test_modeling_xlm.py 13.8 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15
from __future__ import absolute_import, division, print_function
thomwolf's avatar
thomwolf committed
16

17
from transformers import is_torch_available
thomwolf's avatar
thomwolf committed
18

19
20
from .test_configuration_common import ConfigTester
from .test_modeling_common import CommonTestCases, ids_tensor
Aymeric Augustin's avatar
Aymeric Augustin committed
21
22
23
from .utils import CACHE_DIR, require_torch, slow, torch_device


24
if is_torch_available():
25
26
27
28
29
30
31
32
    from transformers import (
        XLMConfig,
        XLMModel,
        XLMWithLMHeadModel,
        XLMForQuestionAnswering,
        XLMForSequenceClassification,
        XLMForQuestionAnsweringSimple,
    )
33
    from transformers.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_MAP
thomwolf's avatar
thomwolf committed
34
35


36
@require_torch
thomwolf's avatar
thomwolf committed
37
38
class XLMModelTest(CommonTestCases.CommonModelTester):

39
40
41
42
43
44
45
46
47
48
49
    all_model_classes = (
        (
            XLMModel,
            XLMWithLMHeadModel,
            XLMForQuestionAnswering,
            XLMForSequenceClassification,
            XLMForQuestionAnsweringSimple,
        )
        if is_torch_available()
        else ()
    )
thomwolf's avatar
thomwolf committed
50

thomwolf's avatar
thomwolf committed
51
    class XLMModelTester(object):
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            is_training=True,
            use_input_lengths=True,
            use_token_type_ids=True,
            use_labels=True,
            gelu_activation=True,
            sinusoidal_embeddings=False,
            causal=False,
            asm=False,
            n_langs=2,
            vocab_size=99,
            n_special=0,
            hidden_size=32,
            num_hidden_layers=5,
            num_attention_heads=4,
            hidden_dropout_prob=0.1,
            attention_probs_dropout_prob=0.1,
            max_position_embeddings=512,
            type_vocab_size=16,
            type_sequence_label_size=2,
            initializer_range=0.02,
            num_labels=3,
            num_choices=4,
            summary_type="last",
            use_proj=True,
            scope=None,
        ):
thomwolf's avatar
thomwolf committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_input_lengths = use_input_lengths
            self.use_token_type_ids = use_token_type_ids
            self.use_labels = use_labels
            self.gelu_activation = gelu_activation
            self.sinusoidal_embeddings = sinusoidal_embeddings
            self.asm = asm
            self.n_langs = n_langs
            self.vocab_size = vocab_size
            self.n_special = n_special
            self.summary_type = summary_type
            self.causal = causal
            self.use_proj = use_proj
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.n_langs = n_langs
            self.type_sequence_label_size = type_sequence_label_size
            self.initializer_range = initializer_range
            self.summary_type = summary_type
            self.num_labels = num_labels
            self.num_choices = num_choices
            self.scope = scope

        def prepare_config_and_inputs(self):
            input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
thomwolf's avatar
thomwolf committed
115
            input_mask = ids_tensor([self.batch_size, self.seq_length], 2).float()
thomwolf's avatar
thomwolf committed
116
117
118

            input_lengths = None
            if self.use_input_lengths:
119
120
121
                input_lengths = (
                    ids_tensor([self.batch_size], vocab_size=2) + self.seq_length - 2
                )  # small variation of seq_length
thomwolf's avatar
thomwolf committed
122
123
124
125
126
127
128

            token_type_ids = None
            if self.use_token_type_ids:
                token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.n_langs)

            sequence_labels = None
            token_labels = None
thomwolf's avatar
thomwolf committed
129
            is_impossible_labels = None
thomwolf's avatar
thomwolf committed
130
131
132
            if self.use_labels:
                sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
thomwolf's avatar
thomwolf committed
133
                is_impossible_labels = ids_tensor([self.batch_size], 2).float()
thomwolf's avatar
thomwolf committed
134
135

            config = XLMConfig(
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
                vocab_size=self.vocab_size,
                n_special=self.n_special,
                emb_dim=self.hidden_size,
                n_layers=self.num_hidden_layers,
                n_heads=self.num_attention_heads,
                dropout=self.hidden_dropout_prob,
                attention_dropout=self.attention_probs_dropout_prob,
                gelu_activation=self.gelu_activation,
                sinusoidal_embeddings=self.sinusoidal_embeddings,
                asm=self.asm,
                causal=self.causal,
                n_langs=self.n_langs,
                max_position_embeddings=self.max_position_embeddings,
                initializer_range=self.initializer_range,
                summary_type=self.summary_type,
                use_proj=self.use_proj,
            )

            return (
                config,
                input_ids,
                token_type_ids,
                input_lengths,
                sequence_labels,
                token_labels,
                is_impossible_labels,
                input_mask,
            )
thomwolf's avatar
thomwolf committed
164
165

        def check_loss_output(self, result):
166
167
168
169
170
171
172
173
174
175
176
177
178
            self.parent.assertListEqual(list(result["loss"].size()), [])

        def create_and_check_xlm_model(
            self,
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
            input_mask,
        ):
thomwolf's avatar
thomwolf committed
179
            model = XLMModel(config=config)
180
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
181
182
            model.eval()
            outputs = model(input_ids, lengths=input_lengths, langs=token_type_ids)
thomwolf's avatar
thomwolf committed
183
184
            outputs = model(input_ids, langs=token_type_ids)
            outputs = model(input_ids)
thomwolf's avatar
thomwolf committed
185
186
187
188
189
            sequence_output = outputs[0]
            result = {
                "sequence_output": sequence_output,
            }
            self.parent.assertListEqual(
190
191
192
193
194
195
196
197
198
199
200
201
202
203
                list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size]
            )

        def create_and_check_xlm_lm_head(
            self,
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
            input_mask,
        ):
thomwolf's avatar
thomwolf committed
204
            model = XLMWithLMHeadModel(config)
205
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
206
207
208
209
210
211
212
213
214
            model.eval()

            loss, logits = model(input_ids, token_type_ids=token_type_ids, labels=token_labels)

            result = {
                "loss": loss,
                "logits": logits,
            }

215
            self.parent.assertListEqual(list(result["loss"].size()), [])
thomwolf's avatar
thomwolf committed
216
            self.parent.assertListEqual(
217
218
219
220
221
222
223
224
225
226
227
228
229
230
                list(result["logits"].size()), [self.batch_size, self.seq_length, self.vocab_size]
            )

        def create_and_check_xlm_simple_qa(
            self,
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
            input_mask,
        ):
231
            model = XLMForQuestionAnsweringSimple(config)
232
            model.to(torch_device)
233
234
235
236
            model.eval()

            outputs = model(input_ids)

237
            outputs = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels)
238
239
240
241
242
243
244
            loss, start_logits, end_logits = outputs

            result = {
                "loss": loss,
                "start_logits": start_logits,
                "end_logits": end_logits,
            }
245
246
            self.parent.assertListEqual(list(result["start_logits"].size()), [self.batch_size, self.seq_length])
            self.parent.assertListEqual(list(result["end_logits"].size()), [self.batch_size, self.seq_length])
247
248
            self.check_loss_output(result)

249
250
251
252
253
254
255
256
257
258
259
        def create_and_check_xlm_qa(
            self,
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
            input_mask,
        ):
thomwolf's avatar
thomwolf committed
260
            model = XLMForQuestionAnswering(config)
261
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
262
263
264
            model.eval()

            outputs = model(input_ids)
thomwolf's avatar
thomwolf committed
265
            start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits = outputs
thomwolf's avatar
thomwolf committed
266

267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
            outputs = model(
                input_ids,
                start_positions=sequence_labels,
                end_positions=sequence_labels,
                cls_index=sequence_labels,
                is_impossible=is_impossible_labels,
                p_mask=input_mask,
            )

            outputs = model(
                input_ids,
                start_positions=sequence_labels,
                end_positions=sequence_labels,
                cls_index=sequence_labels,
                is_impossible=is_impossible_labels,
            )
thomwolf's avatar
thomwolf committed
283

284
            (total_loss,) = outputs
thomwolf's avatar
thomwolf committed
285

286
            outputs = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels)
thomwolf's avatar
thomwolf committed
287

288
            (total_loss,) = outputs
thomwolf's avatar
thomwolf committed
289
290
291

            result = {
                "loss": total_loss,
292
293
294
295
                "start_top_log_probs": start_top_log_probs,
                "start_top_index": start_top_index,
                "end_top_log_probs": end_top_log_probs,
                "end_top_index": end_top_index,
thomwolf's avatar
thomwolf committed
296
297
298
                "cls_logits": cls_logits,
            }

299
            self.parent.assertListEqual(list(result["loss"].size()), [])
thomwolf's avatar
thomwolf committed
300
            self.parent.assertListEqual(
301
302
                list(result["start_top_log_probs"].size()), [self.batch_size, model.config.start_n_top]
            )
thomwolf's avatar
thomwolf committed
303
            self.parent.assertListEqual(
304
305
                list(result["start_top_index"].size()), [self.batch_size, model.config.start_n_top]
            )
306
307
            self.parent.assertListEqual(
                list(result["end_top_log_probs"].size()),
308
309
                [self.batch_size, model.config.start_n_top * model.config.end_n_top],
            )
310
311
            self.parent.assertListEqual(
                list(result["end_top_index"].size()),
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
                [self.batch_size, model.config.start_n_top * model.config.end_n_top],
            )
            self.parent.assertListEqual(list(result["cls_logits"].size()), [self.batch_size])

        def create_and_check_xlm_sequence_classif(
            self,
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
            input_mask,
        ):
thomwolf's avatar
thomwolf committed
327
            model = XLMForSequenceClassification(config)
328
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
329
330
331
332
333
334
335
336
337
338
            model.eval()

            (logits,) = model(input_ids)
            loss, logits = model(input_ids, labels=sequence_labels)

            result = {
                "loss": loss,
                "logits": logits,
            }

339
            self.parent.assertListEqual(list(result["loss"].size()), [])
thomwolf's avatar
thomwolf committed
340
            self.parent.assertListEqual(
341
342
                list(result["logits"].size()), [self.batch_size, self.type_sequence_label_size]
            )
thomwolf's avatar
thomwolf committed
343

thomwolf's avatar
thomwolf committed
344
345
        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
346
347
348
349
350
351
352
353
354
355
356
            (
                config,
                input_ids,
                token_type_ids,
                input_lengths,
                sequence_labels,
                token_labels,
                is_impossible_labels,
                input_mask,
            ) = config_and_inputs
            inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths}
thomwolf's avatar
thomwolf committed
357
            return config, inputs_dict
thomwolf's avatar
thomwolf committed
358

thomwolf's avatar
thomwolf committed
359
360
361
    def setUp(self):
        self.model_tester = XLMModelTest.XLMModelTester(self)
        self.config_tester = ConfigTester(self, config_class=XLMConfig, emb_dim=37)
thomwolf's avatar
thomwolf committed
362
363

    def test_config(self):
thomwolf's avatar
thomwolf committed
364
        self.config_tester.run_common_tests()
thomwolf's avatar
thomwolf committed
365

thomwolf's avatar
thomwolf committed
366
367
368
    def test_xlm_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_model(*config_and_inputs)
thomwolf's avatar
thomwolf committed
369

thomwolf's avatar
thomwolf committed
370
371
372
    def test_xlm_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_lm_head(*config_and_inputs)
thomwolf's avatar
thomwolf committed
373

374
375
376
377
    def test_xlm_simple_qa(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_simple_qa(*config_and_inputs)

thomwolf's avatar
thomwolf committed
378
379
380
    def test_xlm_qa(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_qa(*config_and_inputs)
thomwolf's avatar
thomwolf committed
381

thomwolf's avatar
thomwolf committed
382
383
384
    def test_xlm_sequence_classif(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_sequence_classif(*config_and_inputs)
thomwolf's avatar
thomwolf committed
385

386
    @slow
thomwolf's avatar
thomwolf committed
387
388
    def test_model_from_pretrained(self):
        for model_name in list(XLM_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
389
            model = XLMModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
thomwolf's avatar
thomwolf committed
390
            self.assertIsNotNone(model)