run_pplm.py 30.3 KB
Newer Older
Piero Molino's avatar
Piero Molino committed
1
#! /usr/bin/env python3
Julien Chaumond's avatar
Julien Chaumond committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# coding=utf-8
# Copyright 2018 The Uber AI Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: add code for training a custom discriminator

"""
Example command with bag of words:
python examples/run_pplm.py -B space --cond_text "The president" --length 100 --gamma 1.5 --num_iterations 3 --num_samples 10 --stepsize 0.01 --window_length 5 --kl_scale 0.01 --gm_scale 0.95

Example command with discriminator:
python examples/run_pplm.py -D sentiment --label_class 3 --cond_text "The lake" --length 10 --gamma 1.0 --num_iterations 30 --num_samples 10 --stepsize 0.01 --kl_scale 0.01 --gm_scale 0.95
"""

import argparse
from operator import add
from typing import List, Optional, Tuple, Union

import numpy as np
import torch
import torch.nn.functional as F
from torch.autograd import Variable
from tqdm import trange

37
from examples.run_pplm_discrim_train import ClassificationHead
Julien Chaumond's avatar
Julien Chaumond committed
38
39
40
41
42
43
44
45
from transformers import GPT2Tokenizer
from transformers.file_utils import cached_path
from transformers.modeling_gpt2 import GPT2LMHeadModel

PPLM_BOW = 1
PPLM_DISCRIM = 2
PPLM_BOW_DISCRIM = 3
SMALL_CONST = 1e-15
Piero Molino's avatar
Piero Molino committed
46
SmallConst = 1e-15
Julien Chaumond's avatar
Julien Chaumond committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
TOKENIZER = GPT2Tokenizer.from_pretrained("gpt2-medium")

BAG_OF_WORDS_ARCHIVE_MAP = {
    'kitchen': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/kitchen.txt",
    'legal': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/legal.txt",
    'military': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/military.txt",
    'monsters': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/monsters.txt",
    'politics': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/politics.txt",
    'positive_words': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/positive_words.txt",
    'religion': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/religion.txt",
    'science': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/science.txt",
    'space': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/space.txt",
    'technology': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/technology.txt",
}

DISCRIMINATOR_MODELS_PARAMS = {
    "clickbait": {
        "url": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/discriminators/clickbait_classifierhead.pt",
        "class_size": 2,
        "embed_size": 1024,
        "class_vocab": {"non_clickbait": 0, "clickbait": 1},
        "default_class": 1,
    },
    "sentiment": {
Piero Molino's avatar
Piero Molino committed
71
        "url": "http://s.yosinski.com/SST_classifier_head.pt",
Julien Chaumond's avatar
Julien Chaumond committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
        "class_size": 5,
        "embed_size": 1024,
        "class_vocab": {"very_positive": 2, "very_negative": 3},
        "default_class": 3,
    },
    "toxicity": {
        "url": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/discriminators/toxicity_classifierhead.pt",
        "class_size": 2,
        "embed_size": 1024,
        "class_vocab": {"non_toxic": 0, "toxic": 1},
        "default_class": 0,
    },
}


Piero Molino's avatar
Piero Molino committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
def to_var(x, requires_grad=False, volatile=False):
    if torch.cuda.is_available():
        x = x.cuda()
    return Variable(x, requires_grad=requires_grad, volatile=volatile)


def top_k_filter(logits, k, probs=False):
    """
    Masks everything but the k top entries as -infinity (1e10).
    Used to mask logits such that e^-infinity -> 0 won't contribute to the
    sum of the denominator.
    """
    if k == 0:
        return logits
    else:
        values = torch.topk(logits, k)[0]
        batch_mins = values[:, -1].view(-1, 1).expand_as(logits)
        if probs:
            return torch.where(logits < batch_mins,
                               torch.ones_like(logits) * 0.0, logits)
        return torch.where(logits < batch_mins, torch.ones_like(logits) * -1e10,
                           logits)


111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
def perturb_past(
        past,
        model,
        prev,
        unpert_past=None,
        unpert_logits=None,
        accumulated_hidden=None,
        grad_norms=None,
        stepsize=0.01,
        classifier=None,
        label_class=None,
        one_hot_bows_vectors=None,
        loss_type=0,
        num_iterations=3,
        kl_scale=0.01,
        window_length=0,
        horizon_length=1,
        decay=False,
        gamma=1.5,
):
131
    # def perturb_past(past, model, prev, classifier, good_index=None,
132
133
134
135
136
137
138
139
140
141
142
143
    #             stepsize=0.01, vocab_size=50257,
    #             original_probs=None, accumulated_hidden=None, true_past=None,
    #             grad_norms=None):

    # one_hot_bows_vectors = []
    # for good_list in good_index:
    #     good_list = list(filter(lambda x: len(x) <= 1, good_list))
    #     good_list = torch.tensor(good_list).cuda()
    #     num_good = good_list.shape[0]
    #     one_hot_good = torch.zeros(num_good, vocab_size).cuda()
    #     one_hot_good.scatter_(1, good_list, 1)
    #     one_hot_bows_vectors.append(one_hot_good)
Piero Molino's avatar
Piero Molino committed
144
145
146
147
148

    # Generate inital perturbed past
    past_perturb_orig = [
        (np.random.uniform(0.0, 0.0, p.shape).astype('float32'))
        for p in past]
Julien Chaumond's avatar
Julien Chaumond committed
149
150
151
152

    if accumulated_hidden is None:
        accumulated_hidden = 0

153
    if decay:
Piero Molino's avatar
Piero Molino committed
154
155
        decay_mask = torch.arange(0., 1.0 + SmallConst, 1.0 / (window_length))[
                     1:]
Julien Chaumond's avatar
Julien Chaumond committed
156
157
158
    else:
        decay_mask = 1.0

Piero Molino's avatar
Piero Molino committed
159
160
161
162
163
164
165
166
167
168
169
    # Generate a mask is gradient perturbated is based on a past window
    _, _, _, current_length, _ = past[0].shape

    if current_length > window_length and window_length > 0:
        ones_key_val_shape = tuple(past[0].shape[:-2]) + tuple(
            [window_length]) + tuple(
            past[0].shape[-1:])

        zeros_key_val_shape = tuple(past[0].shape[:-2]) + tuple(
            [current_length - window_length]) + tuple(
            past[0].shape[-1:])
Julien Chaumond's avatar
Julien Chaumond committed
170
171
172
173
174

        ones_mask = torch.ones(ones_key_val_shape)
        ones_mask = decay_mask * ones_mask.permute(0, 1, 2, 4, 3)
        ones_mask = ones_mask.permute(0, 1, 2, 4, 3)

Piero Molino's avatar
Piero Molino committed
175
176
        window_mask = torch.cat((ones_mask, torch.zeros(zeros_key_val_shape)),
                                dim=-2).cuda()
Julien Chaumond's avatar
Julien Chaumond committed
177
178
179
180
    else:
        window_mask = torch.ones_like(past[0]).cuda()

    loss_per_iter = []
181
    for i in range(num_iterations):
Julien Chaumond's avatar
Julien Chaumond committed
182
        print("Iteration ", i + 1)
Piero Molino's avatar
Piero Molino committed
183
184
        past_perturb = [torch.from_numpy(p_) for p_ in past_perturb_orig]
        past_perturb = [to_var(p_, requires_grad=True) for p_ in past_perturb]
Julien Chaumond's avatar
Julien Chaumond committed
185

Piero Molino's avatar
Piero Molino committed
186
        perturbed_past = list(map(add, past, past_perturb))
Julien Chaumond's avatar
Julien Chaumond committed
187

Piero Molino's avatar
Piero Molino committed
188
        _, _, _, current_length, _ = past_perturb[0].shape
Julien Chaumond's avatar
Julien Chaumond committed
189

Piero Molino's avatar
Piero Molino committed
190
191
        # _, future_past = model(prev, past=perturbed_past)
        # hidden = model.hidden_states
Julien Chaumond's avatar
Julien Chaumond committed
192

Piero Molino's avatar
Piero Molino committed
193
194
195
196
197
198
199
200
201
202
203
        # Piero modified model call
        logits, _, all_hidden = model(prev, past=perturbed_past)
        hidden = all_hidden[-1]
        new_accumulated_hidden = accumulated_hidden + torch.sum(hidden,
                                                                dim=1).detach()

        # TODO: Check the layer-norm consistency of this with trained discriminator
        logits = logits[:, -1, :]
        probabs = F.softmax(logits, dim=-1)
        loss = 0.0
        loss_list = []
204
205
        if loss_type == 1 or loss_type == 3:
            for one_hot_good in one_hot_bows_vectors:
Piero Molino's avatar
Piero Molino committed
206
207
208
209
210
211
212
213
214
                good_logits = torch.mm(probabs, torch.t(one_hot_good))
                loss_word = good_logits
                loss_word = torch.sum(loss_word)
                loss_word = -torch.log(loss_word)
                # loss_word = torch.sum(loss_word) /torch.sum(one_hot_good)
                loss += loss_word
                loss_list.append(loss_word)
            print(" pplm_bow_loss:", loss.data.cpu().numpy())

215
        if loss_type == 2 or loss_type == 3:
Julien Chaumond's avatar
Julien Chaumond committed
216
            ce_loss = torch.nn.CrossEntropyLoss()
217
218
            new_true_past = unpert_past
            for i in range(horizon_length):
Piero Molino's avatar
Piero Molino committed
219
220
221
222
223
224
225
226
227
228
229
                future_probabs = F.softmax(logits, dim=-1)  # Get softmax
                future_probabs = torch.unsqueeze(future_probabs, dim=1)

                # _, new_true_past = model(future_probabs, past=new_true_past)
                # future_hidden = model.hidden_states  # Get expected hidden states

                # Piero modified model call
                wte = model.resize_token_embeddings()
                inputs_embeds = torch.matmul(future_probabs, wte.weight.data)
                _, new_true_past, future_hidden = model(
                    past=new_true_past,
Julien Chaumond's avatar
Julien Chaumond committed
230
231
                    inputs_embeds=inputs_embeds
                )
Piero Molino's avatar
Piero Molino committed
232
233
234
235
                future_hidden = future_hidden[-1]

                new_accumulated_hidden = new_accumulated_hidden + torch.sum(
                    future_hidden, dim=1)
Julien Chaumond's avatar
Julien Chaumond committed
236

Piero Molino's avatar
Piero Molino committed
237
            predicted_sentiment = classifier(new_accumulated_hidden / (
238
                    current_length + 1 + horizon_length))
Julien Chaumond's avatar
Julien Chaumond committed
239

240
            label = torch.tensor([label_class], device='cuda',
Piero Molino's avatar
Piero Molino committed
241
242
                                 dtype=torch.long)
            discrim_loss = ce_loss(predicted_sentiment, label)
Julien Chaumond's avatar
Julien Chaumond committed
243
            print(" pplm_discrim_loss:", discrim_loss.data.cpu().numpy())
Piero Molino's avatar
Piero Molino committed
244
245
            loss += discrim_loss
            loss_list.append(discrim_loss)
Julien Chaumond's avatar
Julien Chaumond committed
246

Piero Molino's avatar
Piero Molino committed
247
248
        kl_loss = 0.0
        if kl_scale > 0.0:
249
            p = (F.softmax(unpert_logits[:, -1, :], dim=-1))
Piero Molino's avatar
Piero Molino committed
250
251
252
253
254
            p = p + SmallConst * (p <= SmallConst).type(
                torch.FloatTensor).cuda().detach()
            correction = SmallConst * (probabs <= SmallConst).type(
                torch.FloatTensor).cuda().detach()
            corrected_probabs = probabs + correction.detach()
Rosanne Liu's avatar
Rosanne Liu committed
255
            kl_loss = kl_scale * (
Piero Molino's avatar
Piero Molino committed
256
                (corrected_probabs * (corrected_probabs / p).log()).sum())
Julien Chaumond's avatar
Julien Chaumond committed
257
            print(' kl_loss', (kl_loss).data.cpu().numpy())
Piero Molino's avatar
Piero Molino committed
258
            loss += kl_loss  # + discrim_loss
Julien Chaumond's avatar
Julien Chaumond committed
259
260

        loss_per_iter.append(loss.data.cpu().numpy())
Piero Molino's avatar
Piero Molino committed
261

Julien Chaumond's avatar
Julien Chaumond committed
262
263
        print(' pplm_loss', (loss - kl_loss).data.cpu().numpy())

Rosanne Liu's avatar
Rosanne Liu committed
264
        loss.backward()
265
        if grad_norms is not None and loss_type == 1:
Julien Chaumond's avatar
Julien Chaumond committed
266
267
            grad_norms = [
                torch.max(grad_norms[index], torch.norm(p_.grad * window_mask))
Piero Molino's avatar
Piero Molino committed
268
269
                for index, p_ in
                enumerate(past_perturb)]
Julien Chaumond's avatar
Julien Chaumond committed
270
        else:
Piero Molino's avatar
Piero Molino committed
271
272
            grad_norms = [(torch.norm(p_.grad * window_mask) + SmallConst) for
                          index, p_ in enumerate(past_perturb)]
Julien Chaumond's avatar
Julien Chaumond committed
273
274

        grad = [
Piero Molino's avatar
Piero Molino committed
275
            -stepsize * (p_.grad * window_mask / grad_norms[
276
                index] ** gamma).data.cpu().numpy()
Piero Molino's avatar
Piero Molino committed
277
278
            for index, p_ in enumerate(past_perturb)]
        past_perturb_orig = list(map(add, grad, past_perturb_orig))
Julien Chaumond's avatar
Julien Chaumond committed
279

Piero Molino's avatar
Piero Molino committed
280
        for p_ in past_perturb:
Julien Chaumond's avatar
Julien Chaumond committed
281
282
283
            p_.grad.data.zero_()

        new_past = []
Piero Molino's avatar
Piero Molino committed
284
285
286
        for p in past:
            new_past.append(p.detach())

Julien Chaumond's avatar
Julien Chaumond committed
287
288
        past = new_past

Piero Molino's avatar
Piero Molino committed
289
290
291
    past_perturb = [torch.from_numpy(p_) for p_ in past_perturb_orig]
    past_perturb = [to_var(p_, requires_grad=True) for p_ in past_perturb]
    perturbed_past = list(map(add, past, past_perturb))
Julien Chaumond's avatar
Julien Chaumond committed
292

Piero Molino's avatar
Piero Molino committed
293
    return perturbed_past, new_accumulated_hidden, grad_norms, loss_per_iter
Julien Chaumond's avatar
Julien Chaumond committed
294
295
296


def get_classifier(
Piero Molino's avatar
Piero Molino committed
297
298
        name: Optional[str], label_class: Union[str, int],
        device: Union[str, torch.device]
Julien Chaumond's avatar
Julien Chaumond committed
299
300
301
302
303
304
305
306
307
308
) -> Tuple[Optional[ClassificationHead], Optional[int]]:
    if name is None:
        return None, None

    params = DISCRIMINATOR_MODELS_PARAMS[name]
    classifier = ClassificationHead(
        class_size=params['class_size'],
        embed_size=params['embed_size']
    ).to(device)
    resolved_archive_file = cached_path(params["url"])
Piero Molino's avatar
Piero Molino committed
309
310
    classifier.load_state_dict(
        torch.load(resolved_archive_file, map_location=device))
Julien Chaumond's avatar
Julien Chaumond committed
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
    classifier.eval()

    if isinstance(label_class, str):
        if label_class in params["class_vocab"]:
            label_id = params["class_vocab"][label_class]
        else:
            label_id = params["default_class"]
            print("label_class {} not in class_vocab".format(label_class))
            print("available values are: {}".format(params["class_vocab"]))
            print("using default class {}".format(label_id))

    elif isinstance(label_class, int):
        if label_class in set(params["class_vocab"].values()):
            label_id = label_class
        else:
            label_id = params["default_class"]
            print("label_class {} not in class_vocab".format(label_class))
            print("available values are: {}".format(params["class_vocab"]))
            print("using default class {}".format(label_id))

    else:
        label_id = params["default_class"]

    return classifier, label_id


Piero Molino's avatar
Piero Molino committed
337
338
def get_bag_of_words_indices(bag_of_words_ids_or_paths: List[str]) -> List[
    List[List[int]]]:
Julien Chaumond's avatar
Julien Chaumond committed
339
340
341
342
343
344
345
    bow_indices = []
    for id_or_path in bag_of_words_ids_or_paths:
        if id_or_path in BAG_OF_WORDS_ARCHIVE_MAP:
            filepath = cached_path(BAG_OF_WORDS_ARCHIVE_MAP[id_or_path])
        else:
            filepath = id_or_path
        with open(filepath, "r") as f:
Piero Molino's avatar
Piero Molino committed
346
347
348
349
            words = f.read().strip().split("\n")
        bow_indices.append(
            [TOKENIZER.encode(word.strip(), add_prefix_space=True) for word in
             words])
350
351
352
353
354
355
356

    #bow_words = set()
    #for bow_list in bow_indices:
    #    bow_list = list(filter(lambda x: len(x) <= 1, bow_list))
    #    bow_words.update(
    #        (TOKENIZER.decode(word).strip(), word) for word in bow_list)

Julien Chaumond's avatar
Julien Chaumond committed
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
    return bow_indices


def build_bows_one_hot_vectors(bow_indices):
    if bow_indices is None:
        return None

    one_hot_bows_vectors = []
    for single_bow in bow_indices:
        single_bow = list(filter(lambda x: len(x) <= 1, single_bow))
        single_bow = torch.tensor(single_bow).cuda()
        num_words = single_bow.shape[0]
        one_hot_bow = torch.zeros(num_words, TOKENIZER.vocab_size).cuda()
        one_hot_bow.scatter_(1, single_bow, 1)
        one_hot_bows_vectors.append(one_hot_bow)
    return one_hot_bows_vectors


375
def full_text_generation(
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
        model,
        context=None,
        num_samples=1,
        device="cuda",
        sample=True,
        discrim=None,
        label_class=None,
        bag_of_words=None,
        length=100,
        grad_length=10000,
        stepsize=0.02,
        num_iterations=3,
        temperature=1.0,
        gm_scale=0.9,
        kl_scale=0.01,
        top_k=10,
        window_length=0,
        horizon_length=1,
        decay=False,
        gamma=1.5,
        **kwargs
):
Julien Chaumond's avatar
Julien Chaumond committed
398
    classifier, class_id = get_classifier(
399
400
        discrim,
        label_class,
Julien Chaumond's avatar
Julien Chaumond committed
401
402
403
        device
    )

Piero Molino's avatar
Piero Molino committed
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
    # if args.discrim == 'clickbait':
    #     classifier = ClassificationHead(class_size=2, embed_size=1024).to(device)
    #     classifier.load_state_dict(torch.load("discrim_models/clickbait_classifierhead.pt"))
    #     classifier.eval()
    #     args.label_class = 1 # clickbaity
    #
    # elif args.discrim == 'sentiment':
    #     classifier = ClassificationHead(class_size=5, embed_size=1024).to(device)
    #     #classifier.load_state_dict(torch.load("discrim_models/sentiment_classifierhead.pt"))
    #     classifier.load_state_dict(torch.load("discrim_models/SST_classifier_head_epoch_16.pt"))
    #     classifier.eval()
    #     if args.label_class < 0:
    #         raise Exception('Wrong class for sentiment, use --label-class 2 for *very positive*, 3 for *very negative*')
    #     #args.label_class = 2 # very pos
    #     #args.label_class = 3 # very neg
    #
    # elif args.discrim == 'toxicity':
    #     classifier = ClassificationHead(class_size=2, embed_size=1024).to(device)
    #     classifier.load_state_dict(torch.load("discrim_models/toxicity_classifierhead.pt"))
    #     classifier.eval()
    #     args.label_class = 0 # not toxic
    #
    # elif args.discrim == 'generic':
    #     if args.discrim_weights is None:
    #         raise ValueError('When using a generic discriminator, '
    #                          'discrim_weights need to be specified')
    #     if args.discrim_meta is None:
    #         raise ValueError('When using a generic discriminator, '
    #                          'discrim_meta need to be specified')
    #
    #     with open(args.discrim_meta, 'r') as discrim_meta_file:
    #         meta = json.load(discrim_meta_file)
    #
    #     classifier = ClassificationHead(
    #         class_size=meta['class_size'],
    #         embed_size=meta['embed_size'],
    #         # todo add tokenizer from meta
    #     ).to(device)
    #     classifier.load_state_dict(torch.load(args.discrim_weights))
    #     classifier.eval()
    #     if args.label_class == -1:
    #         args.label_class = meta['default_class']
    #
    # else:
    #     classifier = None

    # Get tokens for the list of positive words
    def list_tokens(word_list):
        token_list = [TOKENIZER.encode(word, add_prefix_space=True) for word in
                      word_list]
        # token_list = []
        # for word in word_list:
        #    token_list.append(TOKENIZER.encode(" " + word))
        return token_list

    # good_index = []
    # if args.bag_of_words:
    #     bags_of_words = args.bag_of_words.split(";")
    #     for wordlist in bags_of_words:
    #         with open(wordlist, "r") as f:
    #             words = f.read().strip()
    #             words = words.split('\n')
    #         good_index.append(list_tokens(words))
    #
    #     for good_list in good_index:
    #         good_list = list(filter(lambda x: len(x) <= 1, good_list))
    #         actual_words = [(TOKENIZER.decode(ww).strip(),ww) for ww in good_list]

472
473
474
    bow_indices = []
    if bag_of_words:
        bow_indices = get_bag_of_words_indices(bag_of_words.split(";"))
Piero Molino's avatar
Piero Molino committed
475

476
    if bag_of_words and classifier:
Julien Chaumond's avatar
Julien Chaumond committed
477
        print("Both PPLM-BoW and PPLM-Discrim are on. This is not optimized.")
478
        loss_type = PPLM_BOW_DISCRIM
Julien Chaumond's avatar
Julien Chaumond committed
479

480
481
    elif bag_of_words:
        loss_type = PPLM_BOW
Julien Chaumond's avatar
Julien Chaumond committed
482
483
484
        print("Using PPLM-BoW")

    elif classifier is not None:
485
        loss_type = PPLM_DISCRIM
Julien Chaumond's avatar
Julien Chaumond committed
486
487
488
489
490
        print("Using PPLM-Discrim")

    else:
        raise Exception("Specify either --bag_of_words (-B) or --discrim (-D)")

491
492
493
494
495
496
497
    original, _, _ = generate_text_pplm(
        model=model,
        context=context,
        device=device,
        length=length,
        perturb=False
    )
Julien Chaumond's avatar
Julien Chaumond committed
498
499
    torch.cuda.empty_cache()

Piero Molino's avatar
Piero Molino committed
500
501
502
503
    perturbed_list = []
    discrim_loss_list = []
    loss_in_time_list = []

504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
    for i in range(num_samples):
        perturbed, discrim_loss, loss_in_time = generate_text_pplm(
            model=model,
            context=context,
            device=device,
            sample=sample,
            perturb=True,
            bow_indices=bow_indices,
            classifier=classifier,
            label_class=class_id,
            loss_type=loss_type,
            length=length,
            grad_length=grad_length,
            stepsize=stepsize,
            num_iterations=num_iterations,
            temperature=temperature,
            gm_scale=gm_scale,
            kl_scale=kl_scale,
            top_k=top_k,
            window_length=window_length,
            horizon_length=horizon_length,
            decay=decay,
            gamma=gamma,
        )
Piero Molino's avatar
Piero Molino committed
528
        perturbed_list.append(perturbed)
Julien Chaumond's avatar
Julien Chaumond committed
529
        if classifier is not None:
Piero Molino's avatar
Piero Molino committed
530
531
            discrim_loss_list.append(discrim_loss.data.cpu().numpy())
        loss_in_time_list.append(loss_in_time)
Julien Chaumond's avatar
Julien Chaumond committed
532
533
534

    torch.cuda.empty_cache()

535
    return original, perturbed_list, discrim_loss_list, loss_in_time_list
Julien Chaumond's avatar
Julien Chaumond committed
536

537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561

def generate_text_pplm(
        model,
        context=None,
        past=None,
        device="cuda",
        sample=True,
        perturb=True,
        classifier=None,
        label_class=None,
        bow_indices=None,
        loss_type=0,
        length=100,
        grad_length=10000,
        stepsize=0.02,
        num_iterations=3,
        temperature=1.0,
        gm_scale=0.9,
        kl_scale=0.01,
        top_k=10,
        window_length=0,
        horizon_length=1,
        decay=False,
        gamma=1.5,
):
Piero Molino's avatar
Piero Molino committed
562
563
    output = torch.tensor(context, device=device, dtype=torch.long).unsqueeze(
        0) if context else None
Julien Chaumond's avatar
Julien Chaumond committed
564

565
566
567
    # collect one hot vectors for bags of words
    one_hot_bows_vectors = build_bows_one_hot_vectors(bow_indices)

Julien Chaumond's avatar
Julien Chaumond committed
568
569
    grad_norms = None
    loss_in_time = []
570
    for i in trange(length, ascii=True):
Julien Chaumond's avatar
Julien Chaumond committed
571
572

        # Get past/probs for current output, except for last word
Piero Molino's avatar
Piero Molino committed
573
574
        # Note that GPT takes 2 inputs: past + current-token
        # Therefore, use everything from before current i/p token to generate relevant past
Julien Chaumond's avatar
Julien Chaumond committed
575

Piero Molino's avatar
Piero Molino committed
576
577
578
579
580
        if past is None and output is not None:
            prev = output[:, -1:]
            # _, past = model(output[:, :-1])
            # original_probs, true_past = model(output)
            # true_hidden = model.hidden_states
Julien Chaumond's avatar
Julien Chaumond committed
581

Piero Molino's avatar
Piero Molino committed
582
583
            # Piero modified model call
            _, past, _ = model(output[:, :-1])
584
            unpert_logits, unpert_past, unpert_all_hidden = model(output)
Piero Molino's avatar
Piero Molino committed
585
            true_hidden = unpert_all_hidden[-1]
Julien Chaumond's avatar
Julien Chaumond committed
586
587

        else:
Piero Molino's avatar
Piero Molino committed
588
589
            # original_probs, true_past = model(output)
            # true_hidden = model.hidden_states
Julien Chaumond's avatar
Julien Chaumond committed
590

Piero Molino's avatar
Piero Molino committed
591
            # Piero modified model call
592
            unpert_logits, unpert_past, unpert_all_hidden = model(output)
Piero Molino's avatar
Piero Molino committed
593
594
595
596
            true_hidden = unpert_all_hidden[-1]

        # Modify the past if necessary

597
598
        if i >= grad_length:
            current_stepsize = stepsize * 0
Julien Chaumond's avatar
Julien Chaumond committed
599
        else:
600
            current_stepsize = stepsize
Julien Chaumond's avatar
Julien Chaumond committed
601

602
        if not perturb or num_iterations == 0:
Piero Molino's avatar
Piero Molino committed
603
            perturbed_past = past
Julien Chaumond's avatar
Julien Chaumond committed
604
605

        else:
Piero Molino's avatar
Piero Molino committed
606
607
608
            # Piero modified model call
            # accumulated_hidden = model.hidden_states[:, :-1, :]
            accumulated_hidden = true_hidden[:, :-1, :]
Julien Chaumond's avatar
Julien Chaumond committed
609
610
            accumulated_hidden = torch.sum(accumulated_hidden, dim=1)

611
            perturbed_past, _, grad_norms, loss_per_iter = perturb_past(
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
                past,
                model,
                prev,
                unpert_past=unpert_past,
                unpert_logits=unpert_logits,
                accumulated_hidden=accumulated_hidden,
                grad_norms=grad_norms,
                stepsize=current_stepsize,
                classifier=classifier,
                label_class=label_class,
                one_hot_bows_vectors=one_hot_bows_vectors,
                loss_type=loss_type,
                num_iterations=num_iterations,
                kl_scale=kl_scale,
                window_length=window_length,
                horizon_length=horizon_length,
                decay=decay,
                gamma=gamma,
            )
Piero Molino's avatar
Piero Molino committed
631
632
633
634
635
636
637
            loss_in_time.append(loss_per_iter)

        # Piero modified model call
        logits, past, pert_all_hidden = model(prev, past=perturbed_past)
        # test_logits = F.softmax(test_logits[:, -1, :], dim=-1)
        # likelywords = torch.topk(test_logits, k=10, dim=-1)
        # print(TOKENIZER.decode(likelywords[1].tolist()[0]))
Julien Chaumond's avatar
Julien Chaumond committed
638
639

        if classifier is not None:
Piero Molino's avatar
Piero Molino committed
640
641
            ce_loss = torch.nn.CrossEntropyLoss()
            predicted_sentiment = classifier(torch.mean(true_hidden, dim=1))
642
            label = torch.tensor([label_class], device='cuda',
Piero Molino's avatar
Piero Molino committed
643
644
645
                                 dtype=torch.long)
            true_discrim_loss = ce_loss(predicted_sentiment, label)
            print("true discrim loss", true_discrim_loss.data.cpu().numpy())
Julien Chaumond's avatar
Julien Chaumond committed
646
        else:
Piero Molino's avatar
Piero Molino committed
647
648
649
650
651
            true_discrim_loss = 0

        # Piero modified model call
        # hidden = model.hidden_states  # update hidden
        # logits = model.forward_hidden(hidden)
652
        logits = logits[:, -1, :] / temperature  # + SmallConst
Piero Molino's avatar
Piero Molino committed
653
654

        # logits = top_k_filter(logits, k=args.top_k)  # + SmallConst
Julien Chaumond's avatar
Julien Chaumond committed
655

Piero Molino's avatar
Piero Molino committed
656
657
658
        log_probs = F.softmax(logits, dim=-1)

        # Fuse the modified model and original model
Julien Chaumond's avatar
Julien Chaumond committed
659
660
        if perturb:

Piero Molino's avatar
Piero Molino committed
661
            # original_probs = top_k_filter(original_probs[:, -1, :]) #+ SmallConst
662
            unpert_logits = F.softmax(unpert_logits[:, -1, :], dim=-1)
Piero Molino's avatar
Piero Molino committed
663
664
665
666
            # likelywords = torch.topk(original_probs, k=10, dim=-1)
            # print(TOKENIZER.decode(likelywords[1].tolist()[0]))

            log_probs = ((log_probs ** gm_scale) * (
667
                    unpert_logits ** (1 - gm_scale)))  # + SmallConst
Julien Chaumond's avatar
Julien Chaumond committed
668

669
            log_probs = top_k_filter(log_probs, k=top_k,
Piero Molino's avatar
Piero Molino committed
670
                                     probs=True)  # + SmallConst
Julien Chaumond's avatar
Julien Chaumond committed
671

Piero Molino's avatar
Piero Molino committed
672
673
            if torch.sum(log_probs) <= 1:
                log_probs = log_probs / torch.sum(log_probs)
Julien Chaumond's avatar
Julien Chaumond committed
674
675

        else:
676
            logits = top_k_filter(logits, k=top_k)  # + SmallConst
Piero Molino's avatar
Piero Molino committed
677
            log_probs = F.softmax(logits, dim=-1)
Julien Chaumond's avatar
Julien Chaumond committed
678
679

        if sample:
Piero Molino's avatar
Piero Molino committed
680
681
682
683
            # likelywords = torch.topk(log_probs, k=args.top_k, dim=-1)
            # print(TOKENIZER.decode(likelywords[1].tolist()[0]))
            # print(likelywords[0].tolist())
            prev = torch.multinomial(log_probs, num_samples=1)
Julien Chaumond's avatar
Julien Chaumond committed
684
        else:
Piero Molino's avatar
Piero Molino committed
685
686
687
688
689
690
            _, prev = torch.topk(log_probs, k=1, dim=-1)
        # if perturb:
        #     prev = future
        output = prev if output is None else torch.cat((output, prev),
                                                       dim=1)  # update output
        print(TOKENIZER.decode(output.tolist()[0]))
Julien Chaumond's avatar
Julien Chaumond committed
691

Piero Molino's avatar
Piero Molino committed
692
    return output, true_discrim_loss, loss_in_time
Julien Chaumond's avatar
Julien Chaumond committed
693
694
695
696


def run_model():
    parser = argparse.ArgumentParser()
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
    parser.add_argument(
        "--model_path",
        "-M",
        type=str,
        default="gpt2-medium",
        help="pretrained model name or path to local checkpoint",
    )
    parser.add_argument(
        "--bag_of_words",
        "-B",
        type=str,
        default=None,
        help="Bags of words used for PPLM-BoW. "
             "Either a BOW id (see list in code) or a filepath. "
             "Multiple BoWs separated by ;",
    )
    parser.add_argument(
        "--discrim",
        "-D",
        type=str,
        default=None,
        choices=("clickbait", "sentiment", "toxicity"),
        help="Discriminator to use for loss-type 2",
    )
    parser.add_argument(
        "--label_class",
        type=int,
        default=-1,
        help="Class label used for the discriminator",
    )
    parser.add_argument("--stepsize", type=float, default=0.02)
Julien Chaumond's avatar
Julien Chaumond committed
728
729
730
731
732
733
    parser.add_argument("--length", type=int, default=100)
    parser.add_argument("--seed", type=int, default=0)
    parser.add_argument("--temperature", type=float, default=1.0)
    parser.add_argument("--top_k", type=int, default=10)
    parser.add_argument("--gm_scale", type=float, default=0.9)
    parser.add_argument("--kl_scale", type=float, default=0.01)
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
    parser.add_argument("--no_cuda", action="store_true", help="no cuda")
    parser.add_argument(
        "--uncond", action="store_true",
        help="Generate from end-of-text as prefix"
    )
    parser.add_argument(
        "--cond_text", type=str, default="The lake",
        help="Prefix texts to condition on"
    )
    parser.add_argument("--num_iterations", type=int, default=3)
    parser.add_argument("--grad_length", type=int, default=10000)
    parser.add_argument(
        "--num_samples",
        type=int,
        default=1,
        help="Number of samples to generate from the modified latents",
    )
    parser.add_argument(
        "--horizon_length",
        type=int,
        default=1,
        help="Length of future to optimize over",
    )
    parser.add_argument(
        "--window_length",
        type=int,
        default=0,
        help="Length of past which is being optimized; "
             "0 corresponds to infinite window length",
    )
    parser.add_argument("--decay", action="store_true",
                        help="whether to decay or not")
    parser.add_argument("--gamma", type=float, default=1.5)
    parser.add_argument("--colorama", action="store_true", help="colors keywords")
Julien Chaumond's avatar
Julien Chaumond committed
768
769
770

    args = parser.parse_args()

771
    # set Random seed
Julien Chaumond's avatar
Julien Chaumond committed
772
773
774
    torch.manual_seed(args.seed)
    np.random.seed(args.seed)

775
776
    # set the device
    device = "cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu"
Julien Chaumond's avatar
Julien Chaumond committed
777

778
    # load pretrained model
Julien Chaumond's avatar
Julien Chaumond committed
779
780
781
782
783
784
785
    model = GPT2LMHeadModel.from_pretrained(
        args.model_path,
        output_hidden_states=True
    )
    model.to(device)
    model.eval()

Piero Molino's avatar
Piero Molino committed
786
    # Freeze GPT-2 weights
Julien Chaumond's avatar
Julien Chaumond committed
787
788
789
    for param in model.parameters():
        param.requires_grad = False

790
    # figure out conditioning text
Julien Chaumond's avatar
Julien Chaumond committed
791
    if args.uncond:
792
793
794
        tokenized_cond_text = TOKENIZER.encode(
            [TOKENIZER.bos_token]
        )
Julien Chaumond's avatar
Julien Chaumond committed
795
796
797
    else:
        raw_text = args.cond_text
        while not raw_text:
798
            print("Did you forget to add `--cond_text`? ")
Julien Chaumond's avatar
Julien Chaumond committed
799
            raw_text = input("Model prompt >>> ")
800
        tokenized_cond_text = TOKENIZER.encode(TOKENIZER.bos_token + raw_text)
Piero Molino's avatar
Piero Molino committed
801

802
803
804
    print("= Prefix of sentence =")
    print(TOKENIZER.decode(tokenized_cond_text))
    print()
Piero Molino's avatar
Piero Molino committed
805

806
    # generate unperturbed and perturbed texts
Piero Molino's avatar
Piero Molino committed
807

808
809
810
811
812
813
814
815
    # full_text_generation returns:
    # unpert_gen_tok_text, pert_gen_tok_texts, discrim_losses, losses_in_time
    unpert_gen_tok_text, pert_gen_tok_texts, _, _ = full_text_generation(
        model=model, context=tokenized_cond_text, device=device, **vars(args)
    )

    # untokenize unperturbed text
    unpert_gen_text = TOKENIZER.decode(unpert_gen_tok_text.tolist()[0])
Piero Molino's avatar
Piero Molino committed
816

817
818
819
820
    print("=" * 80)
    print("= Unperturbed generated text =")
    print(unpert_gen_text)
    print()
Piero Molino's avatar
Piero Molino committed
821

822
823
824
825
826
827
828
829
830
831
832
833
    generated_texts = []

    bow_words = set()
    bow_indices = get_bag_of_words_indices(args.bag_of_words.split(";"))
    for bow_list in bow_indices:
        filtered = list(filter(lambda x: len(x) <= 1, bow_list))
        bow_words.update(w[0] for w in filtered)

    # iterate through the perturbed texts
    for i, pert_gen_tok_text in enumerate(pert_gen_tok_texts):
        try:
            # untokenize unperturbed text
Piero Molino's avatar
Piero Molino committed
834
835
836
            if args.colorama:
                import colorama

837
838
839
840
841
842
843
844
                pert_gen_text = ''
                for word_id in pert_gen_tok_text.tolist()[0]:
                    if word_id in bow_words:
                        pert_gen_text += '{}{}{}'.format(
                            colorama.Fore.RED,
                            TOKENIZER.decode([word_id]),
                            colorama.Style.RESET_ALL
                        )
Piero Molino's avatar
Piero Molino committed
845
                    else:
846
                        pert_gen_text += TOKENIZER.decode([word_id])
Piero Molino's avatar
Piero Molino committed
847
            else:
848
                pert_gen_text = TOKENIZER.decode(pert_gen_tok_text.tolist()[0])
Julien Chaumond's avatar
Julien Chaumond committed
849

850
851
852
853
854
            print("= Perturbed generated text {} =".format(i + 1))
            print(pert_gen_text)
            print()
        except:
            pass
Julien Chaumond's avatar
Julien Chaumond committed
855

856
857
858
859
        # keep the prefix, perturbed seq, original seq for each index
        generated_texts.append(
            (tokenized_cond_text, pert_gen_tok_text, unpert_gen_tok_text)
        )
Julien Chaumond's avatar
Julien Chaumond committed
860

Piero Molino's avatar
Piero Molino committed
861
    return
Julien Chaumond's avatar
Julien Chaumond committed
862
863


Piero Molino's avatar
Piero Molino committed
864
if __name__ == '__main__':
Julien Chaumond's avatar
Julien Chaumond committed
865
    run_model()