modeling_bert.py 71 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
thomwolf's avatar
thomwolf committed
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
thomwolf's avatar
thomwolf committed
16
"""PyTorch BERT model. """
thomwolf's avatar
thomwolf committed
17

thomwolf's avatar
thomwolf committed
18
from __future__ import absolute_import, division, print_function, unicode_literals
thomwolf's avatar
thomwolf committed
19
20

import logging
thomwolf's avatar
thomwolf committed
21
22
23
import math
import os
import sys
thomwolf's avatar
thomwolf committed
24
25
26

import torch
from torch import nn
27
from torch.nn import CrossEntropyLoss, MSELoss
thomwolf's avatar
thomwolf committed
28

29
30
31
from .modeling_utils import PreTrainedModel, prune_linear_layer
from .configuration_bert import BertConfig
from .file_utils import add_start_docstrings
thomwolf's avatar
thomwolf committed
32
33
34

logger = logging.getLogger(__name__)

35
BERT_PRETRAINED_MODEL_ARCHIVE_MAP = {
36
37
38
39
40
41
42
43
44
45
    'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-pytorch_model.bin",
    'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-pytorch_model.bin",
    'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-pytorch_model.bin",
    'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-pytorch_model.bin",
    'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-pytorch_model.bin",
    'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-pytorch_model.bin",
    'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-pytorch_model.bin",
    'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-pytorch_model.bin",
    'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-pytorch_model.bin",
    'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-pytorch_model.bin",
thomwolf's avatar
thomwolf committed
46
47
    'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-pytorch_model.bin",
    'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-pytorch_model.bin",
thomwolf's avatar
thomwolf committed
48
    'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-pytorch_model.bin",
49
}
50

Rémi Louf's avatar
Rémi Louf committed
51

52
def load_tf_weights_in_bert(model, config, tf_checkpoint_path):
thomwolf's avatar
thomwolf committed
53
    """ Load tf checkpoints in a pytorch model.
54
    """
55
56
57
58
    try:
        import re
        import numpy as np
        import tensorflow as tf
thomwolf's avatar
thomwolf committed
59
    except ImportError:
Kevin Trebing's avatar
Kevin Trebing committed
60
        logger.error("Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
61
62
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
63
    tf_path = os.path.abspath(tf_checkpoint_path)
thomwolf's avatar
thomwolf committed
64
    logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
65
66
67
68
69
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
thomwolf's avatar
thomwolf committed
70
        logger.info("Loading TF weight {} with shape {}".format(name, shape))
71
72
73
74
75
76
77
78
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
        arrays.append(array)

    for name, array in zip(names, arrays):
        name = name.split('/')
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
79
        if any(n in ["adam_v", "adam_m", "global_step"] for n in name):
thomwolf's avatar
thomwolf committed
80
            logger.info("Skipping {}".format("/".join(name)))
81
82
83
84
85
86
87
88
89
90
91
92
93
            continue
        pointer = model
        for m_name in name:
            if re.fullmatch(r'[A-Za-z]+_\d+', m_name):
                l = re.split(r'_(\d+)', m_name)
            else:
                l = [m_name]
            if l[0] == 'kernel' or l[0] == 'gamma':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'output_bias' or l[0] == 'beta':
                pointer = getattr(pointer, 'bias')
            elif l[0] == 'output_weights':
                pointer = getattr(pointer, 'weight')
thomwolf's avatar
thomwolf committed
94
95
            elif l[0] == 'squad':
                pointer = getattr(pointer, 'classifier')
96
            else:
97
98
99
                try:
                    pointer = getattr(pointer, l[0])
                except AttributeError:
thomwolf's avatar
thomwolf committed
100
                    logger.info("Skipping {}".format("/".join(name)))
101
                    continue
102
103
104
105
106
107
108
109
110
111
112
113
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        if m_name[-11:] == '_embeddings':
            pointer = getattr(pointer, 'weight')
        elif m_name == 'kernel':
            array = np.transpose(array)
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
thomwolf's avatar
thomwolf committed
114
        logger.info("Initialize PyTorch weight {}".format(name))
115
116
117
118
        pointer.data = torch.from_numpy(array)
    return model


thomwolf's avatar
thomwolf committed
119
def gelu(x):
Santiago Castro's avatar
Santiago Castro committed
120
    """ Original Implementation of the gelu activation function in Google Bert repo when initially created.
thomwolf's avatar
thomwolf committed
121
122
        For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
        0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
123
        Also see https://arxiv.org/abs/1606.08415
thomwolf's avatar
thomwolf committed
124
125
126
    """
    return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))

Rémi Louf's avatar
Rémi Louf committed
127

thomwolf's avatar
thomwolf committed
128
129
130
131
132
def gelu_new(x):
    """ Implementation of the gelu activation function currently in Google Bert repo (identical to OpenAI GPT).
        Also see https://arxiv.org/abs/1606.08415
    """
    return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
thomwolf's avatar
thomwolf committed
133

Rémi Louf's avatar
Rémi Louf committed
134

thomwolf's avatar
thomwolf committed
135
136
137
138
def swish(x):
    return x * torch.sigmoid(x)


thomwolf's avatar
thomwolf committed
139
ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish, "gelu_new": gelu_new}
thomwolf's avatar
thomwolf committed
140
141


142
BertLayerNorm = torch.nn.LayerNorm
thomwolf's avatar
thomwolf committed
143

Rémi Louf's avatar
Rémi Louf committed
144

thomwolf's avatar
thomwolf committed
145
146
147
148
149
class BertEmbeddings(nn.Module):
    """Construct the embeddings from word, position and token_type embeddings.
    """
    def __init__(self, config):
        super(BertEmbeddings, self).__init__()
150
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0)
151
152
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
thomwolf's avatar
thomwolf committed
153
154
155

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
156
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
157
158
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

thomwolf's avatar
thomwolf committed
159
    def forward(self, input_ids, token_type_ids=None, position_ids=None):
thomwolf's avatar
thomwolf committed
160
        seq_length = input_ids.size(1)
thomwolf's avatar
thomwolf committed
161
162
163
        if position_ids is None:
            position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
thomwolf's avatar
thomwolf committed
164
165
166
167
168
169
170
171
172
173
174
175
176
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        words_embeddings = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = words_embeddings + position_embeddings + token_type_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


Rémi Louf's avatar
Rémi Louf committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
class BertSelfAttention(nn.Module):
    def __init__(self, config):
        super(BertSelfAttention, self).__init__()
        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (config.hidden_size, config.num_attention_heads))
        self.output_attentions = config.output_attentions

        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

Rémi Louf's avatar
Rémi Louf committed
201
    def forward(self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None):
Rémi Louf's avatar
Rémi Louf committed
202
203
        mixed_key_layer = self.key(hidden_states)
        mixed_value_layer = self.value(hidden_states)
Rémi Louf's avatar
Rémi Louf committed
204
205
206
207
        if encoder_hidden_states:  # if encoder-decoder attention
            mixed_query_layer = self.query(encoder_hidden_states)
        else:
            mixed_query_layer = self.query(hidden_states)
Rémi Louf's avatar
Rémi Louf committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

        query_layer = self.transpose_for_scores(mixed_query_layer)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        value_layer = self.transpose_for_scores(mixed_value_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        if attention_mask is not None:
            # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
            attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        context_layer = torch.matmul(attention_probs, value_layer)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)

        outputs = (context_layer, attention_probs) if self.output_attentions else (context_layer,)
        return outputs


thomwolf's avatar
thomwolf committed
241
242
243
244
class BertSelfOutput(nn.Module):
    def __init__(self, config):
        super(BertSelfOutput, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
245
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
246
247
248
249
250
251
252
253
254
255
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class BertAttention(nn.Module):
thomwolf's avatar
thomwolf committed
256
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
257
        super(BertAttention, self).__init__()
thomwolf's avatar
thomwolf committed
258
        self.self = BertSelfAttention(config)
thomwolf's avatar
thomwolf committed
259
        self.output = BertSelfOutput(config)
260
        self.pruned_heads = set()
thomwolf's avatar
thomwolf committed
261

thomwolf's avatar
thomwolf committed
262
    def prune_heads(self, heads):
thomwolf's avatar
thomwolf committed
263
264
        if len(heads) == 0:
            return
thomwolf's avatar
thomwolf committed
265
        mask = torch.ones(self.self.num_attention_heads, self.self.attention_head_size)
266
        heads = set(heads) - self.pruned_heads  # Convert to set and emove already pruned heads
thomwolf's avatar
thomwolf committed
267
        for head in heads:
268
269
            # Compute how many pruned heads are before the head and move the index accordingly
            head = head - sum(1 if h < head else 0 for h in self.pruned_heads)
thomwolf's avatar
thomwolf committed
270
271
272
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
273

thomwolf's avatar
thomwolf committed
274
275
276
277
        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
thomwolf's avatar
thomwolf committed
278
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
279
280

        # Update hyper params and store pruned heads
thomwolf's avatar
thomwolf committed
281
282
        self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
        self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
283
        self.pruned_heads = self.pruned_heads.union(heads)
thomwolf's avatar
thomwolf committed
284

Rémi Louf's avatar
Rémi Louf committed
285
286
    def forward(self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None):
        self_outputs = self.self(hidden_states, attention_mask, head_mask, encoder_hidden_states)
Rémi Louf's avatar
Rémi Louf committed
287
288
289
290
291
        attention_output = self.output(self_outputs[0], hidden_states)
        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
        return outputs


thomwolf's avatar
thomwolf committed
292
293
294
295
class BertIntermediate(nn.Module):
    def __init__(self, config):
        super(BertIntermediate, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
thomwolf's avatar
thomwolf committed
296
297
298
299
        if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act
thomwolf's avatar
thomwolf committed
300
301
302
303
304
305
306
307
308
309
310

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


class BertOutput(nn.Module):
    def __init__(self, config):
        super(BertOutput, self).__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
311
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
312
313
314
315
316
317
318
319
320
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


321
class BertEncoderLayer(nn.Module):
thomwolf's avatar
thomwolf committed
322
    def __init__(self, config):
323
        super(BertEncoderLayer, self).__init__()
thomwolf's avatar
thomwolf committed
324
        self.attention = BertAttention(config)
thomwolf's avatar
thomwolf committed
325
326
327
        self.intermediate = BertIntermediate(config)
        self.output = BertOutput(config)

thomwolf's avatar
thomwolf committed
328
    def forward(self, hidden_states, attention_mask=None, head_mask=None):
Rémi Louf's avatar
Rémi Louf committed
329
        attention_outputs = self.attention(hidden_states, attention_mask, head_mask)
thomwolf's avatar
thomwolf committed
330
331
        attention_output = attention_outputs[0]
        intermediate_output = self.intermediate(attention_output)
thomwolf's avatar
thomwolf committed
332
        layer_output = self.output(intermediate_output, attention_output)
333
        outputs = (layer_output,) + attention_outputs[1:]  # add attentions if we output them
334
        return outputs
thomwolf's avatar
thomwolf committed
335
336


337
338
class BertDecoderLayer(nn.Module):
    def __init__(self, config):
339
        super(BertDecoderLayer, self).__init__()
Rémi Louf's avatar
Rémi Louf committed
340
        self.self_attention = BertAttention(config)
Rémi Louf's avatar
Rémi Louf committed
341
        self.attention = BertDecoderAttention(config)
Rémi Louf's avatar
Rémi Louf committed
342
343
        self.intermediate = BertIntermediate(config)
        self.output = BertOutput(config)
344

Rémi Louf's avatar
Rémi Louf committed
345
    def forward(self, hidden_states, encoder_outputs, attention_mask=None, head_mask=None):
Rémi Louf's avatar
Rémi Louf committed
346
        self_attention_outputs = self.self_attention(hidden_states, attention_mask, head_mask)
Rémi Louf's avatar
Rémi Louf committed
347
        self_attention_output = self_attention_outputs[0]
Rémi Louf's avatar
Rémi Louf committed
348
349
350
        attention_outputs = self.attention(query=self_attention_output,
                                           key=encoder_outputs,
                                           value=encoder_outputs,
Rémi Louf's avatar
Rémi Louf committed
351
352
353
354
355
356
357
                                           attention_mask=attention_mask,
                                           head_mask=head_mask)
        attention_output = attention_outputs[0]
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
        outputs = (layer_output,) + attention_outputs[1:]
        return outputs
358
359


thomwolf's avatar
thomwolf committed
360
class BertEncoder(nn.Module):
thomwolf's avatar
thomwolf committed
361
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
362
        super(BertEncoder, self).__init__()
thomwolf's avatar
thomwolf committed
363
364
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
365
        self.layer = nn.ModuleList([BertEncoderLayer(config) for _ in range(config.num_hidden_layers)])
thomwolf's avatar
thomwolf committed
366

thomwolf's avatar
thomwolf committed
367
    def forward(self, hidden_states, attention_mask=None, head_mask=None):
368
369
        all_hidden_states = ()
        all_attentions = ()
370
        for i, layer_module in enumerate(self.layer):
371
            if self.output_hidden_states:
372
                all_hidden_states = all_hidden_states + (hidden_states,)
373
374
375
376

            layer_outputs = layer_module(hidden_states, attention_mask, head_mask[i])
            hidden_states = layer_outputs[0]

thomwolf's avatar
thomwolf committed
377
            if self.output_attentions:
378
                all_attentions = all_attentions + (layer_outputs[1],)
379
380
381

        # Add last layer
        if self.output_hidden_states:
382
            all_hidden_states = all_hidden_states + (hidden_states,)
383

384
        outputs = (hidden_states,)
385
        if self.output_hidden_states:
386
            outputs = outputs + (all_hidden_states,)
thomwolf's avatar
thomwolf committed
387
        if self.output_attentions:
388
            outputs = outputs + (all_attentions,)
389
        return outputs  # last-layer hidden state, (all hidden states), (all attentions)
thomwolf's avatar
thomwolf committed
390
391


392
393
class BertDecoder(nn.Module):
    def __init__(self, config):
Rémi Louf's avatar
Rémi Louf committed
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
        super(BertDecoder, self).__init__()
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
        self.layers = nn.ModuleList([BertEncoderLayer(config) for _ in range(config.num_hidden_layers)])

    def forward(self, hidden_states, encoder_outputs, attention_mask=None, head_mask=None):
        all_hidden_states = ()
        all_attentions = ()
        for i, layer_module in enumerate(self.layer):
            if self.output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            layer_outputs = layer_module(hidden_states, attention_mask, head_mask[i])
            if self.output_attentions:
                all_attentions = all_attentions + (layer_outputs[1],)

            hidden_states = layer_outputs[0]
411

Rémi Louf's avatar
Rémi Louf committed
412
413
414
415
416
417
418
419
420
421
        # Add last layer
        if self.output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        outputs = (hidden_states,)
        if self.output_hidden_states:
            outputs = outputs + (all_hidden_states,)
        if self.output_attentions:
            outputs = outputs + (all_attentions,)
        return outputs  # last-layer hidden state, (all hidden states), (all attentions)
422
423


thomwolf's avatar
thomwolf committed
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
class BertPooler(nn.Module):
    def __init__(self, config):
        super(BertPooler, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


class BertPredictionHeadTransform(nn.Module):
    def __init__(self, config):
        super(BertPredictionHeadTransform, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
thomwolf's avatar
thomwolf committed
443
444
445
446
        if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
            self.transform_act_fn = ACT2FN[config.hidden_act]
        else:
            self.transform_act_fn = config.hidden_act
447
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
448
449
450
451
452
453
454
455
456

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.transform_act_fn(hidden_states)
        hidden_states = self.LayerNorm(hidden_states)
        return hidden_states


class BertLMPredictionHead(nn.Module):
thomwolf's avatar
thomwolf committed
457
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
458
459
460
461
462
        super(BertLMPredictionHead, self).__init__()
        self.transform = BertPredictionHeadTransform(config)

        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
thomwolf's avatar
thomwolf committed
463
464
        self.decoder = nn.Linear(config.hidden_size,
                                 config.vocab_size,
thomwolf's avatar
thomwolf committed
465
                                 bias=False)
466

thomwolf's avatar
thomwolf committed
467
        self.bias = nn.Parameter(torch.zeros(config.vocab_size))
thomwolf's avatar
thomwolf committed
468
469
470
471
472
473
474
475

    def forward(self, hidden_states):
        hidden_states = self.transform(hidden_states)
        hidden_states = self.decoder(hidden_states) + self.bias
        return hidden_states


class BertOnlyMLMHead(nn.Module):
thomwolf's avatar
thomwolf committed
476
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
477
        super(BertOnlyMLMHead, self).__init__()
thomwolf's avatar
thomwolf committed
478
        self.predictions = BertLMPredictionHead(config)
thomwolf's avatar
thomwolf committed
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

    def forward(self, sequence_output):
        prediction_scores = self.predictions(sequence_output)
        return prediction_scores


class BertOnlyNSPHead(nn.Module):
    def __init__(self, config):
        super(BertOnlyNSPHead, self).__init__()
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, pooled_output):
        seq_relationship_score = self.seq_relationship(pooled_output)
        return seq_relationship_score


class BertPreTrainingHeads(nn.Module):
thomwolf's avatar
thomwolf committed
496
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
497
        super(BertPreTrainingHeads, self).__init__()
thomwolf's avatar
thomwolf committed
498
        self.predictions = BertLMPredictionHead(config)
thomwolf's avatar
thomwolf committed
499
500
501
502
503
504
505
506
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, sequence_output, pooled_output):
        prediction_scores = self.predictions(sequence_output)
        seq_relationship_score = self.seq_relationship(pooled_output)
        return prediction_scores, seq_relationship_score


507
class BertPreTrainedModel(PreTrainedModel):
thomwolf's avatar
thomwolf committed
508
509
510
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
511
    config_class = BertConfig
512
    pretrained_model_archive_map = BERT_PRETRAINED_MODEL_ARCHIVE_MAP
513
514
515
    load_tf_weights = load_tf_weights_in_bert
    base_model_prefix = "bert"

516
517
    def _init_weights(self, module):
        """ Initialize the weights """
thomwolf's avatar
thomwolf committed
518
519
520
521
522
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, BertLayerNorm):
Li Dong's avatar
Li Dong committed
523
524
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
thomwolf's avatar
thomwolf committed
525
526
527
528
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()


thomwolf's avatar
thomwolf committed
529
530
531
532
533
BERT_START_DOCSTRING = r"""    The BERT model was proposed in
    `BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`_
    by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. It's a bidirectional transformer
    pre-trained using a combination of masked language modeling objective and next sentence prediction
    on a large corpus comprising the Toronto Book Corpus and Wikipedia.
534

thomwolf's avatar
thomwolf committed
535
536
    This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
    refer to the PyTorch documentation for all matter related to general usage and behavior.
thomwolf's avatar
thomwolf committed
537

thomwolf's avatar
thomwolf committed
538
539
    .. _`BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`:
        https://arxiv.org/abs/1810.04805
thomwolf's avatar
thomwolf committed
540

thomwolf's avatar
thomwolf committed
541
542
    .. _`torch.nn.Module`:
        https://pytorch.org/docs/stable/nn.html#module
543

thomwolf's avatar
thomwolf committed
544
    Parameters:
Rémi Louf's avatar
Rémi Louf committed
545
        config (:class:`~transformers.BertConfig`): Model configuration class with all the parameters of the model.
546
            Initializing with a config file does not load the weights associated with the model, only the configuration.
547
            Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
thomwolf's avatar
thomwolf committed
548
549
550
551
552
553
554
555
556
557
558
"""

BERT_INPUTS_DOCSTRING = r"""
    Inputs:
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
            To match pre-training, BERT input sequence should be formatted with [CLS] and [SEP] tokens as follows:

            (a) For sequence pairs:

                ``tokens:         [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]``
Rémi Louf's avatar
Rémi Louf committed
559

thomwolf's avatar
thomwolf committed
560
561
562
563
564
                ``token_type_ids:   0   0  0    0    0     0       0   0   1  1  1  1   1   1``

            (b) For single sequences:

                ``tokens:         [CLS] the dog is hairy . [SEP]``
Rémi Louf's avatar
Rémi Louf committed
565

thomwolf's avatar
thomwolf committed
566
                ``token_type_ids:   0   0   0   0  0     0   0``
thomwolf's avatar
thomwolf committed
567
568
569
570

            Bert is a model with absolute position embeddings so it's usually advised to pad the inputs on
            the right rather than the left.

571
572
573
            Indices can be obtained using :class:`transformers.BertTokenizer`.
            See :func:`transformers.PreTrainedTokenizer.encode` and
            :func:`transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
574
575
576
577
        **attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
thomwolf's avatar
thomwolf committed
578
579
580
581
582
        **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Segment token indices to indicate first and second portions of the inputs.
            Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1``
            corresponds to a `sentence B` token
            (see `BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`_ for more details).
583
584
585
        **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of positions of each input sequence tokens in the position embeddings.
            Selected in the range ``[0, config.max_position_embeddings - 1]``.
thomwolf's avatar
thomwolf committed
586
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
thomwolf's avatar
thomwolf committed
587
            Mask to nullify selected heads of the self-attention modules.
thomwolf's avatar
thomwolf committed
588
            Mask values selected in ``[0, 1]``:
thomwolf's avatar
thomwolf committed
589
590
591
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
"""

Julien Chaumond's avatar
Julien Chaumond committed
592
@add_start_docstrings("The bare Bert Model transformer outputting raw hidden-states without any specific head on top.",
thomwolf's avatar
thomwolf committed
593
594
                      BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
class BertModel(BertPreTrainedModel):
595
    r"""
thomwolf's avatar
thomwolf committed
596
597
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
thomwolf's avatar
thomwolf committed
598
599
600
601
602
603
604
605
            Sequence of hidden-states at the output of the last layer of the model.
        **pooler_output**: ``torch.FloatTensor`` of shape ``(batch_size, hidden_size)``
            Last layer hidden-state of the first token of the sequence (classification token)
            further processed by a Linear layer and a Tanh activation function. The Linear
            layer weights are trained from the next sentence prediction (classification)
            objective during Bert pretraining. This output is usually *not* a good summary
            of the semantic content of the input, you're often better with averaging or pooling
            the sequence of hidden-states for the whole input sequence.
thomwolf's avatar
thomwolf committed
606
607
608
609
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
610
611
612
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
613
614
615

    Examples::

wangfei's avatar
wangfei committed
616
617
618
619
620
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertModel.from_pretrained('bert-base-uncased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple
thomwolf's avatar
thomwolf committed
621
622

    """
thomwolf's avatar
thomwolf committed
623
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
624
        super(BertModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
625

thomwolf's avatar
thomwolf committed
626
        self.embeddings = BertEmbeddings(config)
thomwolf's avatar
thomwolf committed
627
        self.encoder = BertEncoder(config)
thomwolf's avatar
thomwolf committed
628
        self.pooler = BertPooler(config)
thomwolf's avatar
thomwolf committed
629

630
        self.init_weights()
thomwolf's avatar
thomwolf committed
631

thomwolf's avatar
thomwolf committed
632
633
634
635
    def _resize_token_embeddings(self, new_num_tokens):
        old_embeddings = self.embeddings.word_embeddings
        new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens)
        self.embeddings.word_embeddings = new_embeddings
thomwolf's avatar
thomwolf committed
636
        return self.embeddings.word_embeddings
thomwolf's avatar
thomwolf committed
637

thomwolf's avatar
thomwolf committed
638
    def _prune_heads(self, heads_to_prune):
thomwolf's avatar
thomwolf committed
639
640
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
thomwolf's avatar
thomwolf committed
641
            See base class PreTrainedModel
thomwolf's avatar
thomwolf committed
642
643
644
645
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

646
    def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None):
thomwolf's avatar
thomwolf committed
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids)
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        # We create a 3D attention mask from a 2D tensor mask.
        # Sizes are [batch_size, 1, 1, to_seq_length]
        # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
        # this attention mask is more simple than the triangular masking of causal attention
        # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
        extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
Rémi Louf's avatar
Rémi Louf committed
664
        extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype)  # fp16 compatibility
thomwolf's avatar
thomwolf committed
665
666
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

thomwolf's avatar
thomwolf committed
667
        # Prepare head mask if needed
thomwolf's avatar
thomwolf committed
668
        # 1.0 in head_mask indicate we keep the head
thomwolf's avatar
thomwolf committed
669
        # attention_probs has shape bsz x n_heads x N x N
thomwolf's avatar
thomwolf committed
670
671
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
thomwolf's avatar
thomwolf committed
672
673
        if head_mask is not None:
            if head_mask.dim() == 1:
674
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
thomwolf's avatar
thomwolf committed
675
                head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1)
thomwolf's avatar
thomwolf committed
676
            elif head_mask.dim() == 2:
677
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
Rémi Louf's avatar
Rémi Louf committed
678
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype)  # switch to fload if need + fp16 compatibility
679
680
        else:
            head_mask = [None] * self.config.num_hidden_layers
thomwolf's avatar
thomwolf committed
681

thomwolf's avatar
thomwolf committed
682
        embedding_output = self.embeddings(input_ids, position_ids=position_ids, token_type_ids=token_type_ids)
683
684
685
686
        encoder_outputs = self.encoder(embedding_output,
                                       extended_attention_mask,
                                       head_mask=head_mask)
        sequence_output = encoder_outputs[0]
thomwolf's avatar
thomwolf committed
687
        pooled_output = self.pooler(sequence_output)
688

689
        outputs = (sequence_output, pooled_output,) + encoder_outputs[1:]  # add hidden_states and attentions if they are here
690
        return outputs  # sequence_output, pooled_output, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
691
692


693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
@add_start_docstrings("""A bare Bert decoder Model transformer outputting raw hidden-states without any specific head on top.
                      The model follows the general transformer decoder architecture.""",
                      BERT_START_DOCSTRING,
                      BERT_INPUTS_DOCSTRING)
class BertDecoderModel(BertPreTrainedModel):
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
            Sequence of hidden-states at the output of the last layer of the model.
        **pooler_output**: ``torch.FloatTensor`` of shape ``(batch_size, hidden_size)``
            Last layer hidden-state of the first token of the sequence (classification token)
            further processed by a Linear layer and a Tanh activation function. The Linear
            layer weights are trained from the next sentence prediction (classification)
            objective during Bert pretraining. This output is usually *not* a good summary
            of the semantic content of the input, you're often better with averaging or pooling
            the sequence of hidden-states for the whole input sequence.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertDecoderModel.from_pretrained('bert-base-uncased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple

    """
    def __init__(self, config):
        super(BertModel, self).__init__(config)

        self.embeddings = BertEmbeddings(config)
        self.decoder = BertDecoder(config)
        self.pooler = BertPooler(config)

        self.init_weights()

    def _resize_token_embeddings(self, new_num_tokens):
        old_embeddings = self.embeddings.word_embeddings
        new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens)
        self.embeddings.word_embeddings = new_embeddings
        return self.embeddings.word_embeddings

    def _prune_heads(self, heads_to_prune):
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
            See base class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

    def forward(self, input_ids, encoder_outputs, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None):
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids)
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        # We create a 3D attention mask from a 2D tensor mask.
        # Sizes are [batch_size, 1, 1, to_seq_length]
        # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
        # this attention mask is more simple than the triangular masking of causal attention
        # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
        extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype)  # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        if head_mask is not None:
            if head_mask.dim() == 1:
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
                head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1)
            elif head_mask.dim() == 2:
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype)  # switch to fload if need + fp16 compatibility
        else:
            head_mask = [None] * self.config.num_hidden_layers

        embedding_output = self.embeddings(input_ids, position_ids=position_ids, token_type_ids=token_type_ids)
        decoder_outputs = self.decoder(embedding_output,
                                       encoder_outputs,
                                       extended_attention_mask,
                                       head_mask=head_mask)
        sequence_output = decoder_outputs[0]
        pooled_output = self.pooler(sequence_output)

        outputs = (sequence_output, pooled_output,) + encoder_outputs[1:]  # add hidden_states and attentions if they are here
        return outputs  # sequence_output, pooled_output, (hidden_states), (attentions)


thomwolf's avatar
thomwolf committed
797
@add_start_docstrings("""Bert Model with two heads on top as done during the pre-training:
Rémi Louf's avatar
Rémi Louf committed
798
799
800
                       a `masked language modeling` head and a `next sentence prediction (classification)` head. """,
                      BERT_START_DOCSTRING,
                      BERT_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
801
class BertForPreTraining(BertPreTrainedModel):
802
    r"""
thomwolf's avatar
thomwolf committed
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
        **masked_lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for computing the masked language modeling loss.
            Indices should be in ``[-1, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
            Tokens with indices set to ``-1`` are ignored (masked), the loss is only computed for the tokens with labels
            in ``[0, ..., config.vocab_size]``
        **next_sentence_label**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see ``input_ids`` docstring)
            Indices should be in ``[0, 1]``.
            ``0`` indicates sequence B is a continuation of sequence A,
            ``1`` indicates sequence B is a random sequence.

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when both ``masked_lm_labels`` and ``next_sentence_label`` are provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss.
        **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **seq_relationship_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, 2)``
            Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
825
826
827
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
828
829
830

    Examples::

wangfei's avatar
wangfei committed
831
832
833
834
835
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertForPreTraining.from_pretrained('bert-base-uncased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        prediction_scores, seq_relationship_scores = outputs[:2]
836

thomwolf's avatar
thomwolf committed
837
    """
thomwolf's avatar
thomwolf committed
838
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
839
        super(BertForPreTraining, self).__init__(config)
840

thomwolf's avatar
thomwolf committed
841
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
842
        self.cls = BertPreTrainingHeads(config)
thomwolf's avatar
thomwolf committed
843

844
        self.init_weights()
thomwolf's avatar
thomwolf committed
845
846
847
848
849
850
        self.tie_weights()

    def tie_weights(self):
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
        """
thomwolf's avatar
thomwolf committed
851
852
        self._tie_or_clone_weights(self.cls.predictions.decoder,
                                   self.bert.embeddings.word_embeddings)
thomwolf's avatar
thomwolf committed
853

854
855
856
857
858
859
    def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None,
                masked_lm_labels=None, next_sentence_label=None):

        outputs = self.bert(input_ids,
                            attention_mask=attention_mask,
                            token_type_ids=token_type_ids,
Rémi Louf's avatar
Rémi Louf committed
860
                            position_ids=position_ids,
861
                            head_mask=head_mask)
862
863

        sequence_output, pooled_output = outputs[:2]
thomwolf's avatar
thomwolf committed
864
865
        prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)

866
        outputs = (prediction_scores, seq_relationship_score,) + outputs[2:]  # add hidden states and attention if they are here
867

thomwolf's avatar
thomwolf committed
868
869
        if masked_lm_labels is not None and next_sentence_label is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
870
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
871
            next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
thomwolf's avatar
thomwolf committed
872
            total_loss = masked_lm_loss + next_sentence_loss
873
            outputs = (total_loss,) + outputs
874
875

        return outputs  # (loss), prediction_scores, seq_relationship_score, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
876
877


thomwolf's avatar
thomwolf committed
878
@add_start_docstrings("""Bert Model with a `language modeling` head on top. """,
Rémi Louf's avatar
Rémi Louf committed
879
880
                      BERT_START_DOCSTRING,
                      BERT_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
881
class BertForMaskedLM(BertPreTrainedModel):
882
    r"""
thomwolf's avatar
thomwolf committed
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
        **masked_lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for computing the masked language modeling loss.
            Indices should be in ``[-1, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
            Tokens with indices set to ``-1`` are ignored (masked), the loss is only computed for the tokens with labels
            in ``[0, ..., config.vocab_size]``

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Masked language modeling loss.
        **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
898
899
900
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
901
902
903

    Examples::

wangfei's avatar
wangfei committed
904
905
906
907
908
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertForMaskedLM.from_pretrained('bert-base-uncased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, masked_lm_labels=input_ids)
        loss, prediction_scores = outputs[:2]
909

thomwolf's avatar
thomwolf committed
910
    """
thomwolf's avatar
thomwolf committed
911
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
912
        super(BertForMaskedLM, self).__init__(config)
thomwolf's avatar
thomwolf committed
913

thomwolf's avatar
thomwolf committed
914
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
915
        self.cls = BertOnlyMLMHead(config)
thomwolf's avatar
thomwolf committed
916

917
        self.init_weights()
thomwolf's avatar
thomwolf committed
918
919
920
921
922
923
        self.tie_weights()

    def tie_weights(self):
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
        """
thomwolf's avatar
thomwolf committed
924
925
        self._tie_or_clone_weights(self.cls.predictions.decoder,
                                   self.bert.embeddings.word_embeddings)
thomwolf's avatar
thomwolf committed
926

927
928
929
930
931
932
    def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None,
                masked_lm_labels=None):

        outputs = self.bert(input_ids,
                            attention_mask=attention_mask,
                            token_type_ids=token_type_ids,
Rémi Louf's avatar
Rémi Louf committed
933
                            position_ids=position_ids,
934
                            head_mask=head_mask)
thomwolf's avatar
thomwolf committed
935
936

        sequence_output = outputs[0]
thomwolf's avatar
thomwolf committed
937
938
        prediction_scores = self.cls(sequence_output)

wangfei's avatar
wangfei committed
939
        outputs = (prediction_scores,) + outputs[2:]  # Add hidden states and attention if they are here
thomwolf's avatar
thomwolf committed
940
941
        if masked_lm_labels is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
942
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
943
            outputs = (masked_lm_loss,) + outputs
thomwolf's avatar
thomwolf committed
944
945

        return outputs  # (masked_lm_loss), prediction_scores, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
946
947


thomwolf's avatar
thomwolf committed
948
@add_start_docstrings("""Bert Model with a `next sentence prediction (classification)` head on top. """,
Rémi Louf's avatar
Rémi Louf committed
949
950
                      BERT_START_DOCSTRING,
                      BERT_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
951
class BertForNextSentencePrediction(BertPreTrainedModel):
952
    r"""
thomwolf's avatar
thomwolf committed
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
        **next_sentence_label**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see ``input_ids`` docstring)
            Indices should be in ``[0, 1]``.
            ``0`` indicates sequence B is a continuation of sequence A,
            ``1`` indicates sequence B is a random sequence.

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``next_sentence_label`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Next sequence prediction (classification) loss.
        **seq_relationship_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, 2)``
            Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
968
969
970
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
971
972
973

    Examples::

wangfei's avatar
wangfei committed
974
975
976
977
978
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertForNextSentencePrediction.from_pretrained('bert-base-uncased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        seq_relationship_scores = outputs[0]
979

thomwolf's avatar
thomwolf committed
980
    """
thomwolf's avatar
thomwolf committed
981
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
982
        super(BertForNextSentencePrediction, self).__init__(config)
thomwolf's avatar
thomwolf committed
983

thomwolf's avatar
thomwolf committed
984
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
985
        self.cls = BertOnlyNSPHead(config)
thomwolf's avatar
thomwolf committed
986

987
        self.init_weights()
thomwolf's avatar
thomwolf committed
988

989
990
991
992
993
994
    def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None,
                next_sentence_label=None):

        outputs = self.bert(input_ids,
                            attention_mask=attention_mask,
                            token_type_ids=token_type_ids,
Rémi Louf's avatar
Rémi Louf committed
995
                            position_ids=position_ids,
996
997
                            head_mask=head_mask)

thomwolf's avatar
thomwolf committed
998
999
        pooled_output = outputs[1]

1000
        seq_relationship_score = self.cls(pooled_output)
thomwolf's avatar
thomwolf committed
1001

1002
        outputs = (seq_relationship_score,) + outputs[2:]  # add hidden states and attention if they are here
thomwolf's avatar
thomwolf committed
1003
1004
        if next_sentence_label is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
1005
            next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
1006
            outputs = (next_sentence_loss,) + outputs
thomwolf's avatar
thomwolf committed
1007
1008

        return outputs  # (next_sentence_loss), seq_relationship_score, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
1009
1010


thomwolf's avatar
thomwolf committed
1011
@add_start_docstrings("""Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of
Rémi Louf's avatar
Rémi Louf committed
1012
1013
1014
                      the pooled output) e.g. for GLUE tasks. """,
                      BERT_START_DOCSTRING,
                      BERT_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
1015
class BertForSequenceClassification(BertPreTrainedModel):
1016
    r"""
thomwolf's avatar
thomwolf committed
1017
1018
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for computing the sequence classification/regression loss.
LysandreJik's avatar
LysandreJik committed
1019
            Indices should be in ``[0, ..., config.num_labels - 1]``.
thomwolf's avatar
thomwolf committed
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
            If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss),
            If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy).

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification (or regression if config.num_labels==1) loss.
        **logits**: ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)``
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
1032
1033
1034
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
1035
1036
1037

    Examples::

wangfei's avatar
wangfei committed
1038
1039
1040
1041
1042
1043
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        labels = torch.tensor([1]).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=labels)
        loss, logits = outputs[:2]
1044

thomwolf's avatar
thomwolf committed
1045
    """
thomwolf's avatar
thomwolf committed
1046
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
1047
        super(BertForSequenceClassification, self).__init__(config)
thomwolf's avatar
thomwolf committed
1048
        self.num_labels = config.num_labels
thomwolf's avatar
thomwolf committed
1049

thomwolf's avatar
thomwolf committed
1050
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
1051
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
thomwolf's avatar
thomwolf committed
1052
        self.classifier = nn.Linear(config.hidden_size, self.config.num_labels)
thomwolf's avatar
thomwolf committed
1053

1054
        self.init_weights()
thomwolf's avatar
thomwolf committed
1055

1056
1057
1058
1059
1060
1061
    def forward(self, input_ids, attention_mask=None, token_type_ids=None,
                position_ids=None, head_mask=None, labels=None):

        outputs = self.bert(input_ids,
                            attention_mask=attention_mask,
                            token_type_ids=token_type_ids,
Rémi Louf's avatar
Rémi Louf committed
1062
                            position_ids=position_ids,
1063
1064
                            head_mask=head_mask)

thomwolf's avatar
thomwolf committed
1065
1066
        pooled_output = outputs[1]

thomwolf's avatar
thomwolf committed
1067
1068
1069
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

1070
        outputs = (logits,) + outputs[2:]  # add hidden states and attention if they are here
thomwolf's avatar
thomwolf committed
1071

thomwolf's avatar
thomwolf committed
1072
        if labels is not None:
1073
1074
1075
1076
1077
1078
1079
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1080
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
1081
1082

        return outputs  # (loss), logits, (hidden_states), (attentions)
1083
1084


thomwolf's avatar
thomwolf committed
1085
@add_start_docstrings("""Bert Model with a multiple choice classification head on top (a linear layer on top of
Rémi Louf's avatar
Rémi Louf committed
1086
1087
1088
                      the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """,
                      BERT_START_DOCSTRING,
                      BERT_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
1089
class BertForMultipleChoice(BertPreTrainedModel):
1090
    r"""
thomwolf's avatar
thomwolf committed
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for computing the multiple choice classification loss.
            Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension
            of the input tensors. (see `input_ids` above)

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification loss.
        **classification_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices)`` where `num_choices` is the size of the second dimension
            of the input tensors. (see `input_ids` above).
            Classification scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
1106
1107
1108
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
1109
1110
1111

    Examples::

wangfei's avatar
wangfei committed
1112
1113
1114
1115
1116
1117
1118
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertForMultipleChoice.from_pretrained('bert-base-uncased')
        choices = ["Hello, my dog is cute", "Hello, my cat is amazing"]
        input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0)  # Batch size 1, 2 choices
        labels = torch.tensor(1).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=labels)
        loss, classification_scores = outputs[:2]
1119

1120
    """
thomwolf's avatar
thomwolf committed
1121
    def __init__(self, config):
1122
        super(BertForMultipleChoice, self).__init__(config)
thomwolf's avatar
thomwolf committed
1123

thomwolf's avatar
thomwolf committed
1124
        self.bert = BertModel(config)
1125
1126
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, 1)
thomwolf's avatar
thomwolf committed
1127

1128
        self.init_weights()
1129

1130
1131
    def forward(self, input_ids, attention_mask=None, token_type_ids=None,
                position_ids=None, head_mask=None, labels=None):
thomwolf's avatar
thomwolf committed
1132
1133
        num_choices = input_ids.shape[1]

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
        input_ids = input_ids.view(-1, input_ids.size(-1))
        attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
        token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
        position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None

        outputs = self.bert(input_ids,
                            attention_mask=attention_mask,
                            token_type_ids=token_type_ids,
                            position_ids=position_ids,
                            head_mask=head_mask)

thomwolf's avatar
thomwolf committed
1145
1146
        pooled_output = outputs[1]

1147
1148
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)
thomwolf's avatar
thomwolf committed
1149
        reshaped_logits = logits.view(-1, num_choices)
1150

1151
        outputs = (reshaped_logits,) + outputs[2:]  # add hidden states and attention if they are here
thomwolf's avatar
thomwolf committed
1152

1153
1154
1155
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(reshaped_logits, labels)
1156
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
1157
1158

        return outputs  # (loss), reshaped_logits, (hidden_states), (attentions)
1159
1160


thomwolf's avatar
thomwolf committed
1161
@add_start_docstrings("""Bert Model with a token classification head on top (a linear layer on top of
Rémi Louf's avatar
Rémi Louf committed
1162
1163
1164
                      the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """,
                      BERT_START_DOCSTRING,
                      BERT_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
1165
class BertForTokenClassification(BertPreTrainedModel):
1166
    r"""
thomwolf's avatar
thomwolf committed
1167
1168
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for computing the token classification loss.
LysandreJik's avatar
LysandreJik committed
1169
            Indices should be in ``[0, ..., config.num_labels - 1]``.
thomwolf's avatar
thomwolf committed
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification loss.
        **scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.num_labels)``
            Classification scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
1180
1181
1182
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
1183
1184
1185

    Examples::

wangfei's avatar
wangfei committed
1186
1187
1188
1189
1190
1191
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertForTokenClassification.from_pretrained('bert-base-uncased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        labels = torch.tensor([1] * input_ids.size(1)).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=labels)
        loss, scores = outputs[:2]
1192

1193
    """
thomwolf's avatar
thomwolf committed
1194
    def __init__(self, config):
1195
        super(BertForTokenClassification, self).__init__(config)
thomwolf's avatar
thomwolf committed
1196
        self.num_labels = config.num_labels
thomwolf's avatar
thomwolf committed
1197

thomwolf's avatar
thomwolf committed
1198
        self.bert = BertModel(config)
1199
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
thomwolf's avatar
thomwolf committed
1200
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)
thomwolf's avatar
thomwolf committed
1201

1202
        self.init_weights()
1203

1204
1205
1206
1207
1208
1209
    def forward(self, input_ids, attention_mask=None, token_type_ids=None,
                position_ids=None, head_mask=None, labels=None):

        outputs = self.bert(input_ids,
                            attention_mask=attention_mask,
                            token_type_ids=token_type_ids,
Rémi Louf's avatar
Rémi Louf committed
1210
                            position_ids=position_ids,
1211
1212
                            head_mask=head_mask)

thomwolf's avatar
thomwolf committed
1213
1214
        sequence_output = outputs[0]

1215
1216
        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)
1217

1218
        outputs = (logits,) + outputs[2:]  # add hidden states and attention if they are here
1219
1220
        if labels is not None:
            loss_fct = CrossEntropyLoss()
1221
1222
1223
1224
1225
1226
1227
1228
            # Only keep active parts of the loss
            if attention_mask is not None:
                active_loss = attention_mask.view(-1) == 1
                active_logits = logits.view(-1, self.num_labels)[active_loss]
                active_labels = labels.view(-1)[active_loss]
                loss = loss_fct(active_logits, active_labels)
            else:
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1229
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
1230

thomwolf's avatar
thomwolf committed
1231
        return outputs  # (loss), scores, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
1232
1233


thomwolf's avatar
thomwolf committed
1234
@add_start_docstrings("""Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of
Rémi Louf's avatar
Rémi Louf committed
1235
1236
1237
                      the hidden-states output to compute `span start logits` and `span end logits`). """,
                      BERT_START_DOCSTRING,
                      BERT_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
1238
class BertForQuestionAnswering(BertPreTrainedModel):
1239
    r"""
thomwolf's avatar
thomwolf committed
1240
        **start_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
thomwolf's avatar
thomwolf committed
1241
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
thomwolf's avatar
thomwolf committed
1242
1243
1244
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.
        **end_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
thomwolf's avatar
thomwolf committed
1245
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
thomwolf's avatar
thomwolf committed
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
        **start_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)``
            Span-start scores (before SoftMax).
        **end_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)``
            Span-end scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
1260
1261
1262
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
1263
1264
1265

    Examples::

wangfei's avatar
wangfei committed
1266
1267
1268
1269
1270
1271
1272
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertForQuestionAnswering.from_pretrained('bert-base-uncased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        start_positions = torch.tensor([1])
        end_positions = torch.tensor([3])
        outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
        loss, start_scores, end_scores = outputs[:2]
1273

thomwolf's avatar
thomwolf committed
1274
    """
thomwolf's avatar
thomwolf committed
1275
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
1276
        super(BertForQuestionAnswering, self).__init__(config)
thomwolf's avatar
thomwolf committed
1277
1278
1279
1280
        self.num_labels = config.num_labels

        self.bert = BertModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
thomwolf's avatar
thomwolf committed
1281

1282
        self.init_weights()
thomwolf's avatar
thomwolf committed
1283

1284
1285
1286
1287
1288
1289
    def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None,
                start_positions=None, end_positions=None):

        outputs = self.bert(input_ids,
                            attention_mask=attention_mask,
                            token_type_ids=token_type_ids,
Rémi Louf's avatar
Rémi Louf committed
1290
                            position_ids=position_ids,
1291
1292
                            head_mask=head_mask)

thomwolf's avatar
thomwolf committed
1293
1294
        sequence_output = outputs[0]

thomwolf's avatar
thomwolf committed
1295
1296
1297
1298
1299
        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

1300
        outputs = (start_logits, end_logits,) + outputs[2:]
thomwolf's avatar
thomwolf committed
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2
1316
            outputs = (total_loss,) + outputs
thomwolf's avatar
thomwolf committed
1317
1318

        return outputs  # (loss), start_logits, end_logits, (hidden_states), (attentions)
1319
1320


1321
@add_start_docstrings("Bert encoder-decoder model for sequence generation.",
1322
1323
                      BERT_START_DOCSTRING,
                      BERT_INPUTS_DOCSTRING)
Rémi Louf's avatar
Rémi Louf committed
1324
class Bert2Rnd(BertPreTrainedModel):
1325
1326
1327
    r"""

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
1328
1329
1330
1331
1332
1333
1334
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
1335
1336
1337
1338

    Examples::

        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
Rémi Louf's avatar
Rémi Louf committed
1339
1340
        model = Bert2Rnd.from_pretrained('bert-base-uncased')
        # fine-tuning magic happens here
1341
1342
1343
1344
        input = tokenizer.encode("Hello, how are you?")
        outputs = model(input)
        output_text = tokenize.decode(outputs[0])
        print(output_text)
1345
1346
1347
1348
1349
1350

    References::

    [1] "Leveraging Pre-trained Checkpoints for Sequence Generation Tasks", S.Rothe, S.Narayan & A.Severyn (2019) ArXiV:1907.12461v1
    [2] Tensor2Tensor library https://github.com/tensorflow/tensor2tensor

1351
1352
1353
    """

    def __init__(self, config):
Rémi Louf's avatar
Rémi Louf committed
1354
        super(Bert2Rnd, self).__init__(config)
1355
1356
        self.encoder = BertModel(config)
        self.decoder = BertDecoderModel(config)
1357

1358
        self.init_weights()
1359

1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
    @classmethod
    def from_pretrained(cls, pretrained_model_or_path, *model_args, **model_kwargs):
        """ Load the pretrained weights in the encoder.

        Since the decoder needs to be initialized with random weights, and the encoder with
        pretrained weights we need to override the `from_pretrained` method of the base `PreTrainedModel`
        class.
        """
        pretrained_encoder = BertModel.from_pretrained(pretrained_model_or_path, *model_args, **model_kwargs)

        config = cls._load_config(pretrained_model_or_path, *model_args, **model_kwargs)
        model = cls(config)
        model.encoder = pretrained_encoder

        return model

    def _load_config(self, pretrained_model_name_or_path, *args, **kwargs):
        config = kwargs.pop('config', None)
        if config is None:
            cache_dir = kwargs.pop('cache_dir', None)
            force_download = kwargs.pop('force_download', False)
            config, _ = self.config_class.from_pretrained(
                pretrained_model_name_or_path,
                *args,
                cache_dir=cache_dir,
                return_unused_kwargs=True,
                force_download=force_download,
                **kwargs
            )
        return config

1391
1392
1393
1394
1395
    def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None):
        encoder_outputs = self.encoder(input_ids,
                                       attention_mask=attention_mask,
                                       token_type_ids=token_type_ids,
                                       position_ids=position_ids,
1396
                                       head_mask=head_mask)
1397
        encoder_output = encoder_outputs[0]
1398

1399
1400
1401
1402
1403
1404
        decoder_input = torch.empty_like(input_ids).normal_(mean=0.0, std=self.config.initializer_range)
        decoder_outputs = self.decoder(decoder_input,
                                       encoder_output,
                                       token_type_ids=token_type_ids,
                                       position_ids=position_ids,
                                       head_mask=head_mask)
Rémi Louf's avatar
Rémi Louf committed
1405
        return decoder_outputs[0]