modeling_openai.py 36.9 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Copyright 2018 The OpenAI Team Authors and HugginFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OpenAI GPT model."""

18
import collections
thomwolf's avatar
thomwolf committed
19
20
import copy
import json
thomwolf's avatar
thomwolf committed
21
import logging
22
23
24
import math
import os
import shutil
thomwolf's avatar
thomwolf committed
25
26
import tarfile
import tempfile
thomwolf's avatar
thomwolf committed
27
28
import sys
from io import open
thomwolf's avatar
thomwolf committed
29
30
31

import torch
import torch.nn as nn
thomwolf's avatar
thomwolf committed
32
from torch.nn import CrossEntropyLoss
thomwolf's avatar
thomwolf committed
33
34
from torch.nn.parameter import Parameter

thomwolf's avatar
thomwolf committed
35
from .file_utils import cached_path
36
from .modeling import BertLayerNorm as LayerNorm
thomwolf's avatar
thomwolf committed
37

thomwolf's avatar
thomwolf committed
38
39
logger = logging.getLogger(__name__)

40
41
42
PRETRAINED_MODEL_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-pytorch_model.bin"}
PRETRAINED_CONFIG_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-openai_gpt_config.json"}

43
44
45
CONFIG_NAME = "openai_gpt_config.json"
WEIGHTS_NAME = "pytorch_model.bin"

46
47
48
def load_tf_weights_in_openai_gpt(model, openai_checkpoint_folder_path):
    """ Load tf pre-trained weights in a pytorch model (from NumPy arrays here)
    """
49
50
    import re
    import numpy as np
51
52
53
54
55
56
57
58
    print("Loading weights...")
    names = json.load(open(openai_checkpoint_folder_path + '/parameters_names.json', "r", encoding='utf-8'))
    shapes = json.load(open(openai_checkpoint_folder_path + '/params_shapes.json', "r", encoding='utf-8'))
    offsets = np.cumsum([np.prod(shape) for shape in shapes])
    init_params = [np.load(openai_checkpoint_folder_path + '/params_{}.npy'.format(n)) for n in range(10)]
    init_params = np.split(np.concatenate(init_params, 0), offsets)[:-1]
    init_params = [param.reshape(shape) for param, shape in zip(init_params, shapes)]

59
60
61
    # Thsi as used when we had a single embedding matrix for positions and tokens
    # init_params[0] = np.concatenate([init_params[1], init_params[0]], 0)
    # del init_params[1]
62
63
64
    init_params = [arr.squeeze() for arr in init_params]

    try:
65
66
        assert model.tokens_embed.weight.shape == init_params[1].shape
        assert model.positions_embed.weight.shape == init_params[0].shape
67
    except AssertionError as e:
68
69
        e.args += (model.tokens_embed.weight.shape, init_params[1].shape)
        e.args += (model.positions_embed.weight.shape, init_params[0].shape)
70
71
        raise

72
73
    model.tokens_embed.weight.data = torch.from_numpy(init_params[1])
    model.positions_embed.weight.data = torch.from_numpy(init_params[0])
74
    names.pop(0)
75
76
    # Pop position and token embedding arrays
    init_params.pop(0)
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    init_params.pop(0)

    for name, array in zip(names, init_params): # names[1:n_transfer], init_params[1:n_transfer]):
        name = name[6:]  # skip "model/"
        assert name[-2:] == ":0"
        name = name[:-2]
        name = name.split('/')
        pointer = model
        for m_name in name:
            if re.fullmatch(r'[A-Za-z]+\d+', m_name):
                l = re.split(r'(\d+)', m_name)
            else:
                l = [m_name]
            if l[0] == 'g':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'b':
                pointer = getattr(pointer, 'bias')
            elif l[0] == 'w':
                pointer = getattr(pointer, 'weight')
            else:
                pointer = getattr(pointer, l[0])
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        print("Initialize PyTorch weight {}".format(name))
        pointer.data = torch.from_numpy(array)
    return model

thomwolf's avatar
thomwolf committed
115
116
117
118
119
120
121
122
123

def gelu(x):
    return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))


def swish(x):
    return x * torch.sigmoid(x)


124
125
ACT_FNS = {"relu": nn.ReLU, "swish": swish, "gelu": gelu}

thomwolf's avatar
thomwolf committed
126

thomwolf's avatar
thomwolf committed
127
128
129
class OpenAIGPTConfig(object):
    """Configuration class to store the configuration of a `OpenAIGPTModel`.
    """
130
131
132
133
134

    def __init__(
        self,
        vocab_size_or_config_json_file=40478,
        n_special=0,
thomwolf's avatar
thomwolf committed
135
        n_positions=512,
136
137
138
139
140
141
142
143
144
145
        n_ctx=512,
        n_embd=768,
        n_layer=12,
        n_head=12,
        afn="gelu",
        resid_pdrop=0.1,
        embd_pdrop=0.1,
        attn_pdrop=0.1,
        initializer_range=0.02,
    ):
thomwolf's avatar
thomwolf committed
146
147
148
149
150
        """Constructs OpenAIGPTConfig.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `OpenAIGPTModel` or a configuration json file.
            n_special: The number of special tokens to learn during fine-tuning ('[SEP]', '[CLF]', ...)
thomwolf's avatar
thomwolf committed
151
152
            n_positions: Number of positional embeddings.
            n_ctx: Size of the causal mask (usually same as n_positions).
thomwolf's avatar
thomwolf committed
153
154
155
156
157
158
159
160
161
162
163
164
165
166
            n_embd: Dimensionality of the embeddings and hidden states.
            n_layer: Number of hidden layers in the Transformer encoder.
            n_head: Number of attention heads for each attention layer in
                the Transformer encoder.
            afn: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            resid_pdrop: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attn_pdrop: The dropout ratio for the attention
                probabilities.
            embd_pdrop: The dropout ratio for the embeddings.
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
        """
thomwolf's avatar
thomwolf committed
167
168
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
169
            with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader:
thomwolf's avatar
thomwolf committed
170
171
172
173
174
175
176
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.n_special = n_special
            self.n_ctx = n_ctx
thomwolf's avatar
thomwolf committed
177
            self.n_positions = n_positions
thomwolf's avatar
thomwolf committed
178
179
180
181
182
183
184
185
186
            self.n_embd = n_embd
            self.n_layer = n_layer
            self.n_head = n_head
            self.afn = afn
            self.resid_pdrop = resid_pdrop
            self.embd_pdrop = embd_pdrop
            self.attn_pdrop = attn_pdrop
            self.initializer_range = initializer_range
        else:
187
188
189
190
            raise ValueError(
                "First argument must be either a vocabulary size (int)"
                "or the path to a pretrained model config file (str)"
            )
thomwolf's avatar
thomwolf committed
191
192

    @property
193
194
    def total_tokens_embeddings(self):
        return self.vocab_size + self.n_special
thomwolf's avatar
thomwolf committed
195
196
197
198
199
200
201
202
203
204
205
206

    @classmethod
    def from_dict(cls, json_object):
        """Constructs a `OpenAIGPTConfig` from a Python dictionary of parameters."""
        config = OpenAIGPTConfig(vocab_size_or_config_json_file=-1)
        for key, value in json_object.items():
            config.__dict__[key] = value
        return config

    @classmethod
    def from_json_file(cls, json_file):
        """Constructs a `OpenAIGPTConfig` from a json file of parameters."""
207
        with open(json_file, "r", encoding="utf-8") as reader:
thomwolf's avatar
thomwolf committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
            text = reader.read()
        return cls.from_dict(json.loads(text))

    def __repr__(self):
        return str(self.to_json_string())

    def to_dict(self):
        """Serializes this instance to a Python dictionary."""
        output = copy.deepcopy(self.__dict__)
        return output

    def to_json_string(self):
        """Serializes this instance to a JSON string."""
        return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"

223

thomwolf's avatar
thomwolf committed
224
225
226
227
228
229
230
231
class Conv1D(nn.Module):
    def __init__(self, nf, rf, nx):
        super(Conv1D, self).__init__()
        self.rf = rf
        self.nf = nf
        if rf == 1:  # faster 1x1 conv
            w = torch.empty(nx, nf)
            nn.init.normal_(w, std=0.02)
thomwolf's avatar
thomwolf committed
232
233
            self.weight = Parameter(w)
            self.bias = Parameter(torch.zeros(nf))
thomwolf's avatar
thomwolf committed
234
235
236
237
238
239
        else:  # was used to train LM
            raise NotImplementedError

    def forward(self, x):
        if self.rf == 1:
            size_out = x.size()[:-1] + (self.nf,)
thomwolf's avatar
thomwolf committed
240
            x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
thomwolf's avatar
thomwolf committed
241
242
243
244
245
246
247
            x = x.view(*size_out)
        else:
            raise NotImplementedError
        return x


class Attention(nn.Module):
248
    def __init__(self, nx, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
249
250
251
        super(Attention, self).__init__()
        n_state = nx  # in Attention: n_state=768 (nx=n_embd)
        # [switch nx => n_state from Block to Attention to keep identical to TF implem]
252
        assert n_state % config.n_head == 0
thomwolf's avatar
thomwolf committed
253
        self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
254
        self.n_head = config.n_head
thomwolf's avatar
thomwolf committed
255
256
257
258
        self.split_size = n_state
        self.scale = scale
        self.c_attn = Conv1D(n_state * 3, 1, nx)
        self.c_proj = Conv1D(n_state, 1, nx)
259
260
        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
261
262
263
264
265

    def _attn(self, q, k, v):
        w = torch.matmul(q, k)
        if self.scale:
            w = w / math.sqrt(v.size(-1))
thomwolf's avatar
thomwolf committed
266
        # w = w * self.bias + -1e9 * (1 - self.bias)  # TF implem method: mask_attn_weights
thomwolf's avatar
thomwolf committed
267
        # XD: self.b may be larger than w, so we need to crop it
thomwolf's avatar
thomwolf committed
268
        b = self.bias[:, :, : w.size(-2), : w.size(-1)]
thomwolf's avatar
thomwolf committed
269
270
        w = w * b + -1e9 * (1 - b)

thomwolf's avatar
thomwolf committed
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
        w = nn.Softmax(dim=-1)(w)
        w = self.attn_dropout(w)
        return torch.matmul(w, v)

    def merge_heads(self, x):
        x = x.permute(0, 2, 1, 3).contiguous()
        new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
        return x.view(*new_x_shape)  # in Tensorflow implem: fct merge_states

    def split_heads(self, x, k=False):
        new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
        x = x.view(*new_x_shape)  # in Tensorflow implem: fct split_states
        if k:
            return x.permute(0, 2, 3, 1)
        else:
            return x.permute(0, 2, 1, 3)

    def forward(self, x):
        x = self.c_attn(x)
        query, key, value = x.split(self.split_size, dim=2)
        query = self.split_heads(query)
        key = self.split_heads(key, k=True)
        value = self.split_heads(value)
        a = self._attn(query, key, value)
        a = self.merge_heads(a)
        a = self.c_proj(a)
        a = self.resid_dropout(a)
        return a


class MLP(nn.Module):
302
    def __init__(self, n_state, config):  # in MLP: n_state=3072 (4 * n_embd)
thomwolf's avatar
thomwolf committed
303
        super(MLP, self).__init__()
304
        nx = config.n_embd
thomwolf's avatar
thomwolf committed
305
306
        self.c_fc = Conv1D(n_state, 1, nx)
        self.c_proj = Conv1D(nx, 1, n_state)
307
308
        self.act = ACT_FNS[config.afn]
        self.dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
309
310
311
312
313
314
315
316

    def forward(self, x):
        h = self.act(self.c_fc(x))
        h2 = self.c_proj(h)
        return self.dropout(h2)


class Block(nn.Module):
317
    def __init__(self, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
318
        super(Block, self).__init__()
319
320
        nx = config.n_embd
        self.attn = Attention(nx, n_ctx, config, scale)
thomwolf's avatar
thomwolf committed
321
        self.ln_1 = LayerNorm(nx)
322
        self.mlp = MLP(4 * nx, config)
thomwolf's avatar
thomwolf committed
323
324
325
326
327
328
329
330
331
332
        self.ln_2 = LayerNorm(nx)

    def forward(self, x):
        a = self.attn(x)
        n = self.ln_1(x + a)
        m = self.mlp(n)
        h = self.ln_2(n + m)
        return h


thomwolf's avatar
thomwolf committed
333
class OpenAIGPTLMHead(nn.Module):
thomwolf's avatar
thomwolf committed
334
335
    """ Language Model Head for the transformer """

336
    def __init__(self, model_embeddings_weights, config):
thomwolf's avatar
thomwolf committed
337
        super(OpenAIGPTLMHead, self).__init__()
338
        self.n_embd = config.n_embd
thomwolf's avatar
thomwolf committed
339
340
341
342
        self.set_embeddings_weights(model_embeddings_weights)

    def set_embeddings_weights(self, model_embeddings_weights):
        embed_shape = model_embeddings_weights.shape
thomwolf's avatar
thomwolf committed
343
        self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False)
344
        self.decoder.weight = model_embeddings_weights  # Tied weights
thomwolf's avatar
thomwolf committed
345

thomwolf's avatar
thomwolf committed
346
    def forward(self, hidden_state):
thomwolf's avatar
thomwolf committed
347
        # Truncated Language modeling logits (we remove the last token)
thomwolf's avatar
thomwolf committed
348
349
        # h_trunc = h[:, :-1].contiguous().view(-1, self.n_embd)
        lm_logits = self.decoder(hidden_state)
thomwolf's avatar
thomwolf committed
350
351
352
        return lm_logits


thomwolf's avatar
thomwolf committed
353
class OpenAIGPTMultipleChoiceHead(nn.Module):
thomwolf's avatar
thomwolf committed
354
355
    """ Classifier Head for the transformer """

356
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
357
        super(OpenAIGPTMultipleChoiceHead, self).__init__()
358
        self.n_embd = config.n_embd
thomwolf's avatar
thomwolf committed
359
        # self.multiple_choice_token = multiple_choice_token
360
361
        self.dropout = nn.Dropout2d(config.resid_pdrop)  # To reproduce the noise_shape parameter of TF implementation
        self.linear = nn.Linear(config.n_embd, 1)
thomwolf's avatar
thomwolf committed
362

363
        nn.init.normal_(self.linear.weight, std=0.02)
thomwolf's avatar
thomwolf committed
364
365
        nn.init.normal_(self.linear.bias, 0)

366
    def forward(self, hidden_states, mc_token_mask):
thomwolf's avatar
thomwolf committed
367
        # Classification logits
thomwolf's avatar
thomwolf committed
368
        # hidden_states = hidden_states.view(-1, self.n_embd)
369
370
371
        # mc_token_mask = mc_token_mask.view(-1, 1).expand_as(hidden_states)
        mc_token_mask = mc_token_mask.float()
        multiple_choice_h = hidden_states * mc_token_mask.unsqueeze(-1)
thomwolf's avatar
thomwolf committed
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
        multiple_choice_h = multiple_choice_h.sum(dim=-2)
        # flat = x[..., 0].contiguous().view(-1)
        # multiple_choice_h = multiple_choice_h[flat == self.multiple_choice_token, :]
        # multiple_choice_h = multiple_choice_h.view(-1, x.size(1), self.n_embd, 1)
        # # This double transposition is there to replicate the behavior
        # # of the noise_shape argument in the tensorflow
        # # implementation.  For more details, see
        # # https://github.com/huggingface/pytorch-openai-transformer-lm/issues/11
        # multiple_choice_h = self.dropout(multiple_choice_h.transpose(1, 2)).transpose(1, 2)
        # multiple_choice_h = multiple_choice_h.contiguous().view(-1, self.n_embd)
        multiple_choice_logits = self.linear(multiple_choice_h).squeeze(-1)
        return multiple_choice_logits


class OpenAIGPTPreTrainedModel(nn.Module):
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
390

thomwolf's avatar
thomwolf committed
391
392
393
394
395
396
397
398
    def __init__(self, config, *inputs, **kwargs):
        super(OpenAIGPTPreTrainedModel, self).__init__()
        if not isinstance(config, OpenAIGPTConfig):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `OpenAIGPTConfig`. "
                "To create a model from a pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
399
400
                )
            )
thomwolf's avatar
thomwolf committed
401
402
403
404
405
406
407
408
409
410
411
412
413
414
        self.config = config

    def init_weights(self, module):
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()
thomwolf's avatar
thomwolf committed
415

thomwolf's avatar
thomwolf committed
416
417
418
419
    def set_num_special_tokens(self, num_special_tokens):
        pass

    @classmethod
420
421
422
    def from_pretrained(
        cls, pretrained_model_name, num_special_tokens=None, state_dict=None, cache_dir=None, from_tf=False, *inputs, **kwargs
    ):
thomwolf's avatar
thomwolf committed
423
424
425
426
427
428
429
430
431
432
433
        """
        Instantiate a OpenAIGPTPreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.

        Params:
            pretrained_model_name: either:
                - a str with the name of a pre-trained model to load selected in the list of:
                    . `openai-gpt`
                - a path or url to a pretrained model archive containing:
                    . `openai_gpt_config.json` a configuration file for the model
                    . `pytorch_model.bin` a PyTorch dump of a OpenAIGPTModel instance
434
435
436
437
                - a path or url to a pretrained model archive containing:
                    . `bert_config.json` a configuration file for the model
                    . a series of NumPy files containing OpenAI TensorFlow trained weights
            from_tf: should we load the weights from a locally saved TensorFlow checkpoint
thomwolf's avatar
thomwolf committed
438
439
440
441
442
443
444
            cache_dir: an optional path to a folder in which the pre-trained models will be cached.
            state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of pre-trained models
            *inputs, **kwargs: additional input for the specific Bert class
                (ex: num_labels for BertForSequenceClassification)
        """
        if pretrained_model_name in PRETRAINED_MODEL_ARCHIVE_MAP:
            archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name]
445
            config_file = PRETRAINED_CONFIG_ARCHIVE_MAP[pretrained_model_name_or_path]
thomwolf's avatar
thomwolf committed
446
447
        else:
            archive_file = pretrained_model_name
448
            config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
thomwolf's avatar
thomwolf committed
449
450
451
        # redirect to the cache, if necessary
        try:
            resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir)
452
            resolved_config_file = cached_path(config_file, cache_dir=cache_dir)
thomwolf's avatar
thomwolf committed
453
        except EnvironmentError:
thomwolf's avatar
thomwolf committed
454
455
            logger.error(
                "Model name '{}' was not found in model name list ({}). "
456
457
458
459
                "We assumed '{}' was a path or url but couldn't find files {} and {} "
                "at this path or url.".format(
                    pretrained_model_name, ", ".join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()), pretrained_model_name_or_path,
                    archive_file, config_file
460
461
                )
            )
thomwolf's avatar
thomwolf committed
462
            return None
463
464
465
        if resolved_archive_file == archive_file and resolved_config_file == config_file:
            logger.info("loading weights file {}".format(archive_file))
            logger.info("loading configuration file {}".format(config_file))
thomwolf's avatar
thomwolf committed
466
        else:
467
468
469
470
            logger.info("loading weights file {} from cache at {}".format(
                archive_file, resolved_archive_file))
            logger.info("loading configuration file {} from cache at {}".format(
                config_file, resolved_config_file))
thomwolf's avatar
thomwolf committed
471
        # Load config
472
        config = OpenAIGPTConfig.from_json_file(resolved_config_file)
thomwolf's avatar
thomwolf committed
473
474
475
        logger.info("Model config {}".format(config))
        # Instantiate model.
        model = cls(config, *inputs, **kwargs)
476
        if state_dict is None and not from_tf:
477
            state_dict = torch.load(resolved_archive_file, map_location='cpu' if not torch.cuda.is_available() else None)
478
479
        if from_tf:
            # Directly load from a TensorFlow checkpoint (stored as NumPy array)
480
            return load_tf_weights_in_openai_gpt(model, resolved_archive_file)
thomwolf's avatar
thomwolf committed
481
482
483
484
485

        old_keys = []
        new_keys = []
        for key in state_dict.keys():
            new_key = None
thomwolf's avatar
thomwolf committed
486
487
488
489
490
491
            if key.endswith(".g"):
                new_key = key[:-2] + ".weight"
            elif key.endswith(".b"):
                new_key = key[:-2] + ".bias"
            elif key.endswith(".w"):
                new_key = key[:-2] + ".weight"
thomwolf's avatar
thomwolf committed
492
493
494
495
496
497
498
499
500
501
            if new_key:
                old_keys.append(key)
                new_keys.append(new_key)
        for old_key, new_key in zip(old_keys, new_keys):
            state_dict[new_key] = state_dict.pop(old_key)

        missing_keys = []
        unexpected_keys = []
        error_msgs = []
        # copy state_dict so _load_from_state_dict can modify it
502
        metadata = getattr(state_dict, "_metadata", None)
thomwolf's avatar
thomwolf committed
503
504
505
506
        state_dict = state_dict.copy()
        if metadata is not None:
            state_dict._metadata = metadata

507
        def load(module, prefix=""):
thomwolf's avatar
thomwolf committed
508
509
            local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
            module._load_from_state_dict(
510
511
                state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs
            )
thomwolf's avatar
thomwolf committed
512
513
            for name, child in module._modules.items():
                if child is not None:
514
515
                    load(child, prefix + name + ".")

thomwolf's avatar
thomwolf committed
516
517
        start_model = model
        if hasattr(model, "transformer") and all(not s.startswith('transformer.') for s in state_dict.keys()):
thomwolf's avatar
update  
thomwolf committed
518
519
520
            start_model = model.transformer
        load(start_model, prefix="")

thomwolf's avatar
thomwolf committed
521
        if len(missing_keys) > 0:
522
523
524
            logger.info(
                "Weights of {} not initialized from pretrained model: {}".format(model.__class__.__name__, missing_keys)
            )
thomwolf's avatar
thomwolf committed
525
        if len(unexpected_keys) > 0:
526
527
528
            logger.info(
                "Weights from pretrained model not used in {}: {}".format(model.__class__.__name__, unexpected_keys)
            )
thomwolf's avatar
thomwolf committed
529
        if len(error_msgs) > 0:
530
531
532
            raise RuntimeError(
                "Error(s) in loading state_dict for {}:\n\t{}".format(model.__class__.__name__, "\n\t".join(error_msgs))
            )
533

thomwolf's avatar
thomwolf committed
534
        # Add additional embeddings for special tokens if needed
535
536
        # This step also make sure we are still sharing the output and input embeddings after loading weights
        model.set_num_special_tokens(num_special_tokens if num_special_tokens is not None else config.n_special)
thomwolf's avatar
thomwolf committed
537
        return model
thomwolf's avatar
thomwolf committed
538
539


thomwolf's avatar
thomwolf committed
540
class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
541
542
    """OpenAI GPT model ("Improving Language Understanding by Generative Pre-Training").

543
544
545
546
547
548
    OpenAI GPT use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    The embeddings are ordered as follow in the token embeddings matrice:
549
550
551
552
553
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
554
         config.vocab_size + config.n_special - 1]                  ______________________
555

556
557
    where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
        total_tokens_embeddings = config.vocab_size + config.n_special
558
559
560
561
562
563
564
    You should use the associate indices to index the embeddings.

    Params:
        config: a OpenAIGPTConfig class instance with the configuration to build a new model

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
565
            were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[
566
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
567
            with the position indices (selected in the range [0, config.n_positions - 1[.
568
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
569
570
571
572
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589

    Outputs:
        `hidden_states`: the encoded-hidden-states at the top of the model
            as a torch.FloatTensor of size [batch_size, sequence_length, hidden_size]
            (or more generally [d_1, ..., d_n, hidden_size] were d_1 ... d_n are the dimension of input_ids)

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

    config = modeling_openai.OpenAIGPTConfig()

    model = modeling_openai.OpenAIGPTModel(config)
    hidden_states = model(input_ids)
    ```
    """
590

591
592
    def __init__(self, config):
        super(OpenAIGPTModel, self).__init__(config)
593
594
595
        num_tokens = config.vocab_size + config.n_special
        self.tokens_embed = nn.Embedding(num_tokens, config.n_embd)
        self.positions_embed = nn.Embedding(config.n_positions, config.n_embd)
596
597
598
        self.drop = nn.Dropout(config.embd_pdrop)
        block = Block(config.n_ctx, config, scale=True)
        self.h = nn.ModuleList([copy.deepcopy(block) for _ in range(config.n_layer)])
thomwolf's avatar
thomwolf committed
599

thomwolf's avatar
thomwolf committed
600
601
602
603
        self.apply(self.init_weights)
        # nn.init.normal_(self.embed.weight, std=0.02)

    def set_num_special_tokens(self, num_special_tokens):
604
605
606
        " Update input embeddings with new embedding matrice if needed "
        if self.config.n_special == num_special_tokens:
            return
thomwolf's avatar
thomwolf committed
607
608
609
        # Update config
        self.config.n_special = num_special_tokens
        # # Build new embeddings and initialize
610
        old_embed = self.tokens_embed
611
        self.tokens_embed = nn.Embedding(self.config.total_tokens_embeddings, self.config.n_embd)
thomwolf's avatar
thomwolf committed
612
        # Initialize all new embeddings (in particular the special tokens)
613
        self.init_weights(self.tokens_embed)
thomwolf's avatar
thomwolf committed
614
        # Copy word and positional embeddings from the previous weights
615
616
        self.tokens_embed.weight.data[: self.config.vocab_size, :] = old_embed.weight.data[: self.config.vocab_size, :]
        self.tokens_embed.weight.data[-self.config.n_positions :, :] = old_embed.weight.data[-self.config.n_positions :, :]
thomwolf's avatar
thomwolf committed
617

thomwolf's avatar
thomwolf committed
618
619
    def forward(self, input_ids, position_ids=None, token_type_ids=None):
        if position_ids is None:
620
621
622
623
624
            # This was used when we had a single embedding matrice from position and token embeddings
            # start = self.config.vocab_size + self.config.n_special
            # end = start + input_ids.size(-1)
            # position_ids = torch.arange(start, end, dtype=torch.long, device=input_ids.device)
            position_ids = torch.arange(input_ids.size(-1), dtype=torch.long, device=input_ids.device)
thomwolf's avatar
thomwolf committed
625
626
627
628
629
630
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)

        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_ids.size(-1))
        position_ids = position_ids.view(-1, position_ids.size(-1))

631
632
        inputs_embeds = self.tokens_embed(input_ids)
        position_embeds = self.positions_embed(position_ids)
thomwolf's avatar
thomwolf committed
633
634
        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
635
            token_type_embeds = self.tokens_embed(token_type_ids)
thomwolf's avatar
thomwolf committed
636
637
        else:
            token_type_embeds = 0
thomwolf's avatar
thomwolf committed
638
        # Add the position information to the input embeddings
thomwolf's avatar
thomwolf committed
639
640
        # h = e.sum(dim=2)
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
thomwolf's avatar
thomwolf committed
641
        for block in self.h:
thomwolf's avatar
thomwolf committed
642
            hidden_states = block(hidden_states)
thomwolf's avatar
thomwolf committed
643
644
        output_shape = input_shape + (hidden_states.size(-1),)
        return hidden_states.view(*output_shape)
thomwolf's avatar
thomwolf committed
645

646

thomwolf's avatar
thomwolf committed
647
class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
648
649
    """OpenAI GPT model with a Language Modeling head ("Improving Language Understanding by Generative Pre-Training").

650
651
652
653
654
655
    OpenAI GPT use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    The embeddings are ordered as follow in the token embeddings matrice:
656
657
658
659
660
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
661
         config.vocab_size + config.n_special - 1]                  ______________________
662

663
664
665
    where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
        total_tokens_embeddings = config.vocab_size + config.n_special
    You should use the associate indices to index the embeddings.
666
667
668
669
670
671

    Params:
        config: a OpenAIGPTConfig class instance with the configuration to build a new model

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
672
            were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[
673
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
674
            with the position indices (selected in the range [0, config.n_positions - 1[.
675
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
676
677
678
679
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
680
681
682
683
684
685
686
687
        `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
            with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., vocab_size]

    Outputs:
        if `lm_labels` is not `None`:
            Outputs the language modeling loss.
        else:
688
689
            `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, sequence_length, total_tokens_embeddings]
                (or more generally [d_1, ..., d_n, total_tokens_embeddings] were d_1 ... d_n are the dimension of input_ids)
690
691
692
693
694
695
696
697
698
699
700
701

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

    config = modeling_openai.OpenAIGPTConfig()

    model = modeling_openai.OpenAIGPTLMHeadModel(config)
    lm_logits = model(input_ids)
    ```
    """
702

703
704
705
    def __init__(self, config):
        super(OpenAIGPTLMHeadModel, self).__init__(config)
        self.transformer = OpenAIGPTModel(config)
706
        self.lm_head = OpenAIGPTLMHead(self.transformer.tokens_embed.weight, config)
thomwolf's avatar
thomwolf committed
707
708
709
        self.apply(self.init_weights)

    def set_num_special_tokens(self, num_special_tokens):
710
711
712
        """ Update input and output embeddings with new embedding matrice
            Make sure we are sharing the embeddings
        """
thomwolf's avatar
thomwolf committed
713
        self.transformer.set_num_special_tokens(num_special_tokens)
714
        self.lm_head.set_embeddings_weights(self.transformer.tokens_embed.weight)
thomwolf's avatar
thomwolf committed
715
716
717
718
719

    def forward(self, input_ids, position_ids=None, token_type_ids=None, lm_labels=None):
        hidden_states = self.transformer(input_ids, position_ids, token_type_ids)
        lm_logits = self.lm_head(hidden_states)
        if lm_labels is not None:
thomwolf's avatar
thomwolf committed
720
721
            loss_fct = CrossEntropyLoss(ignore_index=-1)
            loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), lm_labels.view(-1))
thomwolf's avatar
thomwolf committed
722
723
            return loss
        return lm_logits
thomwolf's avatar
thomwolf committed
724

725

thomwolf's avatar
thomwolf committed
726
class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
727
728
    """OpenAI GPT model with a Language Modeling and a Multiple Choice heads ("Improving Language Understanding by Generative Pre-Training").

729
730
731
732
733
734
    OpenAI GPT use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    The embeddings are ordered as follow in the token embeddings matrice:
735
736
737
738
739
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
740
         config.vocab_size + config.n_special - 1]                  ______________________
741

742
743
744
    where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
        total_tokens_embeddings = config.vocab_size + config.n_special
    You should use the associate indices to index the embeddings.
745
746
747
748
749

    Params:
        config: a OpenAIGPTConfig class instance with the configuration to build a new model

    Inputs:
750
751
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
            were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[
752
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
753
            with the position indices (selected in the range [0, config.n_positions - 1[.
754
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
755
756
757
758
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
759
        `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, num_choices, sequence_length]
760
761
            with indices selected in [-1, 0, ..., total_tokens_embeddings]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., total_tokens_embeddings]
762
763
764
765
766
767
768
        `multiple_choice_labels`: optional multiple choice labels: torch.LongTensor of shape [batch_size]
            with indices selected in [0, ..., num_choices].

    Outputs:
        if `lm_labels` and `multiple_choice_labels` are not `None`:
            Outputs a tuple of losses with the language modeling loss and the multiple choice loss.
        else: a tuple with
769
            `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, num_choices, sequence_length, total_tokens_embeddings]
770
771
772
773
774
775
            `multiple_choice_logits`: the multiple choice logits as a torch.FloatTensor of size [batch_size, num_choices]

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
776
    mc_token_mask = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
777
778
779
780

    config = modeling_openai.OpenAIGPTConfig()

    model = modeling_openai.OpenAIGPTLMHeadModel(config)
781
    lm_logits, multiple_choice_logits = model(input_ids, mc_token_mask)
782
783
    ```
    """
784

785
786
787
    def __init__(self, config):
        super(OpenAIGPTDoubleHeadsModel, self).__init__(config)
        self.transformer = OpenAIGPTModel(config)
788
        self.lm_head = OpenAIGPTLMHead(self.transformer.tokens_embed.weight, config)
789
        self.multiple_choice_head = OpenAIGPTMultipleChoiceHead(config)
thomwolf's avatar
thomwolf committed
790
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
791

thomwolf's avatar
thomwolf committed
792
    def set_num_special_tokens(self, num_special_tokens):
793
794
795
        """ Update input and output embeddings with new embedding matrice
            Make sure we are sharing the embeddings
        """
thomwolf's avatar
thomwolf committed
796
        self.transformer.set_num_special_tokens(num_special_tokens)
797
        self.lm_head.set_embeddings_weights(self.transformer.tokens_embed.weight)
thomwolf's avatar
thomwolf committed
798

799
    def forward(self, input_ids, mc_token_mask, lm_labels=None, mc_labels=None, token_type_ids=None, position_ids=None):
thomwolf's avatar
thomwolf committed
800
801
        hidden_states = self.transformer(input_ids, position_ids, token_type_ids)
        lm_logits = self.lm_head(hidden_states)
802
        mc_logits = self.multiple_choice_head(hidden_states, mc_token_mask)
thomwolf's avatar
thomwolf committed
803
804
        losses = []
        if lm_labels is not None:
thomwolf's avatar
thomwolf committed
805
806
            loss_fct = CrossEntropyLoss(ignore_index=-1)
            losses.append(loss_fct(lm_logits.view(-1, lm_logits.size(-1)), lm_labels.view(-1)))
807
        if mc_labels is not None:
thomwolf's avatar
thomwolf committed
808
            loss_fct = CrossEntropyLoss()
809
            losses.append(loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1)))
thomwolf's avatar
thomwolf committed
810
811
        if losses:
            return losses
812
        return lm_logits, mc_logits