float, default=1.5)
    parser.add_argument("--colorama", action="store_true", help="colors keywords")
Julien Chaumond's avatar
Julien Chaumond committed
680
681
682

    args = parser.parse_args()

683
    # set Random seed
Julien Chaumond's avatar
Julien Chaumond committed
684
685
686
    torch.manual_seed(args.seed)
    np.random.seed(args.seed)

687
688
    # set the device
    device = "cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu"
Julien Chaumond's avatar
Julien Chaumond committed
689

690
    # load pretrained model
Julien Chaumond's avatar
Julien Chaumond committed
691
692
693
694
695
696
697
    model = GPT2LMHeadModel.from_pretrained(
        args.model_path,
        output_hidden_states=True
    )
    model.to(device)
    model.eval()

Piero Molino's avatar
Piero Molino committed
698
    # Freeze GPT-2 weights
Julien Chaumond's avatar
Julien Chaumond committed
699
700
701
    for param in model.parameters():
        param.requires_grad = False

702
    # figure out conditioning text
Julien Chaumond's avatar
Julien Chaumond committed
703
    if args.uncond:
704
705
706
        tokenized_cond_text = TOKENIZER.encode(
            [TOKENIZER.bos_token]
        )
Julien Chaumond's avatar
Julien Chaumond committed
707
708
709
    else:
        raw_text = args.cond_text
        while not raw_text:
710
            print("Did you forget to add `--cond_text`? ")
Julien Chaumond's avatar
Julien Chaumond committed
711
            raw_text = input("Model prompt >>> ")
712
        tokenized_cond_text = TOKENIZER.encode(TOKENIZER.bos_token + raw_text)
Piero Molino's avatar
Piero Molino committed
713

714
715
716
    print("= Prefix of sentence =")
    print(TOKENIZER.decode(tokenized_cond_text))
    print()
Piero Molino's avatar
Piero Molino committed
717

718
    # generate unperturbed and perturbed texts
Piero Molino's avatar
Piero Molino committed
719

720
721
722
723
724
725
726
727
    # full_text_generation returns:
    # unpert_gen_tok_text, pert_gen_tok_texts, discrim_losses, losses_in_time
    unpert_gen_tok_text, pert_gen_tok_texts, _, _ = full_text_generation(
        model=model, context=tokenized_cond_text, device=device, **vars(args)
    )

    # untokenize unperturbed text
    unpert_gen_text = TOKENIZER.decode(unpert_gen_tok_text.tolist()[0])
Piero Molino's avatar
Piero Molino committed
728

729
730
731
732
    print("=" * 80)
    print("= Unperturbed generated text =")
    print(unpert_gen_text)
    print()
Piero Molino's avatar
Piero Molino committed
733

734
735
    generated_texts = []

736
737
738
739
740
741
742
743
    bow_word_ids = set()
    if args.bag_of_words and args.colorama:
        bow_indices = get_bag_of_words_indices(args.bag_of_words.split(";"))
        for single_bow_list in bow_indices:
            # filtering all words in the list composed of more than 1 token
            filtered = list(filter(lambda x: len(x) <= 1, single_bow_list))
            # w[0] because we are sure w has only 1 item because previous fitler
            bow_word_ids.update(w[0] for w in filtered)
744
745
746
747
748

    # iterate through the perturbed texts
    for i, pert_gen_tok_text in enumerate(pert_gen_tok_texts):
        try:
            # untokenize unperturbed text
Piero Molino's avatar
Piero Molino committed
749
750
751
            if args.colorama:
                import colorama

752
753
                pert_gen_text = ''
                for word_id in pert_gen_tok_text.tolist()[0]:
754
                    if word_id in bow_word_ids:
755
756
757
758
759
                        pert_gen_text += '{}{}{}'.format(
                            colorama.Fore.RED,
                            TOKENIZER.decode([word_id]),
                            colorama.Style.RESET_ALL
                        )
Piero Molino's avatar
Piero Molino committed
760
                    else:
761
                        pert_gen_text += TOKENIZER.decode([word_id])
Piero Molino's avatar
Piero Molino committed
762
            else:
763
                pert_gen_text = TOKENIZER.decode(pert_gen_tok_text.tolist()[0])
Julien Chaumond's avatar
Julien Chaumond committed
764

765
766
767
768
769
            print("= Perturbed generated text {} =".format(i + 1))
            print(pert_gen_text)
            print()
        except:
            pass
Julien Chaumond's avatar
Julien Chaumond committed
770

771
772
773
774
        # keep the prefix, perturbed seq, original seq for each index
        generated_texts.append(
            (tokenized_cond_text, pert_gen_tok_text, unpert_gen_tok_text)
        )
Julien Chaumond's avatar
Julien Chaumond committed
775

Piero Molino's avatar
Piero Molino committed
776
    return
Julien Chaumond's avatar
Julien Chaumond committed
777
778


Piero Molino's avatar
Piero Molino committed
779
if __name__ == '__main__':
Julien Chaumond's avatar
Julien Chaumond committed
780
    run_model()