test_modeling_xlm.py 14.3 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
18
import unittest

19
from transformers import is_torch_available
20
from transformers.testing_utils import require_torch, slow, torch_device
thomwolf's avatar
thomwolf committed
21

22
from .test_configuration_common import ConfigTester
23
from .test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
Aymeric Augustin's avatar
Aymeric Augustin committed
24
25


26
if is_torch_available():
27
    import torch
28
29
30
31
    from transformers import (
        XLMConfig,
        XLMModel,
        XLMWithLMHeadModel,
32
        XLMForTokenClassification,
33
34
35
        XLMForQuestionAnswering,
        XLMForSequenceClassification,
        XLMForQuestionAnsweringSimple,
36
        XLMForMultipleChoice,
37
    )
38
    from transformers.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST
thomwolf's avatar
thomwolf committed
39
40


41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
class XLMModelTester:
    def __init__(
        self, parent,
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_lengths = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.gelu_activation = True
        self.sinusoidal_embeddings = False
        self.causal = False
        self.asm = False
        self.n_langs = 2
        self.vocab_size = 99
        self.n_special = 0
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
67
        self.num_labels = 2
68
69
70
71
72
73
74
75
        self.num_choices = 4
        self.summary_type = "last"
        self.use_proj = True
        self.scope = None
        self.bos_token_id = 0

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
76
        input_mask = random_attention_mask([self.batch_size, self.seq_length])
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

        input_lengths = None
        if self.use_input_lengths:
            input_lengths = (
                ids_tensor([self.batch_size], vocab_size=2) + self.seq_length - 2
            )  # small variation of seq_length

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.n_langs)

        sequence_labels = None
        token_labels = None
        is_impossible_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            is_impossible_labels = ids_tensor([self.batch_size], 2).float()
95
            choice_labels = ids_tensor([self.batch_size], self.num_choices)
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

        config = XLMConfig(
            vocab_size=self.vocab_size,
            n_special=self.n_special,
            emb_dim=self.hidden_size,
            n_layers=self.num_hidden_layers,
            n_heads=self.num_attention_heads,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            gelu_activation=self.gelu_activation,
            sinusoidal_embeddings=self.sinusoidal_embeddings,
            asm=self.asm,
            causal=self.causal,
            n_langs=self.n_langs,
            max_position_embeddings=self.max_position_embeddings,
            initializer_range=self.initializer_range,
            summary_type=self.summary_type,
            use_proj=self.use_proj,
114
            num_labels=self.num_labels,
115
            bos_token_id=self.bos_token_id,
Sylvain Gugger's avatar
Sylvain Gugger committed
116
            return_dict=True,
117
        )
thomwolf's avatar
thomwolf committed
118

119
        return (
120
121
122
123
124
125
126
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
127
            choice_labels,
128
            input_mask,
129
130
131
132
133
134
135
136
137
138
139
        )

    def create_and_check_xlm_model(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
140
        choice_labels,
141
142
143
144
145
        input_mask,
    ):
        model = XLMModel(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
146
147
148
        result = model(input_ids, lengths=input_lengths, langs=token_type_ids)
        result = model(input_ids, langs=token_type_ids)
        result = model(input_ids)
Stas Bekman's avatar
Stas Bekman committed
149
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
150
151
152
153
154
155
156
157
158
159

    def create_and_check_xlm_lm_head(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
160
        choice_labels,
161
162
163
164
165
166
        input_mask,
    ):
        model = XLMWithLMHeadModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
167
        result = model(input_ids, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
168
169
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
170
171
172
173
174
175
176
177
178
179

    def create_and_check_xlm_simple_qa(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
180
        choice_labels,
181
182
183
184
185
186
187
188
189
        input_mask,
    ):
        model = XLMForQuestionAnsweringSimple(config)
        model.to(torch_device)
        model.eval()

        outputs = model(input_ids)

        outputs = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels)
Sylvain Gugger's avatar
Sylvain Gugger committed
190
        result = outputs
Stas Bekman's avatar
Stas Bekman committed
191
192
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
193
194
195
196
197
198
199
200
201
202

    def create_and_check_xlm_qa(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
203
        choice_labels,
204
205
206
207
208
209
        input_mask,
    ):
        model = XLMForQuestionAnswering(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
210
        result = model(input_ids)
211

Sylvain Gugger's avatar
Sylvain Gugger committed
212
        result_with_labels = model(
213
            input_ids,
214
215
216
217
218
219
            start_positions=sequence_labels,
            end_positions=sequence_labels,
            cls_index=sequence_labels,
            is_impossible=is_impossible_labels,
            p_mask=input_mask,
        )
thomwolf's avatar
thomwolf committed
220

Sylvain Gugger's avatar
Sylvain Gugger committed
221
        result_with_labels = model(
222
223
224
225
226
227
            input_ids,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
            cls_index=sequence_labels,
            is_impossible=is_impossible_labels,
        )
thomwolf's avatar
thomwolf committed
228

Sylvain Gugger's avatar
Sylvain Gugger committed
229
        (total_loss,) = result_with_labels.to_tuple()
thomwolf's avatar
thomwolf committed
230

Sylvain Gugger's avatar
Sylvain Gugger committed
231
        result_with_labels = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels)
232

Sylvain Gugger's avatar
Sylvain Gugger committed
233
        (total_loss,) = result_with_labels.to_tuple()
234

Stas Bekman's avatar
Stas Bekman committed
235
236
237
238
239
        self.parent.assertEqual(result_with_labels.loss.shape, ())
        self.parent.assertEqual(result.start_top_log_probs.shape, (self.batch_size, model.config.start_n_top))
        self.parent.assertEqual(result.start_top_index.shape, (self.batch_size, model.config.start_n_top))
        self.parent.assertEqual(
            result.end_top_log_probs.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top)
240
        )
Stas Bekman's avatar
Stas Bekman committed
241
242
        self.parent.assertEqual(
            result.end_top_index.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top)
243
        )
Stas Bekman's avatar
Stas Bekman committed
244
        self.parent.assertEqual(result.cls_logits.shape, (self.batch_size,))
245
246
247
248
249
250
251
252
253
254

    def create_and_check_xlm_sequence_classif(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
255
        choice_labels,
256
257
258
259
260
261
        input_mask,
    ):
        model = XLMForSequenceClassification(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
262
263
        result = model(input_ids)
        result = model(input_ids, labels=sequence_labels)
Stas Bekman's avatar
Stas Bekman committed
264
265
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
266

267
    def create_and_check_xlm_token_classif(
268
269
270
271
272
273
274
275
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
276
        choice_labels,
277
278
279
280
281
282
283
        input_mask,
    ):
        config.num_labels = self.num_labels
        model = XLMForTokenClassification(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
284
        result = model(input_ids, attention_mask=input_mask, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
285
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
286

287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
    def create_and_check_xlm_for_multiple_choice(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
        choice_labels,
        input_mask,
    ):
        config.num_choices = self.num_choices
        model = XLMForMultipleChoice(config=config)
        model.to(torch_device)
        model.eval()
        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
Sylvain Gugger's avatar
Sylvain Gugger committed
306
        result = model(
307
308
309
310
311
            multiple_choice_inputs_ids,
            attention_mask=multiple_choice_input_mask,
            token_type_ids=multiple_choice_token_type_ids,
            labels=choice_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
312
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
313

314
315
316
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
317
318
319
320
321
322
323
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
324
            choice_labels,
325
            input_mask,
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths}
        return config, inputs_dict


@require_torch
class XLMModelTest(ModelTesterMixin, unittest.TestCase):

    all_model_classes = (
        (
            XLMModel,
            XLMWithLMHeadModel,
            XLMForQuestionAnswering,
            XLMForSequenceClassification,
            XLMForQuestionAnsweringSimple,
341
            XLMForTokenClassification,
342
            XLMForMultipleChoice,
343
344
345
346
347
348
349
        )
        if is_torch_available()
        else ()
    )
    all_generative_model_classes = (
        (XLMWithLMHeadModel,) if is_torch_available() else ()
    )  # TODO (PVP): Check other models whether language generation is also applicable
thomwolf's avatar
thomwolf committed
350

thomwolf's avatar
thomwolf committed
351
    def setUp(self):
352
        self.model_tester = XLMModelTester(self)
thomwolf's avatar
thomwolf committed
353
        self.config_tester = ConfigTester(self, config_class=XLMConfig, emb_dim=37)
thomwolf's avatar
thomwolf committed
354
355

    def test_config(self):
thomwolf's avatar
thomwolf committed
356
        self.config_tester.run_common_tests()
thomwolf's avatar
thomwolf committed
357

thomwolf's avatar
thomwolf committed
358
359
360
    def test_xlm_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_model(*config_and_inputs)
thomwolf's avatar
thomwolf committed
361

thomwolf's avatar
thomwolf committed
362
363
364
    def test_xlm_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_lm_head(*config_and_inputs)
thomwolf's avatar
thomwolf committed
365

366
367
368
369
    def test_xlm_simple_qa(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_simple_qa(*config_and_inputs)

thomwolf's avatar
thomwolf committed
370
371
372
    def test_xlm_qa(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_qa(*config_and_inputs)
thomwolf's avatar
thomwolf committed
373

thomwolf's avatar
thomwolf committed
374
375
376
    def test_xlm_sequence_classif(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_sequence_classif(*config_and_inputs)
thomwolf's avatar
thomwolf committed
377

378
    def test_xlm_token_classif(self):
379
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
380
        self.model_tester.create_and_check_xlm_token_classif(*config_and_inputs)
381

382
383
384
385
    def test_xlm_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_for_multiple_choice(*config_and_inputs)

386
    @slow
thomwolf's avatar
thomwolf committed
387
    def test_model_from_pretrained(self):
388
        for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
389
            model = XLMModel.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
390
            self.assertIsNotNone(model)
391
392


393
@require_torch
394
395
396
397
class XLMModelLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_xlm_mlm_en_2048(self):
        model = XLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048")
398
        model.to(torch_device)
399
        input_ids = torch.tensor([[14, 447]], dtype=torch.long, device=torch_device)  # the president
400
401
        expected_output_ids = [
            14,
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
        ]  # the president the president the president the president the president the president the president the president the president the president
        # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference
        output_ids = model.generate(input_ids, do_sample=False)
424
        self.assertListEqual(output_ids[0].cpu().numpy().tolist(), expected_output_ids)