run_plm.py 22.6 KB
Newer Older
1
#!/usr/bin/env python
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# coding=utf-8
# Copyright 2020 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for permutation language modeling.
"""
# You can also adapt this script on your own permutation language modeling task. Pointers for this are left as comments.

import logging
import math
import os
import sys
from dataclasses import dataclass, field
26
from itertools import chain
27
28
from typing import Optional

29
import datasets
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from datasets import load_dataset

import transformers
from transformers import (
    AutoConfig,
    AutoTokenizer,
    DataCollatorForPermutationLanguageModeling,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
    XLNetConfig,
    XLNetLMHeadModel,
    set_seed,
)
44
from transformers.trainer_utils import get_last_checkpoint
45
from transformers.utils import check_min_version
46
from transformers.utils.versions import require_version
47
48


49
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Lysandre Debut's avatar
Lysandre Debut committed
50
check_min_version("4.19.0.dev0")
Sylvain Gugger's avatar
Sylvain Gugger committed
51

52
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
53

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
logger = logging.getLogger(__name__)


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """

    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
            "help": "The model checkpoint for weights initialization."
            "Don't set if you want to train a model from scratch."
        },
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
73
74
75
76
77
78
79
    config_overrides: Optional[str] = field(
        default=None,
        metadata={
            "help": "Override some existing default config settings when a model is trained from scratch. Example: "
            "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
        },
    )
80
81
82
83
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
84
85
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
86
87
88
89
90
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
91
92
93
94
95
96
97
98
99
100
101
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
            "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
            "with private models)."
        },
    )
102

103
104
105
106
107
108
    def __post_init__(self):
        if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
            raise ValueError(
                "--config_overrides can't be used in combination with --config_name or --model_name_or_path"
            )

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
130
131
132
133
134
135
    validation_split_percentage: Optional[int] = field(
        default=5,
        metadata={
            "help": "The percentage of the train set used as validation set in case there's no validation split"
        },
    )
136
137
    max_seq_length: int = field(
        default=512,
138
139
        metadata={
            "help": "The maximum total input sequence length after tokenization. Sequences longer "
140
            "than this will be truncated."
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
        },
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    plm_probability: float = field(
        default=1 / 6,
        metadata={
            "help": "Ratio of length of a span of masked tokens to surrounding context length for "
            "permutation language modeling."
        },
    )
    max_span_length: int = field(
        default=5, metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."}
    )
157
158
159
160
161
162
163
164
165
166
167
    line_by_line: bool = field(
        default=False,
        metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
    )
    pad_to_max_length: bool = field(
        default=False,
        metadata={
            "help": "Whether to pad all samples to `max_seq_length`. "
            "If False, will pad the samples dynamically when batching to the maximum length in the batch."
        },
    )
168
169
170
171
172
173
174
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        },
    )
175
    max_eval_samples: Optional[int] = field(
176
177
        default=None,
        metadata={
178
            "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
179
180
181
            "value if set."
        },
    )
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    # Setup logging
    logging.basicConfig(
210
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
211
        datefmt="%m/%d/%Y %H:%M:%S",
212
        handlers=[logging.StreamHandler(sys.stdout)],
213
    )
214
215
216
217
218
219
220

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
221
222
223
224
225
226

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
227
    logger.info(f"Training/evaluation parameters {training_args}")
228

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

244
245
246
247
248
    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
Sylvain Gugger's avatar
Sylvain Gugger committed
249
    # (the dataset will be downloaded automatically from the datasets Hub).
250
    #
Sylvain Gugger's avatar
Sylvain Gugger committed
251
252
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
253
254
255
256
257
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
258
        raw_datasets = load_dataset(
259
260
261
262
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
263
264
265
        )
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
266
267
268
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[:{data_args.validation_split_percentage}%]",
269
                cache_dir=model_args.cache_dir,
270
                use_auth_token=True if model_args.use_auth_token else None,
271
            )
272
            raw_datasets["train"] = load_dataset(
273
274
275
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[{data_args.validation_split_percentage}%:]",
276
                cache_dir=model_args.cache_dir,
277
                use_auth_token=True if model_args.use_auth_token else None,
278
            )
279
280
281
282
283
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
284
            data_files["validation"] = data_args.validation_file
285
286
287
        extension = data_args.train_file.split(".")[-1]
        if extension == "txt":
            extension = "text"
288
        raw_datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
289
290
291
292
293
294
295
        # If no validation data is there, validation_split_percentage will be used to divide the dataset.
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
296
                use_auth_token=True if model_args.use_auth_token else None,
297
298
299
300
301
302
            )
            raw_datasets["train"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
303
                use_auth_token=True if model_args.use_auth_token else None,
304
305
            )

306
307
308
309
310
311
312
313
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
314
315
316
317
318
    config_kwargs = {
        "cache_dir": model_args.cache_dir,
        "revision": model_args.model_revision,
        "use_auth_token": True if model_args.use_auth_token else None,
    }
319
    if model_args.config_name:
320
        config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
321
    elif model_args.model_name_or_path:
322
        config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
323
324
325
    else:
        config = XLNetConfig()
        logger.warning("You are instantiating a new config instance from scratch.")
326
327
328
        if model_args.config_overrides is not None:
            logger.info(f"Overriding config: {model_args.config_overrides}")
            config.update_from_string(model_args.config_overrides)
329
            logger.info(f"New config: {config}")
330

331
332
333
334
335
336
    tokenizer_kwargs = {
        "cache_dir": model_args.cache_dir,
        "use_fast": model_args.use_fast_tokenizer,
        "revision": model_args.model_revision,
        "use_auth_token": True if model_args.use_auth_token else None,
    }
337
    if model_args.tokenizer_name:
338
        tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
339
    elif model_args.model_name_or_path:
340
        tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
341
342
343
344
345
346
347
348
349
350
351
352
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if model_args.model_name_or_path:
        model = XLNetLMHeadModel.from_pretrained(
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
            config=config,
            cache_dir=model_args.cache_dir,
353
354
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
355
356
357
        )
    else:
        logger.info("Training new model from scratch")
358
        model = XLNetLMHeadModel(config)
359
360
361
362
363
364

    model.resize_token_embeddings(len(tokenizer))

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    if training_args.do_train:
365
        column_names = raw_datasets["train"].column_names
366
    else:
367
        column_names = raw_datasets["validation"].column_names
368
369
    text_column_name = "text" if "text" in column_names else column_names[0]

370
    if data_args.max_seq_length > tokenizer.model_max_length:
371
        logger.warning(
372
373
374
375
376
            f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
            f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
        )
    max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

377
378
379
380
381
382
383
    if data_args.line_by_line:
        # When using line_by_line, we just tokenize each nonempty line.
        padding = "max_length" if data_args.pad_to_max_length else False

        def tokenize_function(examples):
            # Remove empty lines
            examples["text"] = [line for line in examples["text"] if len(line) > 0 and not line.isspace()]
384
            return tokenizer(examples["text"], padding=padding, truncation=True, max_length=max_seq_length)
385

386
387
388
389
390
391
392
393
394
        with training_args.main_process_first(desc="dataset map tokenization"):
            tokenized_datasets = raw_datasets.map(
                tokenize_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=[text_column_name],
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on dataset line_by_line",
            )
395
396
397
398
399
    else:
        # Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
        def tokenize_function(examples):
            return tokenizer(examples[text_column_name])

400
401
402
403
404
405
406
407
408
        with training_args.main_process_first(desc="dataset map tokenization"):
            tokenized_datasets = raw_datasets.map(
                tokenize_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on every text in dataset",
            )
409
410
411
412
413

        # Main data processing function that will concatenate all texts from our dataset and generate chunks of
        # max_seq_length.
        def group_texts(examples):
            # Concatenate all texts.
414
            concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
415
416
417
            total_length = len(concatenated_examples[list(examples.keys())[0]])
            # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
            # customize this part to your needs.
418
419
            if total_length >= max_seq_length:
                total_length = (total_length // max_seq_length) * max_seq_length
420
421
422
423
424
425
426
427
428
429
430
431
432
            # Split by chunks of max_len.
            result = {
                k: [t[i : i + max_seq_length] for i in range(0, total_length, max_seq_length)]
                for k, t in concatenated_examples.items()
            }
            return result

        # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a
        # remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value
        # might be slower to preprocess.
        #
        # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
        # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
433

434
435
436
437
438
439
440
441
        with training_args.main_process_first(desc="grouping texts together"):
            tokenized_datasets = tokenized_datasets.map(
                group_texts,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc=f"Grouping texts in chunks of {max_seq_length}",
            )
442

443
444
445
446
447
    if training_args.do_train:
        if "train" not in tokenized_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = tokenized_datasets["train"]
        if data_args.max_train_samples is not None:
448
449
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
450
451
452
453
454

    if training_args.do_eval:
        if "validation" not in tokenized_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = tokenized_datasets["validation"]
455
        if data_args.max_eval_samples is not None:
456
457
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
458

459
460
461
462
463
464
465
466
467
468
469
    # Data collator
    data_collator = DataCollatorForPermutationLanguageModeling(
        tokenizer=tokenizer,
        plm_probability=data_args.plm_probability,
        max_span_length=data_args.max_span_length,
    )

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
470
471
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
472
473
474
475
476
477
        tokenizer=tokenizer,
        data_collator=data_collator,
    )

    # Training
    if training_args.do_train:
478
479
480
481
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
482
483
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
484
        trainer.save_model()  # Saves the tokenizer too for easy upload
485
        metrics = train_result.metrics
486

487
488
489
490
491
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

492
493
494
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
495

496
497
498
499
    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

500
        metrics = trainer.evaluate()
501

502
503
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
504
505
506
507
        try:
            perplexity = math.exp(metrics["eval_loss"])
        except OverflowError:
            perplexity = float("inf")
508
        metrics["perplexity"] = perplexity
509

510
511
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
512

513
514
515
516
517
518
519
520
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "language-modeling"}
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name
Sylvain Gugger's avatar
Sylvain Gugger committed
521

522
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
523
        trainer.push_to_hub(**kwargs)
524
525
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
526

527
528
529
530
531
532
533
534

def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()