modeling_gpt2.py 35.9 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OpenAI GPT-2 model."""

18
19
from __future__ import absolute_import, division, print_function, unicode_literals

thomwolf's avatar
thomwolf committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import collections
import copy
import json
import logging
import math
import os
import sys
from io import open

import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from torch.nn.parameter import Parameter

34
from .file_utils import cached_path
35
from .model_utils import Conv1D, CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig, PreTrainedModel, prune_conv1d_layer
thomwolf's avatar
thomwolf committed
36
37
38
39
from .modeling import BertLayerNorm as LayerNorm

logger = logging.getLogger(__name__)

thomwolf's avatar
thomwolf committed
40
41
42
43
PRETRAINED_MODEL_ARCHIVE_MAP = {"gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-pytorch_model.bin",
                                "gpt2-medium": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-pytorch_model.bin"}
PRETRAINED_CONFIG_ARCHIVE_MAP = {"gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-config.json",
                                 "gpt2-medium": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-config.json"}
thomwolf's avatar
thomwolf committed
44

45
def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path):
thomwolf's avatar
thomwolf committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
    """ Load tf checkpoints in a pytorch model
    """
    try:
        import re
        import numpy as np
        import tensorflow as tf
    except ImportError:
        print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
    tf_path = os.path.abspath(gpt2_checkpoint_path)
    print("Converting TensorFlow checkpoint from {}".format(tf_path))
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
        print("Loading TF weight {} with shape {}".format(name, shape))
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
thomwolf's avatar
thomwolf committed
66
        arrays.append(array.squeeze())
thomwolf's avatar
thomwolf committed
67
68

    for name, array in zip(names, arrays):
thomwolf's avatar
thomwolf committed
69
        name = name[6:]  # skip "model/"
thomwolf's avatar
thomwolf committed
70
71
72
        name = name.split('/')
        pointer = model
        for m_name in name:
thomwolf's avatar
thomwolf committed
73
74
            if re.fullmatch(r'[A-Za-z]+\d+', m_name):
                l = re.split(r'(\d+)', m_name)
thomwolf's avatar
thomwolf committed
75
76
77
78
79
80
            else:
                l = [m_name]
            if l[0] == 'w' or l[0] == 'g':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'b':
                pointer = getattr(pointer, 'bias')
thomwolf's avatar
thomwolf committed
81
82
83
            elif l[0] == 'wpe' or l[0] == 'wte':
                pointer = getattr(pointer, l[0])
                pointer = getattr(pointer, 'weight')
thomwolf's avatar
thomwolf committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
            else:
                pointer = getattr(pointer, l[0])
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        print("Initialize PyTorch weight {}".format(name))
        pointer.data = torch.from_numpy(array)
    return model


def gelu(x):
    return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))


103
class GPT2Config(PretrainedConfig):
thomwolf's avatar
thomwolf committed
104
105
    """Configuration class to store the configuration of a `GPT2Model`.
    """
106
    pretrained_config_archive_map = PRETRAINED_CONFIG_ARCHIVE_MAP
thomwolf's avatar
thomwolf committed
107
108
109

    def __init__(
        self,
thomwolf's avatar
thomwolf committed
110
        vocab_size_or_config_json_file=50257,
thomwolf's avatar
thomwolf committed
111
        n_special=0,
thomwolf's avatar
thomwolf committed
112
113
114
115
116
        n_positions=1024,
        n_ctx=1024,
        n_embd=768,
        n_layer=12,
        n_head=12,
117
118
119
        resid_pdrop=0.1,
        embd_pdrop=0.1,
        attn_pdrop=0.1,
thomwolf's avatar
thomwolf committed
120
121
        layer_norm_epsilon=1e-5,
        initializer_range=0.02,
thomwolf's avatar
thomwolf committed
122
123
        predict_special_tokens=True,
        **kwargs
thomwolf's avatar
thomwolf committed
124
125
126
127
128
    ):
        """Constructs GPT2Config.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `GPT2Model` or a configuration json file.
thomwolf's avatar
thomwolf committed
129
            n_special: The number of special tokens to learn during fine-tuning ('[SEP]', '[CLF]', ...)
thomwolf's avatar
thomwolf committed
130
131
132
133
134
135
136
            n_positions: Number of positional embeddings.
            n_ctx: Size of the causal mask (usually same as n_positions).
            n_embd: Dimensionality of the embeddings and hidden states.
            n_layer: Number of hidden layers in the Transformer encoder.
            n_head: Number of attention heads for each attention layer in
                the Transformer encoder.
            layer_norm_epsilon: epsilon to use in the layer norm layers
137
138
139
140
141
            resid_pdrop: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attn_pdrop: The dropout ratio for the attention
                probabilities.
            embd_pdrop: The dropout ratio for the embeddings.
thomwolf's avatar
thomwolf committed
142
143
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
144
            predict_special_tokens: should we predict special tokens (when the model has a LM head)
thomwolf's avatar
thomwolf committed
145
        """
thomwolf's avatar
thomwolf committed
146
147
        super(GPT2Config, self).__init__(**kwargs)

thomwolf's avatar
thomwolf committed
148
149
150
151
152
153
154
155
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
            with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader:
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
thomwolf's avatar
thomwolf committed
156
            self.n_special = n_special
thomwolf's avatar
thomwolf committed
157
158
159
160
161
            self.n_ctx = n_ctx
            self.n_positions = n_positions
            self.n_embd = n_embd
            self.n_layer = n_layer
            self.n_head = n_head
162
163
164
            self.resid_pdrop = resid_pdrop
            self.embd_pdrop = embd_pdrop
            self.attn_pdrop = attn_pdrop
thomwolf's avatar
thomwolf committed
165
166
            self.layer_norm_epsilon = layer_norm_epsilon
            self.initializer_range = initializer_range
167
            self.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
168
169
170
171
172
173
        else:
            raise ValueError(
                "First argument must be either a vocabulary size (int)"
                "or the path to a pretrained model config file (str)"
            )

thomwolf's avatar
thomwolf committed
174
175
176
177
    @property
    def total_tokens_embeddings(self):
        return self.vocab_size + self.n_special

thomwolf's avatar
thomwolf committed
178
179
180
181
182
183
184
185
186
187
188
189
190
    @property
    def hidden_size(self):
        return self.n_embd

    @property
    def num_attention_heads(self):
        return self.n_head

    @property
    def num_hidden_layers(self):
        return self.n_layer


thomwolf's avatar
thomwolf committed
191
192

class Attention(nn.Module):
thomwolf's avatar
thomwolf committed
193
    def __init__(self, nx, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
194
        super(Attention, self).__init__()
thomwolf's avatar
thomwolf committed
195
196
        self.output_attentions = config.output_attentions

thomwolf's avatar
thomwolf committed
197
198
199
200
201
202
203
        n_state = nx  # in Attention: n_state=768 (nx=n_embd)
        # [switch nx => n_state from Block to Attention to keep identical to TF implem]
        assert n_state % config.n_head == 0
        self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
        self.n_head = config.n_head
        self.split_size = n_state
        self.scale = scale
204

thomwolf's avatar
thomwolf committed
205
206
        self.c_attn = Conv1D(n_state * 3, nx)
        self.c_proj = Conv1D(n_state, nx)
207
208
        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
209

210
    def prune_heads(self, heads):
thomwolf's avatar
thomwolf committed
211
212
        if len(heads) == 0:
            return
213
214
215
216
217
218
219
220
221
222
223
224
225
226
        mask = torch.ones(self.n_head, self.split_size // self.n_head)
        for head in heads:
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        index_attn = torch.cat([index, index + self.split_size, index + (2*self.split_size)])
        # Prune conv1d layers
        self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
        self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
        # Update hyper params
        self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads))
        self.n_head = self.n_head - len(heads)

    def _attn(self, q, k, v, head_mask=None):
thomwolf's avatar
thomwolf committed
227
228
229
        w = torch.matmul(q, k)
        if self.scale:
            w = w / math.sqrt(v.size(-1))
thomwolf's avatar
thomwolf committed
230
231
        nd, ns = w.size(-2), w.size(-1)
        b = self.bias[:, :, ns-nd:ns, :ns]
232
        w = w * b - 1e4 * (1 - b)
thomwolf's avatar
thomwolf committed
233
234

        w = nn.Softmax(dim=-1)(w)
235
        w = self.attn_dropout(w)
236
237
238
239
240

        # Mask heads if we want to
        if head_mask is not None:
            w = w * head_mask

thomwolf's avatar
thomwolf committed
241
        outputs = [torch.matmul(w, v)]
thomwolf's avatar
thomwolf committed
242
        if self.output_attentions:
thomwolf's avatar
thomwolf committed
243
244
            outputs.append(w)
        return outputs
thomwolf's avatar
thomwolf committed
245
246
247
248
249
250
251
252
253
254

    def merge_heads(self, x):
        x = x.permute(0, 2, 1, 3).contiguous()
        new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
        return x.view(*new_x_shape)  # in Tensorflow implem: fct merge_states

    def split_heads(self, x, k=False):
        new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
        x = x.view(*new_x_shape)  # in Tensorflow implem: fct split_states
        if k:
thomwolf's avatar
thomwolf committed
255
            return x.permute(0, 2, 3, 1)  # (batch, head, head_features, seq_length)
thomwolf's avatar
thomwolf committed
256
        else:
thomwolf's avatar
thomwolf committed
257
            return x.permute(0, 2, 1, 3)  # (batch, head, seq_length, head_features)
thomwolf's avatar
thomwolf committed
258

259
    def forward(self, x, layer_past=None, head_mask=None):
thomwolf's avatar
thomwolf committed
260
261
262
263
264
        x = self.c_attn(x)
        query, key, value = x.split(self.split_size, dim=2)
        query = self.split_heads(query)
        key = self.split_heads(key, k=True)
        value = self.split_heads(value)
thomwolf's avatar
thomwolf committed
265
        if layer_past is not None:
thomwolf's avatar
thomwolf committed
266
            past_key, past_value = layer_past[0].transpose(-2, -1), layer_past[1]  # transpose back cf below
thomwolf's avatar
thomwolf committed
267
            key = torch.cat((past_key, key), dim=-1)
thomwolf's avatar
thomwolf committed
268
            value = torch.cat((past_value, value), dim=-2)
thomwolf's avatar
thomwolf committed
269
        present = torch.stack((key.transpose(-2, -1), value))  # transpose to have same shapes for stacking
270

thomwolf's avatar
thomwolf committed
271
272
        attn_outputs = self._attn(query, key, value, head_mask)
        a = attn_outputs[0]
273

thomwolf's avatar
thomwolf committed
274
275
        a = self.merge_heads(a)
        a = self.c_proj(a)
276
        a = self.resid_dropout(a)
thomwolf's avatar
thomwolf committed
277
278
279

        outputs = [a, present] + attn_outputs[1:]
        return outputs  # a, present, (attentions)
thomwolf's avatar
thomwolf committed
280
281
282
283
284
285
286
287
288


class MLP(nn.Module):
    def __init__(self, n_state, config):  # in MLP: n_state=3072 (4 * n_embd)
        super(MLP, self).__init__()
        nx = config.n_embd
        self.c_fc = Conv1D(n_state, nx)
        self.c_proj = Conv1D(nx, n_state)
        self.act = gelu
289
        self.dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
290
291
292
293

    def forward(self, x):
        h = self.act(self.c_fc(x))
        h2 = self.c_proj(h)
294
        return self.dropout(h2)
thomwolf's avatar
thomwolf committed
295
296
297


class Block(nn.Module):
thomwolf's avatar
thomwolf committed
298
    def __init__(self, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
299
300
301
        super(Block, self).__init__()
        nx = config.n_embd
        self.ln_1 = LayerNorm(nx, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
302
        self.attn = Attention(nx, n_ctx, config, scale)
thomwolf's avatar
thomwolf committed
303
304
305
        self.ln_2 = LayerNorm(nx, eps=config.layer_norm_epsilon)
        self.mlp = MLP(4 * nx, config)

306
307
    def forward(self, x, layer_past=None, head_mask=None):
        output_attn = self.attn(self.ln_1(x), layer_past=layer_past, head_mask=head_mask)
thomwolf's avatar
thomwolf committed
308
309
        a = output_attn[0]  # output_attn: a, present, (attentions)

thomwolf's avatar
thomwolf committed
310
        x = x + a
thomwolf's avatar
thomwolf committed
311
        m = self.mlp(self.ln_2(x))
thomwolf's avatar
thomwolf committed
312
        x = x + m
thomwolf's avatar
thomwolf committed
313
314
315

        outputs = [x] + output_attn[1:]
        return outputs  # x, present, (attentions)
thomwolf's avatar
thomwolf committed
316
317
318
319
320
321
322
323


class GPT2LMHead(nn.Module):
    """ Language Model Head for the transformer """

    def __init__(self, model_embeddings_weights, config):
        super(GPT2LMHead, self).__init__()
        self.n_embd = config.n_embd
324
325
        self.vocab_size = config.vocab_size
        self.predict_special_tokens = config.predict_special_tokens
thomwolf's avatar
thomwolf committed
326
327
328
329
        embed_shape = model_embeddings_weights.shape
        self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False)
        self.set_embeddings_weights(model_embeddings_weights)

330
331
    def set_embeddings_weights(self, model_embeddings_weights, predict_special_tokens=True):
        self.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
332
333
334
335
        self.decoder.weight = model_embeddings_weights  # Tied weights

    def forward(self, hidden_state):
        lm_logits = self.decoder(hidden_state)
336
337
        if not self.predict_special_tokens:
            lm_logits = lm_logits[..., :self.vocab_size]
thomwolf's avatar
thomwolf committed
338
339
340
341
342
343
344
345
346
        return lm_logits


class GPT2MultipleChoiceHead(nn.Module):
    """ Classifier Head for the transformer """

    def __init__(self, config):
        super(GPT2MultipleChoiceHead, self).__init__()
        self.n_embd = config.n_embd
347
        self.dropout = nn.Dropout2d(config.resid_pdrop)  # To reproduce the noise_shape parameter of TF implementation
thomwolf's avatar
thomwolf committed
348
349
350
351
352
        self.linear = nn.Linear(config.n_embd, 1)

        nn.init.normal_(self.linear.weight, std=0.02)
        nn.init.normal_(self.linear.bias, 0)

thomwolf's avatar
thomwolf committed
353
354
355
356
357
358
359
360
361
362
363
    def forward(self, hidden_states, mc_token_ids=None):
        """ Extract classification token hidden state and project it using self.linear
            hidden_state: shape (bsz, num_choices, seq_length, hidden_size)
            mc_token_ids: [optional] index of the classification token, shape (bsz, num_choices)
            if mc_token_ids=None we take the last token of the sequence as classification token
        """
        if mc_token_ids is None:
            mc_token_ids = torch.full_like(hidden_states[:, :, :1, :], hidden_states.shape[2] - 1, dtype=torch.long)
        else:
            mc_token_ids = mc_token_ids.unsqueeze(-1).unsqueeze(-1).expand(-1, -1, -1, hidden_states.size(-1))
        # mc_token_ids has shape (bsz, num_choices, 1, hidden_size)
thomwolf's avatar
thomwolf committed
364
365
        multiple_choice_h = hidden_states.gather(2, mc_token_ids).squeeze(2)
        # (bsz, num_choices, hidden_size)
366
        multiple_choice_h = self.dropout(multiple_choice_h.transpose(1, 2)).transpose(1, 2)
thomwolf's avatar
thomwolf committed
367
368
369
370
371
        multiple_choice_logits = self.linear(multiple_choice_h).squeeze(-1)
        # (bsz, num_choices)
        return multiple_choice_logits


372
class GPT2PreTrainedModel(PreTrainedModel):
thomwolf's avatar
thomwolf committed
373
374
375
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
376
377
378
379
    config_class = GPT2Config
    pretrained_model_archive_map = PRETRAINED_MODEL_ARCHIVE_MAP
    load_tf_weights = load_tf_weights_in_gpt2
    base_model_prefix = "transformer"
thomwolf's avatar
thomwolf committed
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394

    def init_weights(self, module):
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()

    @classmethod
VictorSanh's avatar
VictorSanh committed
395
    def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
thomwolf's avatar
thomwolf committed
396
397
398
399
400
401
402
        """
        Instantiate a GPT2PreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.

        Params:
            pretrained_model_name_or_path: either:
                - a str with the name of a pre-trained model to load selected in the list of:
Joel Grus's avatar
Joel Grus committed
403
                    . `gpt2`
thomwolf's avatar
thomwolf committed
404
405
406
407
                - a path or url to a pretrained model archive containing:
                    . `gpt2_config.json` a configuration file for the model
                    . `pytorch_model.bin` a PyTorch dump of a GPT2Model instance
                - a path or url to a pretrained model archive containing:
Joel Grus's avatar
Joel Grus committed
408
                    . `gpt2_config.json` a configuration file for the model
thomwolf's avatar
thomwolf committed
409
410
411
                    . a TensorFlow checkpoint with trained weights
            from_tf: should we load the weights from a locally saved TensorFlow checkpoint
            cache_dir: an optional path to a folder in which the pre-trained models will be cached.
Joel Grus's avatar
Joel Grus committed
412
            state_dict: an optional state dictionary (collections.OrderedDict object) to use instead of pre-trained models
VictorSanh's avatar
VictorSanh committed
413
            *inputs, **kwargs: additional input for the specific GPT2 class
thomwolf's avatar
thomwolf committed
414
        """
thomwolf's avatar
thomwolf committed
415
416
417
        num_special_tokens = kwargs.pop('num_special_tokens', None)

        model = PreTrainedModel.from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs)
thomwolf's avatar
thomwolf committed
418

thomwolf's avatar
thomwolf committed
419
420
        # Add additional embeddings for special tokens if needed
        # This step also make sure we are still sharing the output and input embeddings after loading weights
421
        model.set_num_special_tokens(num_special_tokens)
thomwolf's avatar
thomwolf committed
422
423
424
425
426
427
        return model


class GPT2Model(GPT2PreTrainedModel):
    """OpenAI GPT-2 model ("Language Models are Unsupervised Multitask Learners").

thomwolf's avatar
thomwolf committed
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
    GPT-2 use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    The embeddings are ordered as follow in the token embeddings matrice:
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
         config.vocab_size + config.n_special - 1]                  ______________________

    where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
        total_tokens_embeddings = config.vocab_size + config.n_special
    You should use the associate indices to index the embeddings.

thomwolf's avatar
thomwolf committed
445
    Params:
446
447
        `config`: a GPT2Config class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
448
449
450
451
452
453
454
455
456
457
458

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
            were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, config.vocab_size[
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
            with the position indices (selected in the range [0, config.n_positions - 1[.
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
Joel Grus's avatar
Joel Grus committed
459
460
461
        `past`: an optional list of torch.LongTensor that contains pre-computed hidden-states
            (key and values in the attention blocks) to speed up sequential decoding
            (this is the presents output of the model, cf. below).
462
463
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
thomwolf's avatar
thomwolf committed
464

Joel Grus's avatar
Joel Grus committed
465
    Outputs a tuple consisting of:
466
467
        `hidden_states`: a list of all the encoded-hidden-states in the model (length of the list: number of layers + 1 for the output of the embeddings)
            as torch.FloatTensor of size [batch_size, sequence_length, hidden_size]
thomwolf's avatar
thomwolf committed
468
            (or more generally [d_1, ..., d_n, hidden_size] were d_1 ... d_n are the dimension of input_ids)
Joel Grus's avatar
Joel Grus committed
469
470
        `presents`: a list of pre-computed hidden-states (key and values in each attention blocks) as
            torch.FloatTensors. They can be reused to speed up sequential decoding.
thomwolf's avatar
thomwolf committed
471
472
473
474
475
476
477
478
479

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

    config = modeling_gpt2.GPT2Config()

    model = modeling_gpt2.GPT2Model(config)
Joel Grus's avatar
Joel Grus committed
480
    hidden_states, presents = model(input_ids)
thomwolf's avatar
thomwolf committed
481
482
483
    ```
    """

thomwolf's avatar
thomwolf committed
484
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
485
        super(GPT2Model, self).__init__(config)
thomwolf's avatar
thomwolf committed
486
487
488
        self.output_hidden_states = config.output_hidden_states
        self.output_attentions = config.output_attentions

thomwolf's avatar
thomwolf committed
489
        self.wte = nn.Embedding(config.total_tokens_embeddings, config.n_embd)
thomwolf's avatar
thomwolf committed
490
        self.wpe = nn.Embedding(config.n_positions, config.n_embd)
491
        self.drop = nn.Dropout(config.embd_pdrop)
thomwolf's avatar
thomwolf committed
492
        block = Block(config.n_ctx, config, scale=True)
thomwolf's avatar
thomwolf committed
493
        self.h = nn.ModuleList([copy.deepcopy(block) for _ in range(config.n_layer)])
thomwolf's avatar
thomwolf committed
494
        self.ln_f = LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
495
496
497

        self.apply(self.init_weights)

498
    def set_num_special_tokens(self, num_special_tokens=None):
thomwolf's avatar
thomwolf committed
499
        " Update input embeddings with new embedding matrice if needed "
500
        if num_special_tokens is None or self.config.n_special == num_special_tokens:
thomwolf's avatar
thomwolf committed
501
502
503
504
505
506
507
508
509
510
511
            return
        # Update config
        self.config.n_special = num_special_tokens
        # Build new embeddings and initialize all new embeddings (in particular the special tokens)
        old_embed = self.wte
        self.wte = nn.Embedding(self.config.total_tokens_embeddings, self.config.n_embd)
        self.wte.to(old_embed.weight.device)
        self.init_weights(self.wte)
        # Copy word embeddings from the previous weights
        self.wte.weight.data[:self.config.vocab_size, :] = old_embed.weight.data[:self.config.vocab_size, :]

thomwolf's avatar
thomwolf committed
512
    def _prune_heads(self, heads_to_prune):
513
514
515
516
517
518
519
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
        for layer, heads in heads_to_prune.items():
            self.h[layer].attn.prune_heads(heads)

    def forward(self, input_ids, position_ids=None, token_type_ids=None, past=None, head_mask=None):
thomwolf's avatar
thomwolf committed
520
        if past is None:
thomwolf's avatar
thomwolf committed
521
            past_length = 0
thomwolf's avatar
thomwolf committed
522
            past = [None] * len(self.h)
thomwolf's avatar
thomwolf committed
523
        else:
thomwolf's avatar
thomwolf committed
524
            past_length = past[0][0].size(-2)
thomwolf's avatar
thomwolf committed
525
526
527
528
        if position_ids is None:
            position_ids = torch.arange(past_length, input_ids.size(-1) + past_length, dtype=torch.long, device=input_ids.device)
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)

529
        # Prepare head mask if needed
thomwolf's avatar
thomwolf committed
530
        # 1.0 in head_mask indicate we keep the head
531
        # attention_probs has shape bsz x n_heads x N x N
532
        # head_mask has shape n_layer x batch x n_heads x N x N
533
534
        if head_mask is not None:
            if head_mask.dim() == 1:
535
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
thomwolf's avatar
thomwolf committed
536
                head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1)
537
            elif head_mask.dim() == 2:
538
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
539
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
540
541
        else:
            head_mask = [None] * self.config.n_layer
542

thomwolf's avatar
thomwolf committed
543
544
545
546
547
548
549
550
551
552
553
554
        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_ids.size(-1))
        position_ids = position_ids.view(-1, position_ids.size(-1))

        inputs_embeds = self.wte(input_ids)
        position_embeds = self.wpe(position_ids)
        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
            token_type_embeds = self.wte(token_type_ids)
        else:
            token_type_embeds = 0
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
555
556
        hidden_states = self.drop(hidden_states)

557
558
        output_shape = input_shape + (hidden_states.size(-1),)

thomwolf's avatar
thomwolf committed
559
        presents = []
thomwolf's avatar
thomwolf committed
560
        all_attentions = []
561
        all_hidden_states = []
562
        for i, (block, layer_past) in enumerate(zip(self.h, past)):
thomwolf's avatar
thomwolf committed
563
564
565
            if self.output_hidden_states:
                all_hidden_states.append(hidden_states.view(*output_shape))

566
            outputs = block(hidden_states, layer_past, head_mask[i])
thomwolf's avatar
thomwolf committed
567
            hidden_states, present = outputs[:2]
thomwolf's avatar
thomwolf committed
568
            presents.append(present)
thomwolf's avatar
thomwolf committed
569
570
571
572

            if self.output_attentions:
                all_attentions.append(outputs[2])

thomwolf's avatar
thomwolf committed
573
        hidden_states = self.ln_f(hidden_states)
574

thomwolf's avatar
thomwolf committed
575
576
577
578
579
580
581
582
        hidden_states = hidden_states.view(*output_shape)
        # Add last hidden state
        if self.output_hidden_states:
            all_hidden_states.append(hidden_states)

        outputs = [hidden_states, presents]
        if self.output_hidden_states:
            outputs.append(all_hidden_states)
thomwolf's avatar
thomwolf committed
583
        if self.output_attentions:
thomwolf's avatar
thomwolf committed
584
585
586
587
588
            # let the number of heads free (-1) so we can extract attention even after head pruning
            attention_output_shape = input_shape[:-1] + (-1,) + all_attentions[0].shape[-2:]
            all_attentions = list(t.view(*attention_output_shape) for t in all_attentions)
            outputs.append(all_attentions)
        return outputs  # last hidden state, presents, (all hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
589
590
591
592
593
594


class GPT2LMHeadModel(GPT2PreTrainedModel):
    """OpenAI GPT-2 model with a Language Modeling head ("Language Models are Unsupervised Multitask Learners").

    Params:
595
596
597
598
        `config`: a GPT2Config class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
thomwolf's avatar
thomwolf committed
599
600
601
602
603
604
605
606
607
608
609
610
611
612

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
            were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, config.vocab_size[
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
            with the position indices (selected in the range [0, config.n_positions - 1[.
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
        `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
            with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., vocab_size]
Joel Grus's avatar
Joel Grus committed
613
614
615
        `past`: an optional list of torch.LongTensor that contains pre-computed hidden-states
            (key and values in the attention blocks) to speed up sequential decoding
            (this is the presents output of the model, cf. below).
616
617
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
thomwolf's avatar
thomwolf committed
618
619
620
621

    Outputs:
        if `lm_labels` is not `None`:
            Outputs the language modeling loss.
Joel Grus's avatar
Joel Grus committed
622
        else a tuple:
thomwolf's avatar
thomwolf committed
623
624
            `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, sequence_length, config.vocab_size]
                (or more generally [d_1, ..., d_n, config.vocab_size] were d_1 ... d_n are the dimension of input_ids)
Joel Grus's avatar
Joel Grus committed
625
626
            `presents`: a list of pre-computed hidden-states (key and values in each attention blocks) as
                torch.FloatTensors. They can be reused to speed up sequential decoding.
thomwolf's avatar
thomwolf committed
627
628
629
630
631
632
633
634
635

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

    config = modeling_gpt2.GPT2Config()

    model = modeling_gpt2.GPT2LMHeadModel(config)
Joel Grus's avatar
Joel Grus committed
636
    lm_logits, presents = model(input_ids)
thomwolf's avatar
thomwolf committed
637
638
639
    ```
    """

thomwolf's avatar
thomwolf committed
640
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
641
        super(GPT2LMHeadModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
642
        self.transformer = GPT2Model(config)
thomwolf's avatar
thomwolf committed
643
644
645
        self.lm_head = GPT2LMHead(self.transformer.wte.weight, config)
        self.apply(self.init_weights)

646
    def set_num_special_tokens(self, num_special_tokens, predict_special_tokens=True):
thomwolf's avatar
thomwolf committed
647
648
        """ Update input and output embeddings with new embedding matrice
            Make sure we are sharing the embeddings
thomwolf's avatar
thomwolf committed
649
        """
650
        self.config.predict_special_tokens = self.transformer.config.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
651
        self.transformer.set_num_special_tokens(num_special_tokens)
652
        self.lm_head.set_embeddings_weights(self.transformer.wte.weight, predict_special_tokens=predict_special_tokens)
thomwolf's avatar
thomwolf committed
653

654
    def forward(self, input_ids, position_ids=None, token_type_ids=None, lm_labels=None, past=None, head_mask=None):
thomwolf's avatar
thomwolf committed
655
656
        transformer_outputs = self.transformer(input_ids, position_ids, token_type_ids, past, head_mask)
        hidden_states = transformer_outputs[0]
657

thomwolf's avatar
thomwolf committed
658
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
659
660

        outputs = [lm_logits] + transformer_outputs[1:]
thomwolf's avatar
thomwolf committed
661
        if lm_labels is not None:
662
            # Shift so that tokens < n predict n
663
664
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
Catalin Voss's avatar
Catalin Voss committed
665
            # Flatten the tokens
thomwolf's avatar
thomwolf committed
666
            loss_fct = CrossEntropyLoss(ignore_index=-1)
667
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
668
                            shift_labels.view(-1))
thomwolf's avatar
thomwolf committed
669
670
671
            outputs = [loss] + outputs

        return outputs  # (loss), lm_logits, presents, (all hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
672
673
674
675
676
677


class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
    """OpenAI GPT-2 model with a Language Modeling and a Multiple Choice head ("Language Models are Unsupervised Multitask Learners").

    Params:
678
679
680
681
        `config`: a GPT2Config class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
thomwolf's avatar
thomwolf committed
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length] with the BPE token
            indices selected in the range [0, config.vocab_size[
        `mc_token_ids`: a torch.LongTensor of shape [batch_size, num_choices] with the index of the token from
            which we should take the hidden state to feed the multiple choice classifier (usually last token of the sequence)
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
            with the position indices (selected in the range [0, config.n_positions - 1[.
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
        `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, num_choices, sequence_length]
            with indices selected in [-1, 0, ..., config.vocab_size]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., config.vocab_size]
        `multiple_choice_labels`: optional multiple choice labels: torch.LongTensor of shape [batch_size]
            with indices selected in [0, ..., num_choices].
Joel Grus's avatar
Joel Grus committed
700
701
702
        `past`: an optional list of torch.LongTensor that contains pre-computed hidden-states
            (key and values in the attention blocks) to speed up sequential decoding
            (this is the presents output of the model, cf. below).
703
704
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
thomwolf's avatar
thomwolf committed
705
706
707
708
709
710
711

    Outputs:
        if `lm_labels` and `multiple_choice_labels` are not `None`:
            Outputs a tuple of losses with the language modeling loss and the multiple choice loss.
        else: a tuple with
            `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, num_choices, sequence_length, config.vocab_size]
            `multiple_choice_logits`: the multiple choice logits as a torch.FloatTensor of size [batch_size, num_choices]
Joel Grus's avatar
Joel Grus committed
712
713
            `presents`: a list of pre-computed hidden-states (key and values in each attention blocks) as
                torch.FloatTensors. They can be reused to speed up sequential decoding.
thomwolf's avatar
thomwolf committed
714
715
716
717
718
719
720
721
722

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]]])  # (bsz, number of choice, seq length)
    mc_token_ids = torch.LongTensor([[2], [1]]) # (bsz, number of choice)

    config = modeling_gpt2.GPT2Config()

VictorSanh's avatar
VictorSanh committed
723
    model = modeling_gpt2.GPT2DoubleHeadsModel(config)
Joel Grus's avatar
Joel Grus committed
724
    lm_logits, multiple_choice_logits, presents = model(input_ids, mc_token_ids)
thomwolf's avatar
thomwolf committed
725
726
727
    ```
    """

thomwolf's avatar
thomwolf committed
728
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
729
        super(GPT2DoubleHeadsModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
730
        self.transformer = GPT2Model(config)
thomwolf's avatar
thomwolf committed
731
732
        self.lm_head = GPT2LMHead(self.transformer.wte.weight, config)
        self.multiple_choice_head = GPT2MultipleChoiceHead(config)
thomwolf's avatar
thomwolf committed
733

thomwolf's avatar
thomwolf committed
734
735
        self.apply(self.init_weights)

736
    def set_num_special_tokens(self, num_special_tokens, predict_special_tokens=True):
thomwolf's avatar
thomwolf committed
737
738
        """ Update input and output embeddings with new embedding matrice
            Make sure we are sharing the embeddings
thomwolf's avatar
thomwolf committed
739
        """
740
        self.config.predict_special_tokens = self.transformer.config.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
741
        self.transformer.set_num_special_tokens(num_special_tokens)
742
        self.lm_head.set_embeddings_weights(self.transformer.wte.weight, predict_special_tokens=predict_special_tokens)
thomwolf's avatar
thomwolf committed
743

thomwolf's avatar
thomwolf committed
744
    def forward(self, input_ids, mc_token_ids=None, lm_labels=None, mc_labels=None, token_type_ids=None,
745
                position_ids=None, past=None, head_mask=None):
thomwolf's avatar
thomwolf committed
746
747
        transformer_outputs = self.transformer(input_ids, position_ids, token_type_ids, past, head_mask)
        hidden_states = transformer_outputs[0]
748

thomwolf's avatar
thomwolf committed
749
750
        lm_logits = self.lm_head(hidden_states)
        mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids)
thomwolf's avatar
thomwolf committed
751
752
753
754
755
756
757

        outputs = [lm_logits, mc_logits] + transformer_outputs[1:]
        if mc_labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)),
                            mc_labels.view(-1))
            outputs = [loss] + outputs
thomwolf's avatar
thomwolf committed
758
        if lm_labels is not None:
759
760
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
thomwolf's avatar
thomwolf committed
761
            loss_fct = CrossEntropyLoss(ignore_index=-1)
thomwolf's avatar
thomwolf committed
762
763
764
765
766
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
                            shift_labels.view(-1))
            outputs = [loss] + outputs

        return outputs  # (lm loss), (mc loss), lm logits, mc logits, presents, (all hidden_states), (attentions)