modeling_bert.py 64.4 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
thomwolf's avatar
thomwolf committed
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
thomwolf's avatar
thomwolf committed
16
"""PyTorch BERT model. """
thomwolf's avatar
thomwolf committed
17

thomwolf's avatar
thomwolf committed
18
from __future__ import absolute_import, division, print_function, unicode_literals
thomwolf's avatar
thomwolf committed
19
20

import logging
thomwolf's avatar
thomwolf committed
21
22
23
import math
import os
import sys
thomwolf's avatar
thomwolf committed
24
25
26

import torch
from torch import nn
27
from torch.nn import CrossEntropyLoss, MSELoss
thomwolf's avatar
thomwolf committed
28

29
30
31
from .modeling_utils import PreTrainedModel, prune_linear_layer
from .configuration_bert import BertConfig
from .file_utils import add_start_docstrings
thomwolf's avatar
thomwolf committed
32
33
34

logger = logging.getLogger(__name__)

35
BERT_PRETRAINED_MODEL_ARCHIVE_MAP = {
36
37
38
39
40
41
42
43
44
45
    'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-pytorch_model.bin",
    'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-pytorch_model.bin",
    'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-pytorch_model.bin",
    'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-pytorch_model.bin",
    'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-pytorch_model.bin",
    'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-pytorch_model.bin",
    'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-pytorch_model.bin",
    'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-pytorch_model.bin",
    'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-pytorch_model.bin",
    'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-pytorch_model.bin",
thomwolf's avatar
thomwolf committed
46
47
    'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-pytorch_model.bin",
    'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-pytorch_model.bin",
thomwolf's avatar
thomwolf committed
48
    'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-pytorch_model.bin",
49
50
    'bert-base-german-dbmdz-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-cased-pytorch_model.bin",
    'bert-base-german-dbmdz-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-uncased-pytorch_model.bin",
51
}
52

R茅mi Louf's avatar
R茅mi Louf committed
53

54
def load_tf_weights_in_bert(model, config, tf_checkpoint_path):
thomwolf's avatar
thomwolf committed
55
    """ Load tf checkpoints in a pytorch model.
56
    """
57
58
59
60
    try:
        import re
        import numpy as np
        import tensorflow as tf
thomwolf's avatar
thomwolf committed
61
    except ImportError:
Kevin Trebing's avatar
Kevin Trebing committed
62
        logger.error("Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
63
64
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
65
    tf_path = os.path.abspath(tf_checkpoint_path)
thomwolf's avatar
thomwolf committed
66
    logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
67
68
69
70
71
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
thomwolf's avatar
thomwolf committed
72
        logger.info("Loading TF weight {} with shape {}".format(name, shape))
73
74
75
76
77
78
79
80
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
        arrays.append(array)

    for name, array in zip(names, arrays):
        name = name.split('/')
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
81
        if any(n in ["adam_v", "adam_m", "global_step"] for n in name):
thomwolf's avatar
thomwolf committed
82
            logger.info("Skipping {}".format("/".join(name)))
83
84
85
86
87
88
89
90
91
92
93
94
95
            continue
        pointer = model
        for m_name in name:
            if re.fullmatch(r'[A-Za-z]+_\d+', m_name):
                l = re.split(r'_(\d+)', m_name)
            else:
                l = [m_name]
            if l[0] == 'kernel' or l[0] == 'gamma':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'output_bias' or l[0] == 'beta':
                pointer = getattr(pointer, 'bias')
            elif l[0] == 'output_weights':
                pointer = getattr(pointer, 'weight')
thomwolf's avatar
thomwolf committed
96
97
            elif l[0] == 'squad':
                pointer = getattr(pointer, 'classifier')
98
            else:
99
100
101
                try:
                    pointer = getattr(pointer, l[0])
                except AttributeError:
thomwolf's avatar
thomwolf committed
102
                    logger.info("Skipping {}".format("/".join(name)))
103
                    continue
104
105
106
107
108
109
110
111
112
113
114
115
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        if m_name[-11:] == '_embeddings':
            pointer = getattr(pointer, 'weight')
        elif m_name == 'kernel':
            array = np.transpose(array)
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
thomwolf's avatar
thomwolf committed
116
        logger.info("Initialize PyTorch weight {}".format(name))
117
118
119
120
        pointer.data = torch.from_numpy(array)
    return model


thomwolf's avatar
thomwolf committed
121
def gelu(x):
Santiago Castro's avatar
Santiago Castro committed
122
    """ Original Implementation of the gelu activation function in Google Bert repo when initially created.
thomwolf's avatar
thomwolf committed
123
124
        For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
        0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
125
        Also see https://arxiv.org/abs/1606.08415
thomwolf's avatar
thomwolf committed
126
127
128
    """
    return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))

R茅mi Louf's avatar
R茅mi Louf committed
129

thomwolf's avatar
thomwolf committed
130
131
132
133
134
def gelu_new(x):
    """ Implementation of the gelu activation function currently in Google Bert repo (identical to OpenAI GPT).
        Also see https://arxiv.org/abs/1606.08415
    """
    return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
thomwolf's avatar
thomwolf committed
135

R茅mi Louf's avatar
R茅mi Louf committed
136

thomwolf's avatar
thomwolf committed
137
138
139
140
def swish(x):
    return x * torch.sigmoid(x)


thomwolf's avatar
thomwolf committed
141
ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish, "gelu_new": gelu_new}
thomwolf's avatar
thomwolf committed
142
143


144
BertLayerNorm = torch.nn.LayerNorm
thomwolf's avatar
thomwolf committed
145

R茅mi Louf's avatar
R茅mi Louf committed
146

thomwolf's avatar
thomwolf committed
147
148
149
150
151
class BertEmbeddings(nn.Module):
    """Construct the embeddings from word, position and token_type embeddings.
    """
    def __init__(self, config):
        super(BertEmbeddings, self).__init__()
152
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0)
153
154
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
thomwolf's avatar
thomwolf committed
155
156
157

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
158
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
159
160
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

thomwolf's avatar
thomwolf committed
161
    def forward(self, input_ids, token_type_ids=None, position_ids=None):
thomwolf's avatar
thomwolf committed
162
        seq_length = input_ids.size(1)
thomwolf's avatar
thomwolf committed
163
164
165
        if position_ids is None:
            position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
thomwolf's avatar
thomwolf committed
166
167
168
169
170
171
172
173
174
175
176
177
178
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        words_embeddings = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = words_embeddings + position_embeddings + token_type_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


R茅mi Louf's avatar
R茅mi Louf committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
class BertSelfAttention(nn.Module):
    def __init__(self, config):
        super(BertSelfAttention, self).__init__()
        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (config.hidden_size, config.num_attention_heads))
        self.output_attentions = config.output_attentions

        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

203
    def forward(self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None):
thomwolf's avatar
thomwolf committed
204
        mixed_query_layer = self.query(hidden_states)
205

206
207
208
        # If this is instantiated as a cross-attention module, the keys
        # and values come from an encoder; the attention mask needs to be
        # such that the encoder's padding tokens are not attended to.
thomwolf's avatar
thomwolf committed
209
210
211
        if encoder_hidden_states is not None:
            mixed_key_layer = self.key(encoder_hidden_states)
            mixed_value_layer = self.value(encoder_hidden_states)
212
            attention_mask = encoder_attention_mask
R茅mi Louf's avatar
R茅mi Louf committed
213
        else:
thomwolf's avatar
thomwolf committed
214
215
            mixed_key_layer = self.key(hidden_states)
            mixed_value_layer = self.value(hidden_states)
R茅mi Louf's avatar
R茅mi Louf committed
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

        query_layer = self.transpose_for_scores(mixed_query_layer)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        value_layer = self.transpose_for_scores(mixed_value_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        if attention_mask is not None:
            # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
            attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        context_layer = torch.matmul(attention_probs, value_layer)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)

        outputs = (context_layer, attention_probs) if self.output_attentions else (context_layer,)
        return outputs


thomwolf's avatar
thomwolf committed
249
250
251
252
class BertSelfOutput(nn.Module):
    def __init__(self, config):
        super(BertSelfOutput, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
253
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
254
255
256
257
258
259
260
261
262
263
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class BertAttention(nn.Module):
thomwolf's avatar
thomwolf committed
264
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
265
        super(BertAttention, self).__init__()
thomwolf's avatar
thomwolf committed
266
        self.self = BertSelfAttention(config)
thomwolf's avatar
thomwolf committed
267
        self.output = BertSelfOutput(config)
268
        self.pruned_heads = set()
thomwolf's avatar
thomwolf committed
269

thomwolf's avatar
thomwolf committed
270
    def prune_heads(self, heads):
thomwolf's avatar
thomwolf committed
271
272
        if len(heads) == 0:
            return
thomwolf's avatar
thomwolf committed
273
        mask = torch.ones(self.self.num_attention_heads, self.self.attention_head_size)
274
        heads = set(heads) - self.pruned_heads  # Convert to set and emove already pruned heads
thomwolf's avatar
thomwolf committed
275
        for head in heads:
276
277
            # Compute how many pruned heads are before the head and move the index accordingly
            head = head - sum(1 if h < head else 0 for h in self.pruned_heads)
thomwolf's avatar
thomwolf committed
278
279
280
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
281

thomwolf's avatar
thomwolf committed
282
283
284
285
        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
thomwolf's avatar
thomwolf committed
286
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
287
288

        # Update hyper params and store pruned heads
thomwolf's avatar
thomwolf committed
289
290
        self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
        self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
291
        self.pruned_heads = self.pruned_heads.union(heads)
thomwolf's avatar
thomwolf committed
292

293
294
    def forward(self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None):
        self_outputs = self.self(hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask)
R茅mi Louf's avatar
R茅mi Louf committed
295
296
297
298
299
        attention_output = self.output(self_outputs[0], hidden_states)
        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
        return outputs


thomwolf's avatar
thomwolf committed
300
301
302
303
class BertIntermediate(nn.Module):
    def __init__(self, config):
        super(BertIntermediate, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
thomwolf's avatar
thomwolf committed
304
305
306
307
        if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act
thomwolf's avatar
thomwolf committed
308
309
310
311
312
313
314
315
316
317
318

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


class BertOutput(nn.Module):
    def __init__(self, config):
        super(BertOutput, self).__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
319
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
320
321
322
323
324
325
326
327
328
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


329
class BertLayer(nn.Module):
thomwolf's avatar
thomwolf committed
330
    def __init__(self, config):
331
        super(BertLayer, self).__init__()
332
        self.attention = BertAttention(config)
thomwolf's avatar
thomwolf committed
333
334
        self.is_decoder = config.is_decoder
        if self.is_decoder:
335
            self.crossattention = BertAttention(config)
R茅mi Louf's avatar
R茅mi Louf committed
336
337
        self.intermediate = BertIntermediate(config)
        self.output = BertOutput(config)
338

339
    def forward(self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None):
thomwolf's avatar
thomwolf committed
340
341
342
        self_attention_outputs = self.attention(hidden_states, attention_mask, head_mask)
        attention_output = self_attention_outputs[0]
        outputs = self_attention_outputs[1:]  # add self attentions if we output attention weights
343

344
345
        if self.is_decoder and encoder_hidden_states is not None:
            cross_attention_outputs = self.crossattention(attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask)
thomwolf's avatar
thomwolf committed
346
347
            attention_output = cross_attention_outputs[0]
            outputs = outputs + cross_attention_outputs[1:]  # add cross attentions if we output attention weights
348

R茅mi Louf's avatar
R茅mi Louf committed
349
        intermediate_output = self.intermediate(attention_output)
R茅mi Louf's avatar
R茅mi Louf committed
350
        layer_output = self.output(intermediate_output, attention_output)
thomwolf's avatar
thomwolf committed
351
        outputs = (layer_output,) + outputs
R茅mi Louf's avatar
R茅mi Louf committed
352
        return outputs
353
354


thomwolf's avatar
thomwolf committed
355
class BertEncoder(nn.Module):
thomwolf's avatar
thomwolf committed
356
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
357
        super(BertEncoder, self).__init__()
thomwolf's avatar
thomwolf committed
358
359
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
360
        self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)])
thomwolf's avatar
thomwolf committed
361

362
    def forward(self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None):
363
364
        all_hidden_states = ()
        all_attentions = ()
365
        for i, layer_module in enumerate(self.layer):
366
            if self.output_hidden_states:
367
                all_hidden_states = all_hidden_states + (hidden_states,)
368

369
            layer_outputs = layer_module(hidden_states, attention_mask, head_mask[i], encoder_hidden_states, encoder_attention_mask)
370
371
            hidden_states = layer_outputs[0]

thomwolf's avatar
thomwolf committed
372
            if self.output_attentions:
373
                all_attentions = all_attentions + (layer_outputs[1],)
374
375
376

        # Add last layer
        if self.output_hidden_states:
377
            all_hidden_states = all_hidden_states + (hidden_states,)
378

379
        outputs = (hidden_states,)
380
        if self.output_hidden_states:
381
            outputs = outputs + (all_hidden_states,)
thomwolf's avatar
thomwolf committed
382
        if self.output_attentions:
383
            outputs = outputs + (all_attentions,)
384
        return outputs  # last-layer hidden state, (all hidden states), (all attentions)
thomwolf's avatar
thomwolf committed
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405


class BertPooler(nn.Module):
    def __init__(self, config):
        super(BertPooler, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


class BertPredictionHeadTransform(nn.Module):
    def __init__(self, config):
        super(BertPredictionHeadTransform, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
thomwolf's avatar
thomwolf committed
406
407
408
409
        if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
            self.transform_act_fn = ACT2FN[config.hidden_act]
        else:
            self.transform_act_fn = config.hidden_act
410
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
411
412
413
414
415
416
417
418
419

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.transform_act_fn(hidden_states)
        hidden_states = self.LayerNorm(hidden_states)
        return hidden_states


class BertLMPredictionHead(nn.Module):
thomwolf's avatar
thomwolf committed
420
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
421
422
423
424
425
        super(BertLMPredictionHead, self).__init__()
        self.transform = BertPredictionHeadTransform(config)

        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
thomwolf's avatar
thomwolf committed
426
427
        self.decoder = nn.Linear(config.hidden_size,
                                 config.vocab_size,
thomwolf's avatar
thomwolf committed
428
                                 bias=False)
429

thomwolf's avatar
thomwolf committed
430
        self.bias = nn.Parameter(torch.zeros(config.vocab_size))
thomwolf's avatar
thomwolf committed
431
432
433
434
435
436
437
438

    def forward(self, hidden_states):
        hidden_states = self.transform(hidden_states)
        hidden_states = self.decoder(hidden_states) + self.bias
        return hidden_states


class BertOnlyMLMHead(nn.Module):
thomwolf's avatar
thomwolf committed
439
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
440
        super(BertOnlyMLMHead, self).__init__()
thomwolf's avatar
thomwolf committed
441
        self.predictions = BertLMPredictionHead(config)
thomwolf's avatar
thomwolf committed
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458

    def forward(self, sequence_output):
        prediction_scores = self.predictions(sequence_output)
        return prediction_scores


class BertOnlyNSPHead(nn.Module):
    def __init__(self, config):
        super(BertOnlyNSPHead, self).__init__()
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, pooled_output):
        seq_relationship_score = self.seq_relationship(pooled_output)
        return seq_relationship_score


class BertPreTrainingHeads(nn.Module):
thomwolf's avatar
thomwolf committed
459
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
460
        super(BertPreTrainingHeads, self).__init__()
thomwolf's avatar
thomwolf committed
461
        self.predictions = BertLMPredictionHead(config)
thomwolf's avatar
thomwolf committed
462
463
464
465
466
467
468
469
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, sequence_output, pooled_output):
        prediction_scores = self.predictions(sequence_output)
        seq_relationship_score = self.seq_relationship(pooled_output)
        return prediction_scores, seq_relationship_score


470
class BertPreTrainedModel(PreTrainedModel):
thomwolf's avatar
thomwolf committed
471
472
473
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
474
    config_class = BertConfig
475
    pretrained_model_archive_map = BERT_PRETRAINED_MODEL_ARCHIVE_MAP
476
477
478
    load_tf_weights = load_tf_weights_in_bert
    base_model_prefix = "bert"

479
480
    def _init_weights(self, module):
        """ Initialize the weights """
thomwolf's avatar
thomwolf committed
481
482
483
484
485
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, BertLayerNorm):
Li Dong's avatar
Li Dong committed
486
487
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
thomwolf's avatar
thomwolf committed
488
489
490
491
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()


thomwolf's avatar
thomwolf committed
492
493
494
495
496
BERT_START_DOCSTRING = r"""    The BERT model was proposed in
    `BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`_
    by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. It's a bidirectional transformer
    pre-trained using a combination of masked language modeling objective and next sentence prediction
    on a large corpus comprising the Toronto Book Corpus and Wikipedia.
497

thomwolf's avatar
thomwolf committed
498
499
    This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
    refer to the PyTorch documentation for all matter related to general usage and behavior.
thomwolf's avatar
thomwolf committed
500

thomwolf's avatar
thomwolf committed
501
502
    .. _`BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`:
        https://arxiv.org/abs/1810.04805
thomwolf's avatar
thomwolf committed
503

thomwolf's avatar
thomwolf committed
504
505
    .. _`torch.nn.Module`:
        https://pytorch.org/docs/stable/nn.html#module
506

thomwolf's avatar
thomwolf committed
507
    Parameters:
R茅mi Louf's avatar
R茅mi Louf committed
508
        config (:class:`~transformers.BertConfig`): Model configuration class with all the parameters of the model.
509
            Initializing with a config file does not load the weights associated with the model, only the configuration.
510
            Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
thomwolf's avatar
thomwolf committed
511
512
513
514
515
516
517
518
519
520
521
"""

BERT_INPUTS_DOCSTRING = r"""
    Inputs:
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
            To match pre-training, BERT input sequence should be formatted with [CLS] and [SEP] tokens as follows:

            (a) For sequence pairs:

                ``tokens:         [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]``
R茅mi Louf's avatar
R茅mi Louf committed
522

thomwolf's avatar
thomwolf committed
523
524
525
526
527
                ``token_type_ids:   0   0  0    0    0     0       0   0   1  1  1  1   1   1``

            (b) For single sequences:

                ``tokens:         [CLS] the dog is hairy . [SEP]``
R茅mi Louf's avatar
R茅mi Louf committed
528

thomwolf's avatar
thomwolf committed
529
                ``token_type_ids:   0   0   0   0  0     0   0``
thomwolf's avatar
thomwolf committed
530
531
532
533

            Bert is a model with absolute position embeddings so it's usually advised to pad the inputs on
            the right rather than the left.

534
535
536
            Indices can be obtained using :class:`transformers.BertTokenizer`.
            See :func:`transformers.PreTrainedTokenizer.encode` and
            :func:`transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
537
538
539
540
        **attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
thomwolf's avatar
thomwolf committed
541
542
543
544
545
        **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Segment token indices to indicate first and second portions of the inputs.
            Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1``
            corresponds to a `sentence B` token
            (see `BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`_ for more details).
546
547
548
        **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of positions of each input sequence tokens in the position embeddings.
            Selected in the range ``[0, config.max_position_embeddings - 1]``.
thomwolf's avatar
thomwolf committed
549
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
thomwolf's avatar
thomwolf committed
550
            Mask to nullify selected heads of the self-attention modules.
thomwolf's avatar
thomwolf committed
551
            Mask values selected in ``[0, 1]``:
thomwolf's avatar
thomwolf committed
552
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
553
554
555
556
557
558
559
560
        **encoder_hidden_states**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``:
            Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model
            is configured as a decoder.
        **encoder_attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
            Mask to avoid performing attention on the padding token indices of the encoder input. This mask
            is used in the cross-attention if the model is configured as a decoder.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
thomwolf's avatar
thomwolf committed
561
562
"""

Julien Chaumond's avatar
Julien Chaumond committed
563
@add_start_docstrings("The bare Bert Model transformer outputting raw hidden-states without any specific head on top.",
thomwolf's avatar
thomwolf committed
564
565
                      BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
class BertModel(BertPreTrainedModel):
566
    r"""
thomwolf's avatar
thomwolf committed
567
568
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
thomwolf's avatar
thomwolf committed
569
570
571
572
573
574
575
576
            Sequence of hidden-states at the output of the last layer of the model.
        **pooler_output**: ``torch.FloatTensor`` of shape ``(batch_size, hidden_size)``
            Last layer hidden-state of the first token of the sequence (classification token)
            further processed by a Linear layer and a Tanh activation function. The Linear
            layer weights are trained from the next sentence prediction (classification)
            objective during Bert pretraining. This output is usually *not* a good summary
            of the semantic content of the input, you're often better with averaging or pooling
            the sequence of hidden-states for the whole input sequence.
thomwolf's avatar
thomwolf committed
577
578
579
580
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
581
582
583
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
584
585
586

    Examples::

wangfei's avatar
wangfei committed
587
588
589
590
591
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertModel.from_pretrained('bert-base-uncased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple
thomwolf's avatar
thomwolf committed
592
593

    """
thomwolf's avatar
thomwolf committed
594
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
595
        super(BertModel, self).__init__(config)
596
        self.config = config
thomwolf's avatar
thomwolf committed
597

thomwolf's avatar
thomwolf committed
598
        self.embeddings = BertEmbeddings(config)
thomwolf's avatar
thomwolf committed
599
        self.encoder = BertEncoder(config)
thomwolf's avatar
thomwolf committed
600
        self.pooler = BertPooler(config)
thomwolf's avatar
thomwolf committed
601

602
        self.init_weights()
thomwolf's avatar
thomwolf committed
603

604
605
    @property
    def input_embeddings(self):
thomwolf's avatar
thomwolf committed
606
        return self.embeddings.word_embeddings
thomwolf's avatar
thomwolf committed
607

608
609
610
611
    @input_embeddings.setter
    def input_embeddings(self, new_embeddings):
        self.embeddings.word_embeddings = new_embeddings

thomwolf's avatar
thomwolf committed
612
    def _prune_heads(self, heads_to_prune):
thomwolf's avatar
thomwolf committed
613
614
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
thomwolf's avatar
thomwolf committed
615
            See base class PreTrainedModel
thomwolf's avatar
thomwolf committed
616
617
        """
        for layer, heads in heads_to_prune.items():
618
            self.encoder.layer[layer].attention.prune_heads(heads)
thomwolf's avatar
thomwolf committed
619

thomwolf's avatar
thomwolf committed
620
    def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None,
621
                head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None):
622
623
624
625
        """ Forward pass on the Model.

        The model can behave as an encoder (with only self-attention) as well
        as a decoder, in which case a layer of cross-attention is added between
626
627
        the self-attention layers, following the architecture described in `Attention is all you need`_ by Ashish Vaswani,
        Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
628

629
630
        To behave as an decoder the model needs to be initialized with the
        `is_decoder` argument of the configuration set to `True`; an
631
        `encoder_hidden_states` is expected as an input to the forward pass.
632

633
634
        .. _`Attention is all you need`:
            https://arxiv.org/abs/1706.03762
635
636

        """
thomwolf's avatar
thomwolf committed
637
638
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids)
R茅mi Louf's avatar
R茅mi Louf committed
639
640
        if encoder_attention_mask is None:
            encoder_attention_mask = torch.ones_like(input_ids)
thomwolf's avatar
thomwolf committed
641
642
643
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

644
645
        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
646
        if attention_mask.dim() == 3:
647
648
            extended_attention_mask = attention_mask[:, None, :, :]

649
650
651
        # Provided a padding mask of dimensions [batch_size, seq_length]
        # - if the model is a decoder, apply a causal mask in addition to the padding mask
        # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
652
        if attention_mask.dim() == 2:
653
654
            if self.config.is_decoder:
                batch_size, seq_length = input_ids.size()
R茅mi Louf's avatar
R茅mi Louf committed
655
                seq_ids = torch.arange(seq_length, device=input_ids.device)
656
                causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
657
                extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
658
659
            else:
                extended_attention_mask = attention_mask[:, None, None, :]
thomwolf's avatar
thomwolf committed
660
661
662
663
664
665

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
R茅mi Louf's avatar
R茅mi Louf committed
666
        extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype)  # fp16 compatibility
thomwolf's avatar
thomwolf committed
667
668
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

R茅mi Louf's avatar
R茅mi Louf committed
669
        # If a 2D ou 3D attention mask is provided for the cross-attention
R茅mi Louf's avatar
R茅mi Louf committed
670
        # we need to make broadcastabe to [batch_size, num_heads, seq_length, seq_length]
R茅mi Louf's avatar
R茅mi Louf committed
671
672
673
674
675
676
677
        if encoder_attention_mask.dim() == 3:
            encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
        if encoder_attention_mask.dim() == 2:
            encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]

        encoder_extended_attention_mask = encoder_extended_attention_mask.to(dtype=next(self.parameters()).dtype)  # fp16 compatibility
        encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0
R茅mi Louf's avatar
R茅mi Louf committed
678

thomwolf's avatar
thomwolf committed
679
        # Prepare head mask if needed
thomwolf's avatar
thomwolf committed
680
        # 1.0 in head_mask indicate we keep the head
thomwolf's avatar
thomwolf committed
681
        # attention_probs has shape bsz x n_heads x N x N
thomwolf's avatar
thomwolf committed
682
683
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
thomwolf's avatar
thomwolf committed
684
685
        if head_mask is not None:
            if head_mask.dim() == 1:
686
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
thomwolf's avatar
thomwolf committed
687
                head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1)
thomwolf's avatar
thomwolf committed
688
            elif head_mask.dim() == 2:
689
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
R茅mi Louf's avatar
R茅mi Louf committed
690
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype)  # switch to fload if need + fp16 compatibility
691
692
        else:
            head_mask = [None] * self.config.num_hidden_layers
thomwolf's avatar
thomwolf committed
693

thomwolf's avatar
thomwolf committed
694
        embedding_output = self.embeddings(input_ids, position_ids=position_ids, token_type_ids=token_type_ids)
695
        encoder_outputs = self.encoder(embedding_output,
thomwolf's avatar
thomwolf committed
696
697
                                       attention_mask=extended_attention_mask,
                                       head_mask=head_mask,
698
                                       encoder_hidden_states=encoder_hidden_states,
R茅mi Louf's avatar
R茅mi Louf committed
699
                                       encoder_attention_mask=encoder_extended_attention_mask)
700
        sequence_output = encoder_outputs[0]
thomwolf's avatar
thomwolf committed
701
        pooled_output = self.pooler(sequence_output)
702

703
        outputs = (sequence_output, pooled_output,) + encoder_outputs[1:]  # add hidden_states and attentions if they are here
704
        return outputs  # sequence_output, pooled_output, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
705
706


thomwolf's avatar
thomwolf committed
707
@add_start_docstrings("""Bert Model with two heads on top as done during the pre-training:
R茅mi Louf's avatar
R茅mi Louf committed
708
709
710
                       a `masked language modeling` head and a `next sentence prediction (classification)` head. """,
                      BERT_START_DOCSTRING,
                      BERT_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
711
class BertForPreTraining(BertPreTrainedModel):
712
    r"""
thomwolf's avatar
thomwolf committed
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
        **masked_lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for computing the masked language modeling loss.
            Indices should be in ``[-1, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
            Tokens with indices set to ``-1`` are ignored (masked), the loss is only computed for the tokens with labels
            in ``[0, ..., config.vocab_size]``
        **next_sentence_label**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see ``input_ids`` docstring)
            Indices should be in ``[0, 1]``.
            ``0`` indicates sequence B is a continuation of sequence A,
            ``1`` indicates sequence B is a random sequence.

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when both ``masked_lm_labels`` and ``next_sentence_label`` are provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss.
        **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **seq_relationship_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, 2)``
            Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
735
736
737
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
738
739
740

    Examples::

wangfei's avatar
wangfei committed
741
742
743
744
745
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertForPreTraining.from_pretrained('bert-base-uncased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        prediction_scores, seq_relationship_scores = outputs[:2]
746

thomwolf's avatar
thomwolf committed
747
    """
thomwolf's avatar
thomwolf committed
748
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
749
        super(BertForPreTraining, self).__init__(config)
750

thomwolf's avatar
thomwolf committed
751
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
752
        self.cls = BertPreTrainingHeads(config)
thomwolf's avatar
thomwolf committed
753

754
        self.init_weights()
thomwolf's avatar
thomwolf committed
755

756
757
758
    @property
    def output_embeddings(self):
        return self.cls.predictions.decoder
thomwolf's avatar
thomwolf committed
759

760
761
762
763
764
765
    def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None,
                masked_lm_labels=None, next_sentence_label=None):

        outputs = self.bert(input_ids,
                            attention_mask=attention_mask,
                            token_type_ids=token_type_ids,
R茅mi Louf's avatar
R茅mi Louf committed
766
                            position_ids=position_ids,
767
                            head_mask=head_mask)
768
769

        sequence_output, pooled_output = outputs[:2]
thomwolf's avatar
thomwolf committed
770
771
        prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)

772
        outputs = (prediction_scores, seq_relationship_score,) + outputs[2:]  # add hidden states and attention if they are here
773

thomwolf's avatar
thomwolf committed
774
775
        if masked_lm_labels is not None and next_sentence_label is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
776
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
777
            next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
thomwolf's avatar
thomwolf committed
778
            total_loss = masked_lm_loss + next_sentence_loss
779
            outputs = (total_loss,) + outputs
780
781

        return outputs  # (loss), prediction_scores, seq_relationship_score, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
782
783


thomwolf's avatar
thomwolf committed
784
@add_start_docstrings("""Bert Model with a `language modeling` head on top. """,
R茅mi Louf's avatar
R茅mi Louf committed
785
786
                      BERT_START_DOCSTRING,
                      BERT_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
787
class BertForMaskedLM(BertPreTrainedModel):
788
    r"""
thomwolf's avatar
thomwolf committed
789
790
791
792
793
        **masked_lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for computing the masked language modeling loss.
            Indices should be in ``[-1, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
            Tokens with indices set to ``-1`` are ignored (masked), the loss is only computed for the tokens with labels
            in ``[0, ..., config.vocab_size]``
794
        **lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
795
796
797
798
            Labels for computing the left-to-right language modeling loss (next word prediction).
            Indices should be in ``[-1, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
            Tokens with indices set to ``-1`` are ignored (masked), the loss is only computed for the tokens with labels
            in ``[0, ..., config.vocab_size]``
thomwolf's avatar
thomwolf committed
799
800

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
R茅mi Louf's avatar
R茅mi Louf committed
801
        **masked_lm_loss**: (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
thomwolf's avatar
thomwolf committed
802
            Masked language modeling loss.
803
        **ltr_lm_loss**: (`optional`, returned when ``lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
R茅mi Louf's avatar
R茅mi Louf committed
804
            Next token prediction loss.
thomwolf's avatar
thomwolf committed
805
806
807
808
809
810
        **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
811
812
813
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
814
815
816

    Examples::

wangfei's avatar
wangfei committed
817
818
819
820
821
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertForMaskedLM.from_pretrained('bert-base-uncased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, masked_lm_labels=input_ids)
        loss, prediction_scores = outputs[:2]
822

thomwolf's avatar
thomwolf committed
823
    """
thomwolf's avatar
thomwolf committed
824
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
825
        super(BertForMaskedLM, self).__init__(config)
thomwolf's avatar
thomwolf committed
826

thomwolf's avatar
thomwolf committed
827
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
828
        self.cls = BertOnlyMLMHead(config)
thomwolf's avatar
thomwolf committed
829

830
        self.init_weights()
thomwolf's avatar
thomwolf committed
831

832
833
834
    @property
    def output_embeddings(self):
        return self.cls.predictions.decoder
thomwolf's avatar
thomwolf committed
835

836
    def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None,
837
                masked_lm_labels=None, encoder_hidden_states=None, encoder_attention_mask=None, lm_labels=None, ):
838
839
840
841

        outputs = self.bert(input_ids,
                            attention_mask=attention_mask,
                            token_type_ids=token_type_ids,
R茅mi Louf's avatar
R茅mi Louf committed
842
                            position_ids=position_ids,
843
844
845
                            head_mask=head_mask,
                            encoder_hidden_states=encoder_hidden_states,
                            encoder_attention_mask=encoder_attention_mask)
thomwolf's avatar
thomwolf committed
846
847

        sequence_output = outputs[0]
thomwolf's avatar
thomwolf committed
848
849
        prediction_scores = self.cls(sequence_output)

wangfei's avatar
wangfei committed
850
        outputs = (prediction_scores,) + outputs[2:]  # Add hidden states and attention if they are here
851
852
853
854
855

        # Although this may seem awkward, BertForMaskedLM supports two scenarios:
        # 1. If a tensor that contains the indices of masked labels is provided,
        #    the cross-entropy is the MLM cross-entropy that measures the likelihood
        #    of predictions for masked words.
856
        # 2. If `lm_labels` is provided we are in a causal scenario where we
857
        #    try to predict the next token for each input in the decoder.
thomwolf's avatar
thomwolf committed
858
        if masked_lm_labels is not None:
859
            loss_fct = CrossEntropyLoss(ignore_index=-1)  # -1 index = padding token
860
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
861
            outputs = (masked_lm_loss,) + outputs
thomwolf's avatar
thomwolf committed
862

863
        if lm_labels is not None:
864
            # we are doing next-token prediction; shift prediction scores and input ids by one
R茅mi Louf's avatar
R茅mi Louf committed
865
            prediction_scores = prediction_scores[:, :-1, :].contiguous()
866
            lm_labels = lm_labels[:, 1:].contiguous()
867
            loss_fct = CrossEntropyLoss(ignore_index=-1)
868
            ltr_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), lm_labels.view(-1))
869
            outputs = (ltr_lm_loss,) + outputs
870

871
        return outputs  # (masked_lm_loss), (ltr_lm_loss), prediction_scores, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
872
873


thomwolf's avatar
thomwolf committed
874
@add_start_docstrings("""Bert Model with a `next sentence prediction (classification)` head on top. """,
R茅mi Louf's avatar
R茅mi Louf committed
875
876
                      BERT_START_DOCSTRING,
                      BERT_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
877
class BertForNextSentencePrediction(BertPreTrainedModel):
878
    r"""
thomwolf's avatar
thomwolf committed
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
        **next_sentence_label**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see ``input_ids`` docstring)
            Indices should be in ``[0, 1]``.
            ``0`` indicates sequence B is a continuation of sequence A,
            ``1`` indicates sequence B is a random sequence.

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``next_sentence_label`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Next sequence prediction (classification) loss.
        **seq_relationship_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, 2)``
            Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
894
895
896
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
897
898
899

    Examples::

wangfei's avatar
wangfei committed
900
901
902
903
904
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertForNextSentencePrediction.from_pretrained('bert-base-uncased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        seq_relationship_scores = outputs[0]
905

thomwolf's avatar
thomwolf committed
906
    """
thomwolf's avatar
thomwolf committed
907
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
908
        super(BertForNextSentencePrediction, self).__init__(config)
thomwolf's avatar
thomwolf committed
909

thomwolf's avatar
thomwolf committed
910
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
911
        self.cls = BertOnlyNSPHead(config)
thomwolf's avatar
thomwolf committed
912

913
        self.init_weights()
thomwolf's avatar
thomwolf committed
914

915
916
917
918
919
920
    def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None,
                next_sentence_label=None):

        outputs = self.bert(input_ids,
                            attention_mask=attention_mask,
                            token_type_ids=token_type_ids,
R茅mi Louf's avatar
R茅mi Louf committed
921
                            position_ids=position_ids,
922
923
                            head_mask=head_mask)

thomwolf's avatar
thomwolf committed
924
925
        pooled_output = outputs[1]

926
        seq_relationship_score = self.cls(pooled_output)
thomwolf's avatar
thomwolf committed
927

928
        outputs = (seq_relationship_score,) + outputs[2:]  # add hidden states and attention if they are here
thomwolf's avatar
thomwolf committed
929
930
        if next_sentence_label is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
931
            next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
932
            outputs = (next_sentence_loss,) + outputs
thomwolf's avatar
thomwolf committed
933
934

        return outputs  # (next_sentence_loss), seq_relationship_score, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
935
936


thomwolf's avatar
thomwolf committed
937
@add_start_docstrings("""Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of
R茅mi Louf's avatar
R茅mi Louf committed
938
939
940
                      the pooled output) e.g. for GLUE tasks. """,
                      BERT_START_DOCSTRING,
                      BERT_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
941
class BertForSequenceClassification(BertPreTrainedModel):
942
    r"""
thomwolf's avatar
thomwolf committed
943
944
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for computing the sequence classification/regression loss.
LysandreJik's avatar
LysandreJik committed
945
            Indices should be in ``[0, ..., config.num_labels - 1]``.
thomwolf's avatar
thomwolf committed
946
947
948
949
950
951
952
953
954
955
956
957
            If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss),
            If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy).

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification (or regression if config.num_labels==1) loss.
        **logits**: ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)``
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
958
959
960
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
961
962
963

    Examples::

wangfei's avatar
wangfei committed
964
965
966
967
968
969
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        labels = torch.tensor([1]).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=labels)
        loss, logits = outputs[:2]
970

thomwolf's avatar
thomwolf committed
971
    """
thomwolf's avatar
thomwolf committed
972
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
973
        super(BertForSequenceClassification, self).__init__(config)
thomwolf's avatar
thomwolf committed
974
        self.num_labels = config.num_labels
thomwolf's avatar
thomwolf committed
975

thomwolf's avatar
thomwolf committed
976
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
977
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
thomwolf's avatar
thomwolf committed
978
        self.classifier = nn.Linear(config.hidden_size, self.config.num_labels)
thomwolf's avatar
thomwolf committed
979

980
        self.init_weights()
thomwolf's avatar
thomwolf committed
981

982
983
984
985
986
987
    def forward(self, input_ids, attention_mask=None, token_type_ids=None,
                position_ids=None, head_mask=None, labels=None):

        outputs = self.bert(input_ids,
                            attention_mask=attention_mask,
                            token_type_ids=token_type_ids,
R茅mi Louf's avatar
R茅mi Louf committed
988
                            position_ids=position_ids,
989
990
                            head_mask=head_mask)

thomwolf's avatar
thomwolf committed
991
992
        pooled_output = outputs[1]

thomwolf's avatar
thomwolf committed
993
994
995
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

996
        outputs = (logits,) + outputs[2:]  # add hidden states and attention if they are here
thomwolf's avatar
thomwolf committed
997

thomwolf's avatar
thomwolf committed
998
        if labels is not None:
999
1000
1001
1002
1003
1004
1005
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1006
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
1007
1008

        return outputs  # (loss), logits, (hidden_states), (attentions)
1009
1010


thomwolf's avatar
thomwolf committed
1011
@add_start_docstrings("""Bert Model with a multiple choice classification head on top (a linear layer on top of
R茅mi Louf's avatar
R茅mi Louf committed
1012
1013
1014
                      the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """,
                      BERT_START_DOCSTRING,
                      BERT_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
1015
class BertForMultipleChoice(BertPreTrainedModel):
1016
    r"""
thomwolf's avatar
thomwolf committed
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for computing the multiple choice classification loss.
            Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension
            of the input tensors. (see `input_ids` above)

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification loss.
        **classification_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices)`` where `num_choices` is the size of the second dimension
            of the input tensors. (see `input_ids` above).
            Classification scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
1032
1033
1034
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
1035
1036
1037

    Examples::

wangfei's avatar
wangfei committed
1038
1039
1040
1041
1042
1043
1044
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertForMultipleChoice.from_pretrained('bert-base-uncased')
        choices = ["Hello, my dog is cute", "Hello, my cat is amazing"]
        input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0)  # Batch size 1, 2 choices
        labels = torch.tensor(1).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=labels)
        loss, classification_scores = outputs[:2]
1045

1046
    """
thomwolf's avatar
thomwolf committed
1047
    def __init__(self, config):
1048
        super(BertForMultipleChoice, self).__init__(config)
thomwolf's avatar
thomwolf committed
1049

thomwolf's avatar
thomwolf committed
1050
        self.bert = BertModel(config)
1051
1052
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, 1)
thomwolf's avatar
thomwolf committed
1053

1054
        self.init_weights()
1055

1056
1057
    def forward(self, input_ids, attention_mask=None, token_type_ids=None,
                position_ids=None, head_mask=None, labels=None):
thomwolf's avatar
thomwolf committed
1058
1059
        num_choices = input_ids.shape[1]

1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
        input_ids = input_ids.view(-1, input_ids.size(-1))
        attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
        token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
        position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None

        outputs = self.bert(input_ids,
                            attention_mask=attention_mask,
                            token_type_ids=token_type_ids,
                            position_ids=position_ids,
                            head_mask=head_mask)

thomwolf's avatar
thomwolf committed
1071
1072
        pooled_output = outputs[1]

1073
1074
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)
thomwolf's avatar
thomwolf committed
1075
        reshaped_logits = logits.view(-1, num_choices)
1076

1077
        outputs = (reshaped_logits,) + outputs[2:]  # add hidden states and attention if they are here
thomwolf's avatar
thomwolf committed
1078

1079
1080
1081
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(reshaped_logits, labels)
1082
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
1083
1084

        return outputs  # (loss), reshaped_logits, (hidden_states), (attentions)
1085
1086


thomwolf's avatar
thomwolf committed
1087
@add_start_docstrings("""Bert Model with a token classification head on top (a linear layer on top of
R茅mi Louf's avatar
R茅mi Louf committed
1088
1089
1090
                      the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """,
                      BERT_START_DOCSTRING,
                      BERT_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
1091
class BertForTokenClassification(BertPreTrainedModel):
1092
    r"""
thomwolf's avatar
thomwolf committed
1093
1094
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for computing the token classification loss.
LysandreJik's avatar
LysandreJik committed
1095
            Indices should be in ``[0, ..., config.num_labels - 1]``.
thomwolf's avatar
thomwolf committed
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification loss.
        **scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.num_labels)``
            Classification scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
1106
1107
1108
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
1109
1110
1111

    Examples::

wangfei's avatar
wangfei committed
1112
1113
1114
1115
1116
1117
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertForTokenClassification.from_pretrained('bert-base-uncased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        labels = torch.tensor([1] * input_ids.size(1)).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=labels)
        loss, scores = outputs[:2]
1118

1119
    """
thomwolf's avatar
thomwolf committed
1120
    def __init__(self, config):
1121
        super(BertForTokenClassification, self).__init__(config)
thomwolf's avatar
thomwolf committed
1122
        self.num_labels = config.num_labels
thomwolf's avatar
thomwolf committed
1123

thomwolf's avatar
thomwolf committed
1124
        self.bert = BertModel(config)
1125
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
thomwolf's avatar
thomwolf committed
1126
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)
thomwolf's avatar
thomwolf committed
1127

1128
        self.init_weights()
1129

1130
1131
1132
1133
1134
1135
    def forward(self, input_ids, attention_mask=None, token_type_ids=None,
                position_ids=None, head_mask=None, labels=None):

        outputs = self.bert(input_ids,
                            attention_mask=attention_mask,
                            token_type_ids=token_type_ids,
R茅mi Louf's avatar
R茅mi Louf committed
1136
                            position_ids=position_ids,
1137
1138
                            head_mask=head_mask)

thomwolf's avatar
thomwolf committed
1139
1140
        sequence_output = outputs[0]

1141
1142
        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)
1143

1144
        outputs = (logits,) + outputs[2:]  # add hidden states and attention if they are here
1145
1146
        if labels is not None:
            loss_fct = CrossEntropyLoss()
1147
1148
1149
1150
1151
1152
1153
1154
            # Only keep active parts of the loss
            if attention_mask is not None:
                active_loss = attention_mask.view(-1) == 1
                active_logits = logits.view(-1, self.num_labels)[active_loss]
                active_labels = labels.view(-1)[active_loss]
                loss = loss_fct(active_logits, active_labels)
            else:
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1155
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
1156

thomwolf's avatar
thomwolf committed
1157
        return outputs  # (loss), scores, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
1158
1159


thomwolf's avatar
thomwolf committed
1160
@add_start_docstrings("""Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of
R茅mi Louf's avatar
R茅mi Louf committed
1161
1162
1163
                      the hidden-states output to compute `span start logits` and `span end logits`). """,
                      BERT_START_DOCSTRING,
                      BERT_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
1164
class BertForQuestionAnswering(BertPreTrainedModel):
1165
    r"""
thomwolf's avatar
thomwolf committed
1166
        **start_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
thomwolf's avatar
thomwolf committed
1167
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
thomwolf's avatar
thomwolf committed
1168
1169
1170
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.
        **end_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
thomwolf's avatar
thomwolf committed
1171
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
thomwolf's avatar
thomwolf committed
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
        **start_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)``
            Span-start scores (before SoftMax).
        **end_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)``
            Span-end scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
1186
1187
1188
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
1189
1190
1191

    Examples::

wangfei's avatar
wangfei committed
1192
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
        model = BertForQuestionAnswering.from_pretrained('bert-large-uncased-whole-word-masking-finetuned-squad')
        question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
        input_text = "[CLS] " + question + " [SEP] " + text + " [SEP]"
        input_ids = tokenizer.encode(input_text)
        token_type_ids = [0 if i <= input_ids.index(102) else 1 for i in range(len(input_ids))] 
        start_scores, end_scores = model(torch.tensor([input_ids]), token_type_ids=torch.tensor([token_type_ids]))
        all_tokens = tokenizer.convert_ids_to_tokens(input_ids)  
        print(' '.join(all_tokens[torch.argmax(start_scores) : torch.argmax(end_scores)+1]))
        # a nice puppet

1203

thomwolf's avatar
thomwolf committed
1204
    """
thomwolf's avatar
thomwolf committed
1205
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
1206
        super(BertForQuestionAnswering, self).__init__(config)
thomwolf's avatar
thomwolf committed
1207
1208
1209
1210
        self.num_labels = config.num_labels

        self.bert = BertModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
thomwolf's avatar
thomwolf committed
1211

1212
        self.init_weights()
thomwolf's avatar
thomwolf committed
1213

1214
1215
1216
1217
1218
1219
    def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None,
                start_positions=None, end_positions=None):

        outputs = self.bert(input_ids,
                            attention_mask=attention_mask,
                            token_type_ids=token_type_ids,
R茅mi Louf's avatar
R茅mi Louf committed
1220
                            position_ids=position_ids,
1221
1222
                            head_mask=head_mask)

thomwolf's avatar
thomwolf committed
1223
1224
        sequence_output = outputs[0]

thomwolf's avatar
thomwolf committed
1225
1226
1227
1228
1229
        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

1230
        outputs = (start_logits, end_logits,) + outputs[2:]
thomwolf's avatar
thomwolf committed
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2
1246
            outputs = (total_loss,) + outputs
thomwolf's avatar
thomwolf committed
1247
1248

        return outputs  # (loss), start_logits, end_logits, (hidden_states), (attentions)