test_trainer.py 39 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import dataclasses
17
18
import os
import tempfile
Julien Chaumond's avatar
Julien Chaumond committed
19
20
import unittest

Sylvain Gugger's avatar
Sylvain Gugger committed
21
22
import numpy as np

23
from transformers import AutoTokenizer, EvaluationStrategy, PretrainedConfig, TrainingArguments, is_torch_available
24
from transformers.file_utils import WEIGHTS_NAME
25
26
from transformers.testing_utils import (
    get_tests_dir,
27
    require_datasets,
28
29
30
31
32
33
34
    require_optuna,
    require_sentencepiece,
    require_tokenizers,
    require_torch,
    slow,
)
from transformers.utils.hp_naming import TrialShortNamer
Julien Chaumond's avatar
Julien Chaumond committed
35
36
37
38


if is_torch_available():
    import torch
39
40
    from torch.utils.data import IterableDataset

Julien Chaumond's avatar
Julien Chaumond committed
41
    from transformers import (
42
        AutoModelForMaskedLM,
Julien Chaumond's avatar
Julien Chaumond committed
43
        AutoModelForSequenceClassification,
44
        DataCollatorForLanguageModeling,
45
        EarlyStoppingCallback,
Julien Chaumond's avatar
Julien Chaumond committed
46
47
        GlueDataset,
        GlueDataTrainingArguments,
48
49
        GPT2Config,
        GPT2LMHeadModel,
50
        LineByLineTextDataset,
51
        PreTrainedModel,
52
        TextDataset,
53
        Trainer,
54
        TrainerState,
Julien Chaumond's avatar
Julien Chaumond committed
55
    )
56
    from transformers.trainer import _model_unwrap
Julien Chaumond's avatar
Julien Chaumond committed
57
58


59
PATH_SAMPLE_TEXT = f"{get_tests_dir()}/fixtures/sample_text.txt"
Julien Chaumond's avatar
Julien Chaumond committed
60
61


Sylvain Gugger's avatar
Sylvain Gugger committed
62
class RegressionDataset:
Sylvain Gugger's avatar
Sylvain Gugger committed
63
    def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
Sylvain Gugger's avatar
Sylvain Gugger committed
64
        np.random.seed(seed)
Sylvain Gugger's avatar
Sylvain Gugger committed
65
        self.label_names = ["labels"] if label_names is None else label_names
Sylvain Gugger's avatar
Sylvain Gugger committed
66
67
        self.length = length
        self.x = np.random.normal(size=(length,)).astype(np.float32)
Sylvain Gugger's avatar
Sylvain Gugger committed
68
69
        self.ys = [a * self.x + b + np.random.normal(scale=0.1, size=(length,)) for _ in self.label_names]
        self.ys = [y.astype(np.float32) for y in self.ys]
Julien Chaumond's avatar
Julien Chaumond committed
70

Sylvain Gugger's avatar
Sylvain Gugger committed
71
72
73
74
    def __len__(self):
        return self.length

    def __getitem__(self, i):
Sylvain Gugger's avatar
Sylvain Gugger committed
75
76
77
        result = {name: y[i] for name, y in zip(self.label_names, self.ys)}
        result["input_x"] = self.x[i]
        return result
Sylvain Gugger's avatar
Sylvain Gugger committed
78
79


80
81
82
83
84
85
86
87
88
89
90
91
class RepeatDataset:
    def __init__(self, x, length=64):
        self.x = x
        self.length = length

    def __len__(self):
        return self.length

    def __getitem__(self, i):
        return {"input_ids": self.x, "labels": self.x}


92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
class DynamicShapesDataset:
    def __init__(self, length=64, seed=42, batch_size=8):
        self.length = length
        np.random.seed(seed)
        sizes = np.random.randint(1, 20, (length // batch_size,))
        # For easy batching, we make every batch_size consecutive samples the same size.
        self.xs = [np.random.normal(size=(s,)) for s in sizes.repeat(batch_size)]
        self.ys = [np.random.normal(size=(s,)) for s in sizes.repeat(batch_size)]

    def __len__(self):
        return self.length

    def __getitem__(self, i):
        return {"input_x": self.xs[i], "labels": self.ys[i]}


Sylvain Gugger's avatar
Sylvain Gugger committed
108
109
110
111
112
113
114
115
class AlmostAccuracy:
    def __init__(self, thresh=0.25):
        self.thresh = thresh

    def __call__(self, eval_pred):
        predictions, labels = eval_pred
        true = np.abs(predictions - labels) <= self.thresh
        return {"accuracy": true.astype(np.float32).mean().item()}
116

Julien Chaumond's avatar
Julien Chaumond committed
117

118
119
120
121
122
123
124
125
class RegressionModelConfig(PretrainedConfig):
    def __init__(self, a=0, b=0, double_output=False, **kwargs):
        super().__init__(**kwargs)
        self.a = a
        self.b = b
        self.double_output = double_output


126
127
128
if is_torch_available():

    class SampleIterableDataset(IterableDataset):
129
130
131
        """
        Criteria is not whether it is IterableDataset or not, criteria is whether __len__ is implemented
        """
132

133
134
        def __init__(self, file_path, tokenizer):
            self.ds = TextDataset(file_path=file_path, tokenizer=tokenizer, block_size=64)
135
136

        def __iter__(self):
137
138
            for i in range(len(self.ds)):
                yield self.ds[i]
139

Sylvain Gugger's avatar
Sylvain Gugger committed
140
    class RegressionModel(torch.nn.Module):
141
        def __init__(self, a=0, b=0, double_output=False):
Sylvain Gugger's avatar
Sylvain Gugger committed
142
143
144
            super().__init__()
            self.a = torch.nn.Parameter(torch.tensor(a).float())
            self.b = torch.nn.Parameter(torch.tensor(b).float())
145
146
            self.double_output = double_output
            self.config = None
Sylvain Gugger's avatar
Sylvain Gugger committed
147

Sylvain Gugger's avatar
Sylvain Gugger committed
148
        def forward(self, input_x=None, labels=None, **kwargs):
Sylvain Gugger's avatar
Sylvain Gugger committed
149
150
            y = input_x * self.a + self.b
            if labels is None:
151
                return (y, y) if self.double_output else (y,)
Sylvain Gugger's avatar
Sylvain Gugger committed
152
            loss = torch.nn.functional.mse_loss(y, labels)
153
            return (loss, y, y) if self.double_output else (loss, y)
Sylvain Gugger's avatar
Sylvain Gugger committed
154

155
156
157
158
159
160
161
162
163
164
165
166
167
168
    class RegressionDictModel(torch.nn.Module):
        def __init__(self, a=0, b=0):
            super().__init__()
            self.a = torch.nn.Parameter(torch.tensor(a).float())
            self.b = torch.nn.Parameter(torch.tensor(b).float())
            self.config = None

        def forward(self, input_x=None, labels=None, **kwargs):
            y = input_x * self.a + self.b
            result = {"output": y}
            if labels is not None:
                result["loss"] = torch.nn.functional.mse_loss(y, labels)
            return result

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
    class RegressionPreTrainedModel(PreTrainedModel):
        config_class = RegressionModelConfig
        base_model_prefix = "regression"

        def __init__(self, config):
            super().__init__(config)
            self.a = torch.nn.Parameter(torch.tensor(config.a).float())
            self.b = torch.nn.Parameter(torch.tensor(config.b).float())
            self.double_output = config.double_output

        def forward(self, input_x=None, labels=None, **kwargs):
            y = input_x * self.a + self.b
            if labels is None:
                return (y, y) if self.double_output else (y,)
            loss = torch.nn.functional.mse_loss(y, labels)
            return (loss, y, y) if self.double_output else (loss, y)

186
    def get_regression_trainer(a=0, b=0, double_output=False, train_len=64, eval_len=64, pretrained=True, **kwargs):
Sylvain Gugger's avatar
Sylvain Gugger committed
187
188
189
        label_names = kwargs.get("label_names", None)
        train_dataset = RegressionDataset(length=train_len, label_names=label_names)
        eval_dataset = RegressionDataset(length=eval_len, label_names=label_names)
190
191
192
193
194
        if pretrained:
            config = RegressionModelConfig(a=a, b=b, double_output=double_output)
            model = RegressionPreTrainedModel(config)
        else:
            model = RegressionModel(a=a, b=b, double_output=double_output)
Sylvain Gugger's avatar
Sylvain Gugger committed
195
196
197
        compute_metrics = kwargs.pop("compute_metrics", None)
        data_collator = kwargs.pop("data_collator", None)
        optimizers = kwargs.pop("optimizers", (None, None))
198
        output_dir = kwargs.pop("output_dir", "./regression")
199
        model_init = kwargs.pop("model_init", None)
200
        args = TrainingArguments(output_dir, **kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
201
202
203
204
205
206
207
208
        return Trainer(
            model,
            args,
            data_collator=data_collator,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
            compute_metrics=compute_metrics,
            optimizers=optimizers,
209
            model_init=model_init,
Sylvain Gugger's avatar
Sylvain Gugger committed
210
211
        )

212

Julien Chaumond's avatar
Julien Chaumond committed
213
@require_torch
214
215
@require_sentencepiece
@require_tokenizers
Julien Chaumond's avatar
Julien Chaumond committed
216
class TrainerIntegrationTest(unittest.TestCase):
Sylvain Gugger's avatar
Sylvain Gugger committed
217
218
219
    def setUp(self):
        args = TrainingArguments(".")
        self.n_epochs = args.num_train_epochs
220
221
222
223
224
225
226
227
228
229
230
231
232
233
        self.batch_size = args.train_batch_size
        trainer = get_regression_trainer(learning_rate=0.1)
        trainer.train()
        self.default_trained_model = (trainer.model.a, trainer.model.b)

        trainer = get_regression_trainer(learning_rate=0.1, seed=314)
        trainer.train()
        self.alternate_trained_model = (trainer.model.a, trainer.model.b)

    def check_trained_model(self, model, alternate_seed=False):
        # Checks a training seeded with learning_rate = 0.1
        (a, b) = self.alternate_trained_model if alternate_seed else self.default_trained_model
        self.assertTrue(torch.allclose(model.a, a))
        self.assertTrue(torch.allclose(model.b, b))
Sylvain Gugger's avatar
Sylvain Gugger committed
234

235
    def check_saved_checkpoints(self, output_dir, freq, total, is_pretrained=True):
236
        file_list = [WEIGHTS_NAME, "training_args.bin", "optimizer.pt", "scheduler.pt", "trainer_state.json"]
237
238
239
240
241
242
243
244
245
246
247
248
        if is_pretrained:
            file_list.append("config.json")
        for step in range(freq, total, freq):
            checkpoint = os.path.join(output_dir, f"checkpoint-{step}")
            self.assertTrue(os.path.isdir(checkpoint))
            for filename in file_list:
                self.assertTrue(os.path.isfile(os.path.join(checkpoint, filename)))

    def check_best_model_has_been_loaded(
        self, output_dir, freq, total, trainer, metric, greater_is_better=False, is_pretrained=True
    ):
        checkpoint = os.path.join(output_dir, f"checkpoint-{(total // freq) * freq}")
249
        log_history = TrainerState.load_from_json(os.path.join(checkpoint, "trainer_state.json")).log_history
250
251
252
253
254
255
256
257
258
259
260
261

        values = [d[metric] for d in log_history]
        best_value = max(values) if greater_is_better else min(values)
        best_checkpoint = (values.index(best_value) + 1) * freq
        checkpoint = os.path.join(output_dir, f"checkpoint-{best_checkpoint}")
        if is_pretrained:
            best_model = RegressionPreTrainedModel.from_pretrained(checkpoint)
            best_model.to(trainer.args.device)
        else:
            best_model = RegressionModel()
            state_dict = torch.load(os.path.join(checkpoint, WEIGHTS_NAME))
            best_model.load_state_dict(state_dict)
262
            best_model.to(trainer.args.device)
263
264
265
266
267
268
        self.assertTrue(torch.allclose(best_model.a, trainer.model.a))
        self.assertTrue(torch.allclose(best_model.b, trainer.model.b))

        metrics = trainer.evaluate()
        self.assertEqual(metrics[metric], best_value)

269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
    def check_trainer_state_are_the_same(self, trainer_state, trainer_state1):
        # We'll pop things so operate on copies.
        state = trainer_state.copy()
        state1 = trainer_state1.copy()
        # Log history main contain different logs for the time metrics (after resuming a training).
        log_history = state.pop("log_history", None)
        log_history1 = state1.pop("log_history", None)
        self.assertEqual(state, state1)
        for log, log1 in zip(log_history, log_history1):
            _ = log.pop("train_runtime", None)
            _ = log1.pop("train_runtime", None)
            _ = log.pop("train_samples_per_second", None)
            _ = log1.pop("train_samples_per_second", None)
            self.assertEqual(log, log1)

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
    def test_trainer_works_with_dict(self):
        # Edge case because Apex with mode O2 will change our models to return dicts. This test checks it doesn't break
        # anything.
        train_dataset = RegressionDataset()
        eval_dataset = RegressionDataset()
        model = RegressionDictModel()
        args = TrainingArguments("./regression")
        trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)
        trainer.train()
        _ = trainer.evaluate()
        _ = trainer.predict(eval_dataset)

    def test_evaluation_with_keys_to_drop(self):
        config = GPT2Config(vocab_size=100, n_positions=128, n_ctx=128, n_embd=32, n_layer=3, n_head=4)
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        eval_dataset = RepeatDataset(x)
        args = TrainingArguments("./test")
        trainer = Trainer(tiny_gpt2, args, eval_dataset=eval_dataset)
        # By default the past_key_values are removed
        result = trainer.predict(eval_dataset)
        self.assertTrue(isinstance(result.predictions, np.ndarray))
        # We can still get them by setting ignore_keys to []
        result = trainer.predict(eval_dataset, ignore_keys=[])
        self.assertTrue(isinstance(result.predictions, tuple))
        self.assertEqual(len(result.predictions), 2)

311
312
313
314
    def test_training_arguments_are_left_untouched(self):
        trainer = get_regression_trainer()
        trainer.train()
        args = TrainingArguments("./regression")
315
316
        dict1, dict2 = args.to_dict(), trainer.args.to_dict()
        for key in dict1.keys():
317
            # Logging dir can be slightly different as they default to something with the time.
Sylvain Gugger's avatar
Sylvain Gugger committed
318
            if key != "logging_dir":
319
                self.assertEqual(dict1[key], dict2[key])
320

Sylvain Gugger's avatar
Sylvain Gugger committed
321
322
323
324
    def test_reproducible_training(self):
        # Checks that training worked, model trained and seed made a reproducible training.
        trainer = get_regression_trainer(learning_rate=0.1)
        trainer.train()
Sylvain Gugger's avatar
Sylvain Gugger committed
325
        self.check_trained_model(trainer.model)
Sylvain Gugger's avatar
Sylvain Gugger committed
326
327
328
329

        # Checks that a different seed gets different (reproducible) results.
        trainer = get_regression_trainer(learning_rate=0.1, seed=314)
        trainer.train()
Sylvain Gugger's avatar
Sylvain Gugger committed
330
        self.check_trained_model(trainer.model, alternate_seed=True)
Sylvain Gugger's avatar
Sylvain Gugger committed
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

    def test_number_of_steps_in_training(self):
        # Regular training has n_epochs * len(train_dl) steps
        trainer = get_regression_trainer(learning_rate=0.1)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, self.n_epochs * 64 / self.batch_size)

        # Check passing num_train_epochs works (and a float version too):
        trainer = get_regression_trainer(learning_rate=0.1, num_train_epochs=1.5)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, int(1.5 * 64 / self.batch_size))

        # If we pass a max_steps, num_train_epochs is ignored
        trainer = get_regression_trainer(learning_rate=0.1, max_steps=10)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, 10)

    def test_train_and_eval_dataloaders(self):
349
        n_gpu = max(1, torch.cuda.device_count())
Sylvain Gugger's avatar
Sylvain Gugger committed
350
        trainer = get_regression_trainer(learning_rate=0.1, per_device_train_batch_size=16)
351
        self.assertEqual(trainer.get_train_dataloader().batch_size, 16 * n_gpu)
Sylvain Gugger's avatar
Sylvain Gugger committed
352
        trainer = get_regression_trainer(learning_rate=0.1, per_device_eval_batch_size=16)
353
        self.assertEqual(trainer.get_eval_dataloader().batch_size, 16 * n_gpu)
Sylvain Gugger's avatar
Sylvain Gugger committed
354
355
356
357
358

        # Check drop_last works
        trainer = get_regression_trainer(
            train_len=66, eval_len=74, learning_rate=0.1, per_device_train_batch_size=16, per_device_eval_batch_size=32
        )
359
360
        self.assertEqual(len(trainer.get_train_dataloader()), 66 // (16 * n_gpu) + 1)
        self.assertEqual(len(trainer.get_eval_dataloader()), 74 // (32 * n_gpu) + 1)
Sylvain Gugger's avatar
Sylvain Gugger committed
361
362
363
364
365
366
367
368
369

        trainer = get_regression_trainer(
            train_len=66,
            eval_len=74,
            learning_rate=0.1,
            per_device_train_batch_size=16,
            per_device_eval_batch_size=32,
            dataloader_drop_last=True,
        )
370
371
        self.assertEqual(len(trainer.get_train_dataloader()), 66 // (16 * n_gpu))
        self.assertEqual(len(trainer.get_eval_dataloader()), 74 // (32 * n_gpu))
Sylvain Gugger's avatar
Sylvain Gugger committed
372

373
        # Check passing a new dataset for evaluation works
Sylvain Gugger's avatar
Sylvain Gugger committed
374
        new_eval_dataset = RegressionDataset(length=128)
375
        self.assertEqual(len(trainer.get_eval_dataloader(new_eval_dataset)), 128 // (32 * n_gpu))
Sylvain Gugger's avatar
Sylvain Gugger committed
376
377
378
379
380

    def test_evaluate(self):
        trainer = get_regression_trainer(a=1.5, b=2.5, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()

Sylvain Gugger's avatar
Sylvain Gugger committed
381
        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
Sylvain Gugger's avatar
Sylvain Gugger committed
382
383
384
385
386
387
388
389
390
391
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()

Sylvain Gugger's avatar
Sylvain Gugger committed
392
        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
Sylvain Gugger's avatar
Sylvain Gugger committed
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

    def test_predict(self):
        trainer = get_regression_trainer(a=1.5, b=2.5)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

411
412
413
414
415
416
417
418
        # With more than one output of the model
        trainer = get_regression_trainer(a=1.5, b=2.5, double_output=True)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(len(preds), 2)
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))

Sylvain Gugger's avatar
Sylvain Gugger committed
419
420
421
422
423
424
425
426
427
428
429
430
        # With more than one output/label of the model
        trainer = get_regression_trainer(a=1.5, b=2.5, double_output=True, label_names=["labels", "labels_2"])
        outputs = trainer.predict(trainer.eval_dataset)
        preds = outputs.predictions
        labels = outputs.label_ids
        x = trainer.eval_dataset.x
        self.assertTrue(len(preds), 2)
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))
        self.assertTrue(np.array_equal(labels[0], trainer.eval_dataset.ys[0]))
        self.assertTrue(np.array_equal(labels[1], trainer.eval_dataset.ys[1]))

431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
    def test_dynamic_shapes(self):
        eval_dataset = DynamicShapesDataset(batch_size=self.batch_size)
        model = RegressionModel(a=2, b=1)
        args = TrainingArguments("./regression")
        trainer = Trainer(model, args, eval_dataset=eval_dataset)

        # Check evaluation can run to completion
        _ = trainer.evaluate()

        # Check predictions
        preds = trainer.predict(eval_dataset)
        for expected, seen in zip(eval_dataset.ys, preds.label_ids):
            self.assertTrue(np.array_equal(expected, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

        for expected, seen in zip(eval_dataset.xs, preds.predictions):
            self.assertTrue(np.array_equal(2 * expected + 1, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

        # Same tests with eval accumulation
        args = TrainingArguments("./regression", eval_accumulation_steps=2)
        trainer = Trainer(model, args, eval_dataset=eval_dataset)

        # Check evaluation can run to completion
        _ = trainer.evaluate()

        # Check predictions
        preds = trainer.predict(eval_dataset)
        for expected, seen in zip(eval_dataset.ys, preds.label_ids):
            self.assertTrue(np.array_equal(expected, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

        for expected, seen in zip(eval_dataset.xs, preds.predictions):
            self.assertTrue(np.array_equal(2 * expected + 1, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

467
    @require_datasets
468
    def test_trainer_with_datasets(self):
469
470
        import datasets

Sylvain Gugger's avatar
Sylvain Gugger committed
471
472
473
        np.random.seed(42)
        x = np.random.normal(size=(64,)).astype(np.float32)
        y = 2.0 * x + 3.0 + np.random.normal(scale=0.1, size=(64,))
474
        train_dataset = datasets.Dataset.from_dict({"input_x": x, "label": y})
Sylvain Gugger's avatar
Sylvain Gugger committed
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491

        # Base training. Should have the same results as test_reproducible_training
        model = RegressionModel()
        args = TrainingArguments("./regression", learning_rate=0.1)
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Can return tensors.
        train_dataset.set_format(type="torch")
        model = RegressionModel()
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Adding one column not used by the model should have no impact
        z = np.random.normal(size=(64,)).astype(np.float32)
492
        train_dataset = datasets.Dataset.from_dict({"input_x": x, "label": y, "extra": z})
Sylvain Gugger's avatar
Sylvain Gugger committed
493
494
495
496
497
498
499
500
501
502
503
504
505
506
        model = RegressionModel()
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

    def test_custom_optimizer(self):
        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression")
        model = RegressionModel()
        optimizer = torch.optim.SGD(model.parameters(), lr=1.0)
        lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda x: 1.0)
        trainer = Trainer(model, args, train_dataset=train_dataset, optimizers=(optimizer, lr_scheduler))
        trainer.train()

507
508
509
        (a, b) = self.default_trained_model
        self.assertFalse(torch.allclose(trainer.model.a, a))
        self.assertFalse(torch.allclose(trainer.model.b, b))
Sylvain Gugger's avatar
Sylvain Gugger committed
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
        self.assertEqual(trainer.optimizer.state_dict()["param_groups"][0]["lr"], 1.0)

    def test_model_init(self):
        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression", learning_rate=0.1)
        trainer = Trainer(args=args, train_dataset=train_dataset, model_init=lambda: RegressionModel())
        trainer.train()
        self.check_trained_model(trainer.model)

        # Re-training should restart from scratch, thus lead the same results.
        trainer.train()
        self.check_trained_model(trainer.model)

        # Re-training should restart from scratch, thus lead the same results and new seed should be used.
        trainer.args.seed = 314
        trainer.train()
        self.check_trained_model(trainer.model, alternate_seed=True)

528
529
530
531
532
533
534
535
    def test_save_checkpoints(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(output_dir=tmpdir, save_steps=5)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, int(self.n_epochs * 64 / self.batch_size))

        # With a regular model that is not a PreTrainedModel
        with tempfile.TemporaryDirectory() as tmpdir:
536
            trainer = get_regression_trainer(output_dir=tmpdir, save_steps=5, pretrained=False)
537
538
539
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, int(self.n_epochs * 64 / self.batch_size), False)

540
541
542
543
544
545
546
547
    def test_gradient_accumulation(self):
        # Training with half the batch size but accumulation steps as 2 should give the same results.
        trainer = get_regression_trainer(
            gradient_accumulation_steps=2, per_device_train_batch_size=4, learning_rate=0.1
        )
        trainer.train()
        self.check_trained_model(trainer.model)

548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
    def test_can_resume_training(self):
        if torch.cuda.device_count() > 2:
            # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
            # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
            # won't be the same since the training dataloader is shuffled).
            return
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

            # Reinitialize trainer and load model
            model = RegressionPreTrainedModel.from_pretrained(checkpoint)
            trainer = Trainer(model, trainer.args, train_dataset=trainer.train_dataset)

            trainer.train(model_path=checkpoint)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
571
            self.check_trainer_state_are_the_same(state, state1)
572

573
574
575
576
577
578
579
580
581
582
583
584
            # Now check with a later checkpoint that it also works when we span over one epoch
            checkpoint = os.path.join(tmpdir, "checkpoint-15")

            # Reinitialize trainer and load model
            model = RegressionPreTrainedModel.from_pretrained(checkpoint)
            trainer = Trainer(model, trainer.args, train_dataset=trainer.train_dataset)

            trainer.train(model_path=checkpoint)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
585
            self.check_trainer_state_are_the_same(state, state1)
586

587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
        # With a regular model that is not a PreTrainedModel
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1, pretrained=False
            )
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

            # Reinitialize trainer and load model
            model = RegressionModel()
            state_dict = torch.load(os.path.join(checkpoint, WEIGHTS_NAME))
            model.load_state_dict(state_dict)
            trainer = Trainer(model, trainer.args, train_dataset=trainer.train_dataset)

            trainer.train(model_path=checkpoint)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
609
            self.check_trainer_state_are_the_same(state, state1)
610

611
612
613
614
615
616
617
618
619
620
621
622
623
624
            # Now check with a later checkpoint that it also works when we span over one epoch
            checkpoint = os.path.join(tmpdir, "checkpoint-15")

            # Reinitialize trainer and load model
            model = RegressionModel()
            state_dict = torch.load(os.path.join(checkpoint, WEIGHTS_NAME))
            model.load_state_dict(state_dict)
            trainer = Trainer(model, trainer.args, train_dataset=trainer.train_dataset)

            trainer.train(model_path=checkpoint)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
625
            self.check_trainer_state_are_the_same(state, state1)
626

627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
    def test_resume_training_with_gradient_accumulation(self):
        if torch.cuda.device_count() > 2:
            # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
            # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
            # won't be the same since the training dataloader is shuffled).
            return
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                gradient_accumulation_steps=2,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

            # Reinitialize trainer and load model
            model = RegressionPreTrainedModel.from_pretrained(checkpoint)
            trainer = Trainer(model, trainer.args, train_dataset=trainer.train_dataset)

            trainer.train(model_path=checkpoint)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
657
            self.check_trainer_state_are_the_same(state, state1)
658

659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
    def test_load_best_model_at_end(self):
        total = int(self.n_epochs * 64 / self.batch_size)
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                output_dir=tmpdir,
                learning_rate=0.1,
                eval_steps=5,
                evaluation_strategy="steps",
                load_best_model_at_end=True,
            )
            self.assertFalse(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, total)
            self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_loss")

        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                output_dir=tmpdir,
                learning_rate=0.1,
                eval_steps=5,
                evaluation_strategy="steps",
                load_best_model_at_end=True,
                metric_for_best_model="accuracy",
                compute_metrics=AlmostAccuracy(),
            )
            self.assertTrue(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, total)
            self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_accuracy", greater_is_better=True)

        # Save is done every eval regardless of the strategy
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                output_dir=tmpdir,
                learning_rate=0.1,
                evaluation_strategy="epoch",
                load_best_model_at_end=True,
                metric_for_best_model="accuracy",
                compute_metrics=AlmostAccuracy(),
            )
            self.assertTrue(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 64 // self.batch_size, total)
            self.check_best_model_has_been_loaded(
                tmpdir, 64 // self.batch_size, total, trainer, "eval_accuracy", greater_is_better=True
            )

        # Test this works with a non PreTrainedModel
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                learning_rate=0.1,
                eval_steps=5,
                evaluation_strategy="steps",
                load_best_model_at_end=True,
720
                pretrained=False,
721
722
723
724
725
726
            )
            self.assertFalse(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, total, is_pretrained=False)
            self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_loss", is_pretrained=False)

727
    @slow
Julien Chaumond's avatar
Julien Chaumond committed
728
729
730
731
732
    def test_trainer_eval_mrpc(self):
        MODEL_ID = "bert-base-cased-finetuned-mrpc"
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        model = AutoModelForSequenceClassification.from_pretrained(MODEL_ID)
        data_args = GlueDataTrainingArguments(
733
            task_name="mrpc", data_dir=f"{get_tests_dir()}/fixtures/tests_samples/MRPC", overwrite_cache=True
Julien Chaumond's avatar
Julien Chaumond committed
734
        )
735
        eval_dataset = GlueDataset(data_args, tokenizer=tokenizer, mode="dev")
Julien Chaumond's avatar
Julien Chaumond committed
736
737
738
739

        training_args = TrainingArguments(output_dir="./examples", no_cuda=True)
        trainer = Trainer(model=model, args=training_args, eval_dataset=eval_dataset)
        result = trainer.evaluate()
740
        self.assertLess(result["eval_loss"], 0.2)
Julien Chaumond's avatar
Julien Chaumond committed
741

742
    @slow
Julien Chaumond's avatar
Julien Chaumond committed
743
744
745
746
    def test_trainer_eval_lm(self):
        MODEL_ID = "distilroberta-base"
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        dataset = LineByLineTextDataset(
Lysandre's avatar
Lysandre committed
747
748
749
            tokenizer=tokenizer,
            file_path=PATH_SAMPLE_TEXT,
            block_size=tokenizer.max_len_single_sentence,
Julien Chaumond's avatar
Julien Chaumond committed
750
751
        )
        self.assertEqual(len(dataset), 31)
752
753

    def test_trainer_iterable_dataset(self):
754
755
756
        # Simulate Language Modeling with an IterableDataset, with no __len__ method
        # Pick-up a tiny model, so it works on CPU
        # See Issue #5990: https://github.com/huggingface/transformers/issues/5990
757
        MODEL_ID = "sshleifer/tiny-distilbert-base-cased"
758
759
760
761
762
763
764
765
766
767
        model = AutoModelForMaskedLM.from_pretrained(MODEL_ID)
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        train_dataset = SampleIterableDataset(file_path=PATH_SAMPLE_TEXT, tokenizer=tokenizer)
        training_args = TrainingArguments(output_dir="./examples", no_cuda=True, max_steps=2)
        data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=True, mlm_probability=0.15)

        training_args = TrainingArguments(output_dir="./examples", no_cuda=True, max_steps=2)
        trainer = Trainer(model=model, args=training_args, train_dataset=train_dataset, data_collator=data_collator)
        trainer.train()

768
769
        loader = trainer.get_train_dataloader()
        self.assertIsInstance(loader, torch.utils.data.DataLoader)
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
        self.assertIsInstance(loader.sampler, torch.utils.data.dataloader._InfiniteConstantSampler)

        # Exception if giving iterable dataset and no max_steps
        with self.assertRaises(ValueError):
            training_args = TrainingArguments(output_dir="./examples", no_cuda=True)
            _ = Trainer(model=model, args=training_args, train_dataset=train_dataset, data_collator=data_collator)

        # Exception if eval_dataset is iterable in __init__
        with self.assertRaises(ValueError):
            training_args = TrainingArguments(output_dir="./examples", no_cuda=True, max_steps=2)
            _ = Trainer(
                model=model,
                args=training_args,
                train_dataset=train_dataset,
                eval_dataset=train_dataset,
                data_collator=data_collator,
            )

        # Exception if predicting with iterable dataset
        with self.assertRaises(ValueError):
            training_args = TrainingArguments(output_dir="./examples", no_cuda=True)
            trainer = Trainer(model=model, args=training_args, data_collator=data_collator)
            trainer.predict(train_dataset)

        # Exception if evaluating with iterable dataset
        with self.assertRaises(ValueError):
            training_args = TrainingArguments(output_dir="./examples", no_cuda=True)
            trainer = Trainer(model=model, args=training_args, data_collator=data_collator)
            trainer.evaluate(train_dataset)
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813

    def test_num_train_epochs_in_training(self):
        # len(train_dl) < gradient_accumulation_steps shouldn't give ``ZeroDivisionError`` when ``max_steps`` is given.
        # It should give 1 update step for each epoch.
        trainer = get_regression_trainer(
            max_steps=3, train_len=64, per_device_train_batch_size=16, gradient_accumulation_steps=5
        )
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, 3)

        # Even ``max_steps`` is not specified, we still expect 1 update step for each epoch if
        # len(train_dl) < gradient_accumulation_steps.
        trainer = get_regression_trainer(train_len=64, per_device_train_batch_size=16, gradient_accumulation_steps=5)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, int(self.n_epochs))
Marcin Zab艂ocki's avatar
Marcin Zab艂ocki committed
814

815
816
    def test_early_stopping_callback(self):
        # early stopping stops training before num_training_epochs
817
818
819
820
821
822
823
824
825
826
827
828
829
830
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                num_train_epochs=20,
                gradient_accumulation_steps=1,
                per_device_train_batch_size=16,
                load_best_model_at_end=True,
                evaluation_strategy=EvaluationStrategy.EPOCH,
                compute_metrics=AlmostAccuracy(),
                metric_for_best_model="accuracy",
            )
            trainer.add_callback(EarlyStoppingCallback(1, 0.0001))
            train_output = trainer.train()
            self.assertLess(train_output.global_step, 20 * 64 / 16)
831
832

        # Invalid inputs to trainer with early stopping callback result in assertion error
833
834
835
836
837
838
839
840
841
842
843
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                num_train_epochs=20,
                gradient_accumulation_steps=1,
                per_device_train_batch_size=16,
                evaluation_strategy=EvaluationStrategy.EPOCH,
                compute_metrics=AlmostAccuracy(),
                metric_for_best_model="accuracy",
            )
            trainer.add_callback(EarlyStoppingCallback(1))
844
            self.assertEqual(trainer.state.global_step, 0)
845
846
847
848
            try:
                trainer.train()
            except AssertionError:
                self.assertEqual(trainer.state.global_step, 0)
849

Marcin Zab艂ocki's avatar
Marcin Zab艂ocki committed
850
851
852
853
    def test_flos_extraction(self):
        trainer = get_regression_trainer(learning_rate=0.1)

        def assert_flos_extraction(trainer, wrapped_model_to_check):
854
855
            self.assertEqual(trainer.model, _model_unwrap(wrapped_model_to_check))
            self.assertGreaterEqual(getattr(_model_unwrap(wrapped_model_to_check).config, "total_flos", 0), 0)
Marcin Zab艂ocki's avatar
Marcin Zab艂ocki committed
856
857
858
859
860
861

        # with plain model
        assert_flos_extraction(trainer, trainer.model)

        # with enforced DataParallel
        assert_flos_extraction(trainer, torch.nn.DataParallel(trainer.model))
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892


@require_torch
@require_optuna
class TrainerHyperParameterIntegrationTest(unittest.TestCase):
    def setUp(self):
        args = TrainingArguments(".")
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

    def test_hyperparameter_search(self):
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            return {}

        def model_init(trial):
            if trial is not None:
                a = trial.suggest_int("a", -4, 4)
                b = trial.suggest_int("b", -4, 4)
            else:
                a = 0
                b = 0
            config = RegressionModelConfig(a=a, b=b, double_output=False)

            return RegressionPreTrainedModel(config)

        def hp_name(trial):
            return MyTrialShortNamer.shortname(trial.params)

893
894
895
896
897
898
899
900
901
902
903
904
905
906
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
                evaluation_strategy=EvaluationStrategy.EPOCH,
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(direction="minimize", hp_space=hp_space, hp_name=hp_name, n_trials=4)