test_modeling_xlm.py 15.1 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
18
import unittest

19
from transformers import is_torch_available
20
from transformers.testing_utils import require_torch, slow, torch_device
thomwolf's avatar
thomwolf committed
21

22
from .test_configuration_common import ConfigTester
23
from .test_generation_utils import GenerationTesterMixin
24
from .test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
Aymeric Augustin's avatar
Aymeric Augustin committed
25
26


27
if is_torch_available():
28
    import torch
29

30
31
    from transformers import (
        XLMConfig,
32
        XLMForMultipleChoice,
33
34
        XLMForQuestionAnswering,
        XLMForQuestionAnsweringSimple,
35
36
37
38
        XLMForSequenceClassification,
        XLMForTokenClassification,
        XLMModel,
        XLMWithLMHeadModel,
39
    )
40
    from transformers.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST
thomwolf's avatar
thomwolf committed
41
42


43
44
class XLMModelTester:
    def __init__(
Lysandre's avatar
Lysandre committed
45
46
        self,
        parent,
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_lengths = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.gelu_activation = True
        self.sinusoidal_embeddings = False
        self.causal = False
        self.asm = False
        self.n_langs = 2
        self.vocab_size = 99
        self.n_special = 0
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
70
        self.num_labels = 2
71
72
73
74
75
76
77
78
        self.num_choices = 4
        self.summary_type = "last"
        self.use_proj = True
        self.scope = None
        self.bos_token_id = 0

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
79
        input_mask = random_attention_mask([self.batch_size, self.seq_length])
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

        input_lengths = None
        if self.use_input_lengths:
            input_lengths = (
                ids_tensor([self.batch_size], vocab_size=2) + self.seq_length - 2
            )  # small variation of seq_length

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.n_langs)

        sequence_labels = None
        token_labels = None
        is_impossible_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            is_impossible_labels = ids_tensor([self.batch_size], 2).float()
98
            choice_labels = ids_tensor([self.batch_size], self.num_choices)
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

        config = XLMConfig(
            vocab_size=self.vocab_size,
            n_special=self.n_special,
            emb_dim=self.hidden_size,
            n_layers=self.num_hidden_layers,
            n_heads=self.num_attention_heads,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            gelu_activation=self.gelu_activation,
            sinusoidal_embeddings=self.sinusoidal_embeddings,
            asm=self.asm,
            causal=self.causal,
            n_langs=self.n_langs,
            max_position_embeddings=self.max_position_embeddings,
            initializer_range=self.initializer_range,
            summary_type=self.summary_type,
            use_proj=self.use_proj,
117
            num_labels=self.num_labels,
118
            bos_token_id=self.bos_token_id,
Sylvain Gugger's avatar
Sylvain Gugger committed
119
            return_dict=True,
120
        )
thomwolf's avatar
thomwolf committed
121

122
        return (
123
124
125
126
127
128
129
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
130
            choice_labels,
131
            input_mask,
132
133
134
135
136
137
138
139
140
141
142
        )

    def create_and_check_xlm_model(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
143
        choice_labels,
144
145
146
147
148
        input_mask,
    ):
        model = XLMModel(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
149
150
151
        result = model(input_ids, lengths=input_lengths, langs=token_type_ids)
        result = model(input_ids, langs=token_type_ids)
        result = model(input_ids)
Stas Bekman's avatar
Stas Bekman committed
152
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
153
154
155
156
157
158
159
160
161
162

    def create_and_check_xlm_lm_head(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
163
        choice_labels,
164
165
166
167
168
169
        input_mask,
    ):
        model = XLMWithLMHeadModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
170
        result = model(input_ids, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
171
172
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
173
174
175
176
177
178
179
180
181
182

    def create_and_check_xlm_simple_qa(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
183
        choice_labels,
184
185
186
187
188
189
190
191
192
        input_mask,
    ):
        model = XLMForQuestionAnsweringSimple(config)
        model.to(torch_device)
        model.eval()

        outputs = model(input_ids)

        outputs = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels)
Sylvain Gugger's avatar
Sylvain Gugger committed
193
        result = outputs
Stas Bekman's avatar
Stas Bekman committed
194
195
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
196
197
198
199
200
201
202
203
204
205

    def create_and_check_xlm_qa(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
206
        choice_labels,
207
208
209
210
211
212
        input_mask,
    ):
        model = XLMForQuestionAnswering(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
213
        result = model(input_ids)
214

Sylvain Gugger's avatar
Sylvain Gugger committed
215
        result_with_labels = model(
216
            input_ids,
217
218
219
220
221
222
            start_positions=sequence_labels,
            end_positions=sequence_labels,
            cls_index=sequence_labels,
            is_impossible=is_impossible_labels,
            p_mask=input_mask,
        )
thomwolf's avatar
thomwolf committed
223

Sylvain Gugger's avatar
Sylvain Gugger committed
224
        result_with_labels = model(
225
226
227
228
229
230
            input_ids,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
            cls_index=sequence_labels,
            is_impossible=is_impossible_labels,
        )
thomwolf's avatar
thomwolf committed
231

Sylvain Gugger's avatar
Sylvain Gugger committed
232
        (total_loss,) = result_with_labels.to_tuple()
thomwolf's avatar
thomwolf committed
233

Sylvain Gugger's avatar
Sylvain Gugger committed
234
        result_with_labels = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels)
235

Sylvain Gugger's avatar
Sylvain Gugger committed
236
        (total_loss,) = result_with_labels.to_tuple()
237

Stas Bekman's avatar
Stas Bekman committed
238
239
240
241
242
        self.parent.assertEqual(result_with_labels.loss.shape, ())
        self.parent.assertEqual(result.start_top_log_probs.shape, (self.batch_size, model.config.start_n_top))
        self.parent.assertEqual(result.start_top_index.shape, (self.batch_size, model.config.start_n_top))
        self.parent.assertEqual(
            result.end_top_log_probs.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top)
243
        )
Stas Bekman's avatar
Stas Bekman committed
244
245
        self.parent.assertEqual(
            result.end_top_index.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top)
246
        )
Stas Bekman's avatar
Stas Bekman committed
247
        self.parent.assertEqual(result.cls_logits.shape, (self.batch_size,))
248
249
250
251
252
253
254
255
256
257

    def create_and_check_xlm_sequence_classif(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
258
        choice_labels,
259
260
261
262
263
264
        input_mask,
    ):
        model = XLMForSequenceClassification(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
265
266
        result = model(input_ids)
        result = model(input_ids, labels=sequence_labels)
Stas Bekman's avatar
Stas Bekman committed
267
268
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
269

270
    def create_and_check_xlm_token_classif(
271
272
273
274
275
276
277
278
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
279
        choice_labels,
280
281
282
283
284
285
286
        input_mask,
    ):
        config.num_labels = self.num_labels
        model = XLMForTokenClassification(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
287
        result = model(input_ids, attention_mask=input_mask, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
288
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
289

290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
    def create_and_check_xlm_for_multiple_choice(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
        choice_labels,
        input_mask,
    ):
        config.num_choices = self.num_choices
        model = XLMForMultipleChoice(config=config)
        model.to(torch_device)
        model.eval()
        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
Sylvain Gugger's avatar
Sylvain Gugger committed
309
        result = model(
310
311
312
313
314
            multiple_choice_inputs_ids,
            attention_mask=multiple_choice_input_mask,
            token_type_ids=multiple_choice_token_type_ids,
            labels=choice_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
315
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
316

317
318
319
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
320
321
322
323
324
325
326
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
327
            choice_labels,
328
            input_mask,
329
330
331
332
333
334
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths}
        return config, inputs_dict


@require_torch
335
class XLMModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
336
337
338
339
340
341
342
343

    all_model_classes = (
        (
            XLMModel,
            XLMWithLMHeadModel,
            XLMForQuestionAnswering,
            XLMForSequenceClassification,
            XLMForQuestionAnsweringSimple,
344
            XLMForTokenClassification,
345
            XLMForMultipleChoice,
346
347
348
349
350
351
352
        )
        if is_torch_available()
        else ()
    )
    all_generative_model_classes = (
        (XLMWithLMHeadModel,) if is_torch_available() else ()
    )  # TODO (PVP): Check other models whether language generation is also applicable
thomwolf's avatar
thomwolf committed
353

354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
    # XLM has 2 QA models -> need to manually set the correct labels for one of them here
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)

        if return_labels:
            if model_class.__name__ == "XLMForQuestionAnswering":
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )

        return inputs_dict

thomwolf's avatar
thomwolf committed
369
    def setUp(self):
370
        self.model_tester = XLMModelTester(self)
thomwolf's avatar
thomwolf committed
371
        self.config_tester = ConfigTester(self, config_class=XLMConfig, emb_dim=37)
thomwolf's avatar
thomwolf committed
372
373

    def test_config(self):
thomwolf's avatar
thomwolf committed
374
        self.config_tester.run_common_tests()
thomwolf's avatar
thomwolf committed
375

thomwolf's avatar
thomwolf committed
376
377
378
    def test_xlm_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_model(*config_and_inputs)
thomwolf's avatar
thomwolf committed
379

thomwolf's avatar
thomwolf committed
380
381
382
    def test_xlm_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_lm_head(*config_and_inputs)
thomwolf's avatar
thomwolf committed
383

384
385
386
387
    def test_xlm_simple_qa(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_simple_qa(*config_and_inputs)

thomwolf's avatar
thomwolf committed
388
389
390
    def test_xlm_qa(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_qa(*config_and_inputs)
thomwolf's avatar
thomwolf committed
391

thomwolf's avatar
thomwolf committed
392
393
394
    def test_xlm_sequence_classif(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_sequence_classif(*config_and_inputs)
thomwolf's avatar
thomwolf committed
395

396
    def test_xlm_token_classif(self):
397
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
398
        self.model_tester.create_and_check_xlm_token_classif(*config_and_inputs)
399

400
401
402
403
    def test_xlm_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_for_multiple_choice(*config_and_inputs)

404
    @slow
thomwolf's avatar
thomwolf committed
405
    def test_model_from_pretrained(self):
406
        for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
407
            model = XLMModel.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
408
            self.assertIsNotNone(model)
409
410


411
@require_torch
412
413
414
415
class XLMModelLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_xlm_mlm_en_2048(self):
        model = XLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048")
416
        model.to(torch_device)
417
        input_ids = torch.tensor([[14, 447]], dtype=torch.long, device=torch_device)  # the president
418
419
        expected_output_ids = [
            14,
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
        ]  # the president the president the president the president the president the president the president the president the president the president
        # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference
        output_ids = model.generate(input_ids, do_sample=False)
442
        self.assertListEqual(output_ids[0].cpu().numpy().tolist(), expected_output_ids)