run_ner.py 25.2 KB
Newer Older
1
#!/usr/bin/env python
2
# coding=utf-8
3
# Copyright 2020 The HuggingFace Team All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
17
18
"""
Fine-tuning the library models for token classification.
"""
Sylvain Gugger's avatar
Sylvain Gugger committed
19
20
# You can also adapt this script on your own token classification task and datasets. Pointers for this are left as
# comments.
21

22
23
import logging
import os
24
import sys
Julien Chaumond's avatar
Julien Chaumond committed
25
from dataclasses import dataclass, field
26
from typing import Optional
27

28
import datasets
29
import numpy as np
30
from datasets import ClassLabel, load_dataset, load_metric
Aymeric Augustin's avatar
Aymeric Augustin committed
31

32
import transformers
Aymeric Augustin's avatar
Aymeric Augustin committed
33
from transformers import (
34
35
36
    AutoConfig,
    AutoModelForTokenClassification,
    AutoTokenizer,
37
    DataCollatorForTokenClassification,
Julien Chaumond's avatar
Julien Chaumond committed
38
    HfArgumentParser,
39
    PretrainedConfig,
40
    PreTrainedTokenizerFast,
Julien Chaumond's avatar
Julien Chaumond committed
41
42
43
    Trainer,
    TrainingArguments,
    set_seed,
Aymeric Augustin's avatar
Aymeric Augustin committed
44
)
45
from transformers.trainer_utils import get_last_checkpoint
46
from transformers.utils import check_min_version
47
from transformers.utils.versions import require_version
Aymeric Augustin's avatar
Aymeric Augustin committed
48
49


50
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Lysandre Debut's avatar
Lysandre Debut committed
51
check_min_version("4.19.0.dev0")
Sylvain Gugger's avatar
Sylvain Gugger committed
52

53
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt")
54

55
56
57
logger = logging.getLogger(__name__)


Julien Chaumond's avatar
Julien Chaumond committed
58
59
60
61
62
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """
63

Julien Chaumond's avatar
Julien Chaumond committed
64
65
    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
66
    )
Julien Chaumond's avatar
Julien Chaumond committed
67
68
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
69
    )
Julien Chaumond's avatar
Julien Chaumond committed
70
71
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
72
    )
Julien Chaumond's avatar
Julien Chaumond committed
73
    cache_dir: Optional[str] = field(
74
75
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
76
    )
77
78
79
80
81
82
83
84
85
86
87
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
            "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
            "with private models)."
        },
    )
88
89


Julien Chaumond's avatar
Julien Chaumond committed
90
91
92
93
94
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """
95

96
97
98
99
100
101
    task_name: Optional[str] = field(default="ner", metadata={"help": "The name of the task (ner, pos...)."})
    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
102
    )
103
104
105
106
    train_file: Optional[str] = field(
        default=None, metadata={"help": "The input training data file (a csv or JSON file)."}
    )
    validation_file: Optional[str] = field(
107
        default=None,
108
        metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."},
109
    )
110
111
112
    test_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input test data file to predict on (a csv or JSON file)."},
113
    )
114
115
116
117
118
119
    text_column_name: Optional[str] = field(
        default=None, metadata={"help": "The column name of text to input in the file (a csv or JSON file)."}
    )
    label_column_name: Optional[str] = field(
        default=None, metadata={"help": "The column name of label to input in the file (a csv or JSON file)."}
    )
Julien Chaumond's avatar
Julien Chaumond committed
120
121
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
122
    )
123
124
125
126
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
127
128
129
130
131
132
133
    max_seq_length: int = field(
        default=None,
        metadata={
            "help": "The maximum total input sequence length after tokenization. If set, sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
134
135
136
137
138
139
140
141
    pad_to_max_length: bool = field(
        default=False,
        metadata={
            "help": "Whether to pad all samples to model maximum sentence length. "
            "If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
            "efficient on GPU but very bad for TPU."
        },
    )
142
143
144
145
146
147
148
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        },
    )
149
    max_eval_samples: Optional[int] = field(
150
151
        default=None,
        metadata={
152
            "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
153
154
155
            "value if set."
        },
    )
156
    max_predict_samples: Optional[int] = field(
157
158
        default=None,
        metadata={
159
            "help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
160
161
162
            "value if set."
        },
    )
163
164
165
166
167
168
169
    label_all_tokens: bool = field(
        default=False,
        metadata={
            "help": "Whether to put the label for one word on all tokens of generated by that word or just on the "
            "one (in which case the other tokens will have a padding index)."
        },
    )
170
171
172
173
    return_entity_level_metrics: bool = field(
        default=False,
        metadata={"help": "Whether to return all the entity levels during evaluation or just the overall ones."},
    )
174
175
176
177
178
179
180
181
182
183
184
185

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
        self.task_name = self.task_name.lower()
186

Julien Chaumond's avatar
Julien Chaumond committed
187
188
189
190
191
192
193

def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
194
195
196
197
198
199
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()
200
201

    # Setup logging
202
    logging.basicConfig(
203
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
204
        datefmt="%m/%d/%Y %H:%M:%S",
205
        handlers=[logging.StreamHandler(sys.stdout)],
206
    )
207
208
209
210
211
212
213

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
214
215

    # Log on each process the small summary:
216
    logger.warning(
217
218
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
219
    )
220
    logger.info(f"Training/evaluation parameters {training_args}")
221

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

237
    # Set seed before initializing model.
Julien Chaumond's avatar
Julien Chaumond committed
238
    set_seed(training_args.seed)
239

240
241
242
243
244
245
246
247
248
249
250
    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
251
        raw_datasets = load_dataset(
252
253
254
255
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
256
        )
257
258
259
260
261
262
263
264
265
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
        extension = data_args.train_file.split(".")[-1]
266
        raw_datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
267
268
269
270
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    if training_args.do_train:
271
272
        column_names = raw_datasets["train"].column_names
        features = raw_datasets["train"].features
273
    else:
274
275
        column_names = raw_datasets["validation"].column_names
        features = raw_datasets["validation"].features
276
277
278
279
280
281
282
283
284
285
286
287
288
289

    if data_args.text_column_name is not None:
        text_column_name = data_args.text_column_name
    elif "tokens" in column_names:
        text_column_name = "tokens"
    else:
        text_column_name = column_names[0]

    if data_args.label_column_name is not None:
        label_column_name = data_args.label_column_name
    elif f"{data_args.task_name}_tags" in column_names:
        label_column_name = f"{data_args.task_name}_tags"
    else:
        label_column_name = column_names[1]
290

Sylvain Gugger's avatar
Sylvain Gugger committed
291
292
    # In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
    # unique labels.
293
294
295
296
297
298
299
300
    def get_label_list(labels):
        unique_labels = set()
        for label in labels:
            unique_labels = unique_labels | set(label)
        label_list = list(unique_labels)
        label_list.sort()
        return label_list

301
302
303
304
    # If the labels are of type ClassLabel, they are already integers and we have the map stored somewhere.
    # Otherwise, we have to get the list of labels manually.
    labels_are_int = isinstance(features[label_column_name].feature, ClassLabel)
    if labels_are_int:
Sylvain Gugger's avatar
Sylvain Gugger committed
305
        label_list = features[label_column_name].feature.names
306
        label_to_id = {i: i for i in range(len(label_list))}
Sylvain Gugger's avatar
Sylvain Gugger committed
307
    else:
308
        label_list = get_label_list(raw_datasets["train"][label_column_name])
309
        label_to_id = {l: i for i, l in enumerate(label_list)}
310

311
    num_labels = len(label_list)
312

313
    # Load pretrained model and tokenizer
Julien Chaumond's avatar
Julien Chaumond committed
314
315
316
317
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
318
    config = AutoConfig.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
319
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
320
        num_labels=num_labels,
321
        finetuning_task=data_args.task_name,
Julien Chaumond's avatar
Julien Chaumond committed
322
        cache_dir=model_args.cache_dir,
323
324
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
325
    )
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345

    tokenizer_name_or_path = model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path
    if config.model_type in {"gpt2", "roberta"}:
        tokenizer = AutoTokenizer.from_pretrained(
            tokenizer_name_or_path,
            cache_dir=model_args.cache_dir,
            use_fast=True,
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
            add_prefix_space=True,
        )
    else:
        tokenizer = AutoTokenizer.from_pretrained(
            tokenizer_name_or_path,
            cache_dir=model_args.cache_dir,
            use_fast=True,
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
        )

346
    model = AutoModelForTokenClassification.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
347
348
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
349
        config=config,
Julien Chaumond's avatar
Julien Chaumond committed
350
        cache_dir=model_args.cache_dir,
351
352
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
353
    )
354

355
356
357
358
    # Tokenizer check: this script requires a fast tokenizer.
    if not isinstance(tokenizer, PreTrainedTokenizerFast):
        raise ValueError(
            "This example script only works for models that have a fast tokenizer. Checkout the big table of models "
359
            "at https://huggingface.co/transformers/index.html#supported-frameworks to find the model types that meet this "
360
361
362
            "requirement"
        )

363
    # Model has labels -> use them.
364
    if model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id:
365
366
367
368
369
370
371
372
        if list(sorted(model.config.label2id.keys())) == list(sorted(label_list)):
            # Reorganize `label_list` to match the ordering of the model.
            if labels_are_int:
                label_to_id = {i: int(model.config.label2id[l]) for i, l in enumerate(label_list)}
                label_list = [model.config.id2label[i] for i in range(num_labels)]
            else:
                label_list = [model.config.id2label[i] for i in range(num_labels)]
                label_to_id = {l: i for i, l in enumerate(label_list)}
373
374
375
        else:
            logger.warning(
                "Your model seems to have been trained with labels, but they don't match the dataset: ",
376
                f"model labels: {list(sorted(model.config.label2id.keys()))}, dataset labels: {list(sorted(label_list))}."
377
378
379
                "\nIgnoring the model labels as a result.",
            )

380
381
382
    # Set the correspondences label/ID inside the model config
    model.config.label2id = {l: i for i, l in enumerate(label_list)}
    model.config.id2label = {i: l for i, l in enumerate(label_list)}
383
384
385
386
387
388
389
390
391

    # Map that sends B-Xxx label to its I-Xxx counterpart
    b_to_i_label = []
    for idx, label in enumerate(label_list):
        if label.startswith("B-") and label.replace("B-", "I-") in label_list:
            b_to_i_label.append(label_list.index(label.replace("B-", "I-")))
        else:
            b_to_i_label.append(idx)

392
393
394
395
396
397
398
399
400
401
    # Preprocessing the dataset
    # Padding strategy
    padding = "max_length" if data_args.pad_to_max_length else False

    # Tokenize all texts and align the labels with them.
    def tokenize_and_align_labels(examples):
        tokenized_inputs = tokenizer(
            examples[text_column_name],
            padding=padding,
            truncation=True,
402
            max_length=data_args.max_seq_length,
403
404
            # We use this argument because the texts in our dataset are lists of words (with a label for each word).
            is_split_into_words=True,
Julien Chaumond's avatar
Julien Chaumond committed
405
        )
406
        labels = []
407
408
409
        for i, label in enumerate(examples[label_column_name]):
            word_ids = tokenized_inputs.word_ids(batch_index=i)
            previous_word_idx = None
410
            label_ids = []
411
412
413
414
            for word_idx in word_ids:
                # Special tokens have a word id that is None. We set the label to -100 so they are automatically
                # ignored in the loss function.
                if word_idx is None:
415
                    label_ids.append(-100)
416
417
418
                # We set the label for the first token of each word.
                elif word_idx != previous_word_idx:
                    label_ids.append(label_to_id[label[word_idx]])
419
420
421
                # For the other tokens in a word, we set the label to either the current label or -100, depending on
                # the label_all_tokens flag.
                else:
422
423
424
425
                    if data_args.label_all_tokens:
                        label_ids.append(b_to_i_label[label_to_id[label[word_idx]]])
                    else:
                        label_ids.append(-100)
426
                previous_word_idx = word_idx
427
428
429
430
431

            labels.append(label_ids)
        tokenized_inputs["labels"] = labels
        return tokenized_inputs

432
    if training_args.do_train:
433
        if "train" not in raw_datasets:
434
            raise ValueError("--do_train requires a train dataset")
435
        train_dataset = raw_datasets["train"]
436
        if data_args.max_train_samples is not None:
437
438
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
439
440
441
442
443
444
445
446
        with training_args.main_process_first(desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                tokenize_and_align_labels,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )
447
448

    if training_args.do_eval:
449
        if "validation" not in raw_datasets:
450
            raise ValueError("--do_eval requires a validation dataset")
451
        eval_dataset = raw_datasets["validation"]
452
        if data_args.max_eval_samples is not None:
453
454
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
455
456
457
458
459
460
461
462
        with training_args.main_process_first(desc="validation dataset map pre-processing"):
            eval_dataset = eval_dataset.map(
                tokenize_and_align_labels,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )
463
464

    if training_args.do_predict:
465
        if "test" not in raw_datasets:
466
            raise ValueError("--do_predict requires a test dataset")
467
        predict_dataset = raw_datasets["test"]
468
        if data_args.max_predict_samples is not None:
469
470
            max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
            predict_dataset = predict_dataset.select(range(max_predict_samples))
471
472
473
474
475
476
477
478
        with training_args.main_process_first(desc="prediction dataset map pre-processing"):
            predict_dataset = predict_dataset.map(
                tokenize_and_align_labels,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )
Julien Chaumond's avatar
Julien Chaumond committed
479

480
    # Data collator
481
    data_collator = DataCollatorForTokenClassification(tokenizer, pad_to_multiple_of=8 if training_args.fp16 else None)
Julien Chaumond's avatar
Julien Chaumond committed
482

483
    # Metrics
484
485
    metric = load_metric("seqeval")

486
487
488
    def compute_metrics(p):
        predictions, labels = p
        predictions = np.argmax(predictions, axis=2)
Julien Chaumond's avatar
Julien Chaumond committed
489

490
491
492
493
494
495
496
497
498
        # Remove ignored index (special tokens)
        true_predictions = [
            [label_list[p] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
        true_labels = [
            [label_list[l] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
Julien Chaumond's avatar
Julien Chaumond committed
499

500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
        results = metric.compute(predictions=true_predictions, references=true_labels)
        if data_args.return_entity_level_metrics:
            # Unpack nested dictionaries
            final_results = {}
            for key, value in results.items():
                if isinstance(value, dict):
                    for n, v in value.items():
                        final_results[f"{key}_{n}"] = v
                else:
                    final_results[key] = value
            return final_results
        else:
            return {
                "precision": results["overall_precision"],
                "recall": results["overall_recall"],
                "f1": results["overall_f1"],
                "accuracy": results["overall_accuracy"],
            }
Julien Chaumond's avatar
Julien Chaumond committed
518
519
520
521
522

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
523
524
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
525
526
        tokenizer=tokenizer,
        data_collator=data_collator,
Julien Chaumond's avatar
Julien Chaumond committed
527
528
        compute_metrics=compute_metrics,
    )
529
530

    # Training
Julien Chaumond's avatar
Julien Chaumond committed
531
    if training_args.do_train:
532
533
534
535
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
536
537
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
538
        metrics = train_result.metrics
539
        trainer.save_model()  # Saves the tokenizer too for easy upload
540

541
542
543
544
545
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

546
547
548
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
549

550
    # Evaluation
551
    if training_args.do_eval:
Julien Chaumond's avatar
Julien Chaumond committed
552
553
        logger.info("*** Evaluate ***")

554
555
        metrics = trainer.evaluate()

556
557
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
Julien Chaumond's avatar
Julien Chaumond committed
558

559
560
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
Julien Chaumond's avatar
Julien Chaumond committed
561
562

    # Predict
563
    if training_args.do_predict:
564
565
        logger.info("*** Predict ***")

566
        predictions, labels, metrics = trainer.predict(predict_dataset, metric_key_prefix="predict")
567
        predictions = np.argmax(predictions, axis=2)
Julien Chaumond's avatar
Julien Chaumond committed
568

569
570
571
572
573
        # Remove ignored index (special tokens)
        true_predictions = [
            [label_list[p] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
Julien Chaumond's avatar
Julien Chaumond committed
574

575
576
        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)
Julien Chaumond's avatar
Julien Chaumond committed
577

578
        # Save predictions
579
        output_predictions_file = os.path.join(training_args.output_dir, "predictions.txt")
580
        if trainer.is_world_process_zero():
581
            with open(output_predictions_file, "w") as writer:
582
583
                for prediction in true_predictions:
                    writer.write(" ".join(prediction) + "\n")
584

585
586
587
588
589
590
591
592
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "token-classification"}
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name
Sylvain Gugger's avatar
Sylvain Gugger committed
593

594
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
595
        trainer.push_to_hub(**kwargs)
596
597
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
598

599

600
601
602
603
604
def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


605
606
if __name__ == "__main__":
    main()