modeling_gpt2.py 35.4 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OpenAI GPT-2 model."""

18
19
from __future__ import absolute_import, division, print_function, unicode_literals

thomwolf's avatar
thomwolf committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import collections
import copy
import json
import logging
import math
import os
import shutil
import tarfile
import tempfile
import sys
from io import open

import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from torch.nn.parameter import Parameter

37
from .file_utils import cached_path, CONFIG_NAME, WEIGHTS_NAME
thomwolf's avatar
thomwolf committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from .modeling import BertLayerNorm as LayerNorm

logger = logging.getLogger(__name__)

PRETRAINED_MODEL_ARCHIVE_MAP = {"gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-pytorch_model.bin"}
PRETRAINED_CONFIG_ARCHIVE_MAP = {"gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-config.json"}

def load_tf_weights_in_gpt2(model, gpt2_checkpoint_path):
    """ Load tf checkpoints in a pytorch model
    """
    try:
        import re
        import numpy as np
        import tensorflow as tf
    except ImportError:
        print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
    tf_path = os.path.abspath(gpt2_checkpoint_path)
    print("Converting TensorFlow checkpoint from {}".format(tf_path))
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
        print("Loading TF weight {} with shape {}".format(name, shape))
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
thomwolf's avatar
thomwolf committed
66
        arrays.append(array.squeeze())
thomwolf's avatar
thomwolf committed
67
68

    for name, array in zip(names, arrays):
thomwolf's avatar
thomwolf committed
69
        name = name[6:]  # skip "model/"
thomwolf's avatar
thomwolf committed
70
71
72
        name = name.split('/')
        pointer = model
        for m_name in name:
thomwolf's avatar
thomwolf committed
73
74
            if re.fullmatch(r'[A-Za-z]+\d+', m_name):
                l = re.split(r'(\d+)', m_name)
thomwolf's avatar
thomwolf committed
75
76
77
78
79
80
            else:
                l = [m_name]
            if l[0] == 'w' or l[0] == 'g':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'b':
                pointer = getattr(pointer, 'bias')
thomwolf's avatar
thomwolf committed
81
82
83
            elif l[0] == 'wpe' or l[0] == 'wte':
                pointer = getattr(pointer, l[0])
                pointer = getattr(pointer, 'weight')
thomwolf's avatar
thomwolf committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
            else:
                pointer = getattr(pointer, l[0])
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        print("Initialize PyTorch weight {}".format(name))
        pointer.data = torch.from_numpy(array)
    return model


def gelu(x):
    return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))


class GPT2Config(object):
    """Configuration class to store the configuration of a `GPT2Model`.
    """

    def __init__(
        self,
thomwolf's avatar
thomwolf committed
109
        vocab_size_or_config_json_file=50257,
thomwolf's avatar
thomwolf committed
110
        n_special=0,
thomwolf's avatar
thomwolf committed
111
112
113
114
115
        n_positions=1024,
        n_ctx=1024,
        n_embd=768,
        n_layer=12,
        n_head=12,
116
117
118
        resid_pdrop=0.1,
        embd_pdrop=0.1,
        attn_pdrop=0.1,
thomwolf's avatar
thomwolf committed
119
120
        layer_norm_epsilon=1e-5,
        initializer_range=0.02,
121
        predict_special_tokens=True
thomwolf's avatar
thomwolf committed
122
123
124
125
126
    ):
        """Constructs GPT2Config.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `GPT2Model` or a configuration json file.
thomwolf's avatar
thomwolf committed
127
            n_special: The number of special tokens to learn during fine-tuning ('[SEP]', '[CLF]', ...)
thomwolf's avatar
thomwolf committed
128
129
130
131
132
133
134
            n_positions: Number of positional embeddings.
            n_ctx: Size of the causal mask (usually same as n_positions).
            n_embd: Dimensionality of the embeddings and hidden states.
            n_layer: Number of hidden layers in the Transformer encoder.
            n_head: Number of attention heads for each attention layer in
                the Transformer encoder.
            layer_norm_epsilon: epsilon to use in the layer norm layers
135
136
137
138
139
            resid_pdrop: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attn_pdrop: The dropout ratio for the attention
                probabilities.
            embd_pdrop: The dropout ratio for the embeddings.
thomwolf's avatar
thomwolf committed
140
141
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
142
            predict_special_tokens: should we predict special tokens (when the model has a LM head)
thomwolf's avatar
thomwolf committed
143
144
145
146
147
148
149
150
151
        """
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
            with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader:
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
thomwolf's avatar
thomwolf committed
152
            self.n_special = n_special
thomwolf's avatar
thomwolf committed
153
154
155
156
157
            self.n_ctx = n_ctx
            self.n_positions = n_positions
            self.n_embd = n_embd
            self.n_layer = n_layer
            self.n_head = n_head
158
159
160
            self.resid_pdrop = resid_pdrop
            self.embd_pdrop = embd_pdrop
            self.attn_pdrop = attn_pdrop
thomwolf's avatar
thomwolf committed
161
162
            self.layer_norm_epsilon = layer_norm_epsilon
            self.initializer_range = initializer_range
163
            self.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
164
165
166
167
168
169
        else:
            raise ValueError(
                "First argument must be either a vocabulary size (int)"
                "or the path to a pretrained model config file (str)"
            )

thomwolf's avatar
thomwolf committed
170
171
172
173
    @property
    def total_tokens_embeddings(self):
        return self.vocab_size + self.n_special

thomwolf's avatar
thomwolf committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
    @classmethod
    def from_dict(cls, json_object):
        """Constructs a `GPT2Config` from a Python dictionary of parameters."""
        config = GPT2Config(vocab_size_or_config_json_file=-1)
        for key, value in json_object.items():
            config.__dict__[key] = value
        return config

    @classmethod
    def from_json_file(cls, json_file):
        """Constructs a `GPT2Config` from a json file of parameters."""
        with open(json_file, "r", encoding="utf-8") as reader:
            text = reader.read()
        return cls.from_dict(json.loads(text))

    def __repr__(self):
        return str(self.to_json_string())

    def to_dict(self):
        """Serializes this instance to a Python dictionary."""
        output = copy.deepcopy(self.__dict__)
        return output

    def to_json_string(self):
        """Serializes this instance to a JSON string."""
        return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"

201
202
203
204
205
    def to_json_file(self, json_file_path):
        """ Save this instance to a json file."""
        with open(json_file_path, "w", encoding='utf-8') as writer:
            writer.write(self.to_json_string())

thomwolf's avatar
thomwolf committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

class Conv1D(nn.Module):
    def __init__(self, nf, nx):
        super(Conv1D, self).__init__()
        self.nf = nf
        w = torch.empty(nx, nf)
        nn.init.normal_(w, std=0.02)
        self.weight = Parameter(w)
        self.bias = Parameter(torch.zeros(nf))

    def forward(self, x):
        size_out = x.size()[:-1] + (self.nf,)
        x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
        x = x.view(*size_out)
        return x


class Attention(nn.Module):
    def __init__(self, nx, n_ctx, config, scale=False):
        super(Attention, self).__init__()
        n_state = nx  # in Attention: n_state=768 (nx=n_embd)
        # [switch nx => n_state from Block to Attention to keep identical to TF implem]
        assert n_state % config.n_head == 0
        self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
        self.n_head = config.n_head
        self.split_size = n_state
        self.scale = scale
        self.c_attn = Conv1D(n_state * 3, nx)
        self.c_proj = Conv1D(n_state, nx)
235
236
        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
237
238
239
240
241

    def _attn(self, q, k, v):
        w = torch.matmul(q, k)
        if self.scale:
            w = w / math.sqrt(v.size(-1))
thomwolf's avatar
thomwolf committed
242
243
        nd, ns = w.size(-2), w.size(-1)
        b = self.bias[:, :, ns-nd:ns, :ns]
244
        w = w * b - 1e4 * (1 - b)
thomwolf's avatar
thomwolf committed
245
246

        w = nn.Softmax(dim=-1)(w)
247
        w = self.attn_dropout(w)
thomwolf's avatar
thomwolf committed
248
249
250
251
252
253
254
255
256
257
258
        return torch.matmul(w, v)

    def merge_heads(self, x):
        x = x.permute(0, 2, 1, 3).contiguous()
        new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
        return x.view(*new_x_shape)  # in Tensorflow implem: fct merge_states

    def split_heads(self, x, k=False):
        new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
        x = x.view(*new_x_shape)  # in Tensorflow implem: fct split_states
        if k:
thomwolf's avatar
thomwolf committed
259
            return x.permute(0, 2, 3, 1)  # (batch, head, head_features, seq_length)
thomwolf's avatar
thomwolf committed
260
        else:
thomwolf's avatar
thomwolf committed
261
            return x.permute(0, 2, 1, 3)  # (batch, head, seq_length, head_features)
thomwolf's avatar
thomwolf committed
262

thomwolf's avatar
thomwolf committed
263
    def forward(self, x, layer_past=None):
thomwolf's avatar
thomwolf committed
264
265
266
267
268
        x = self.c_attn(x)
        query, key, value = x.split(self.split_size, dim=2)
        query = self.split_heads(query)
        key = self.split_heads(key, k=True)
        value = self.split_heads(value)
thomwolf's avatar
thomwolf committed
269
        if layer_past is not None:
thomwolf's avatar
thomwolf committed
270
            past_key, past_value = layer_past[0].transpose(-2, -1), layer_past[1]  # transpose back cf below
thomwolf's avatar
thomwolf committed
271
            key = torch.cat((past_key, key), dim=-1)
thomwolf's avatar
thomwolf committed
272
            value = torch.cat((past_value, value), dim=-2)
thomwolf's avatar
thomwolf committed
273
        present = torch.stack((key.transpose(-2, -1), value))  # transpose to have same shapes for stacking
thomwolf's avatar
thomwolf committed
274
275
276
        a = self._attn(query, key, value)
        a = self.merge_heads(a)
        a = self.c_proj(a)
277
        a = self.resid_dropout(a)
thomwolf's avatar
thomwolf committed
278
279
280
281
282
283
284
285
286
287
        return a, present


class MLP(nn.Module):
    def __init__(self, n_state, config):  # in MLP: n_state=3072 (4 * n_embd)
        super(MLP, self).__init__()
        nx = config.n_embd
        self.c_fc = Conv1D(n_state, nx)
        self.c_proj = Conv1D(nx, n_state)
        self.act = gelu
288
        self.dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
289
290
291
292

    def forward(self, x):
        h = self.act(self.c_fc(x))
        h2 = self.c_proj(h)
293
        return self.dropout(h2)
thomwolf's avatar
thomwolf committed
294
295
296
297
298
299
300
301
302
303
304


class Block(nn.Module):
    def __init__(self, n_ctx, config, scale=False):
        super(Block, self).__init__()
        nx = config.n_embd
        self.ln_1 = LayerNorm(nx, eps=config.layer_norm_epsilon)
        self.attn = Attention(nx, n_ctx, config, scale)
        self.ln_2 = LayerNorm(nx, eps=config.layer_norm_epsilon)
        self.mlp = MLP(4 * nx, config)

thomwolf's avatar
thomwolf committed
305
    def forward(self, x, layer_past=None):
thomwolf's avatar
thomwolf committed
306
        a, present = self.attn(self.ln_1(x), layer_past=layer_past)
thomwolf's avatar
thomwolf committed
307
        x = x + a
thomwolf's avatar
thomwolf committed
308
        m = self.mlp(self.ln_2(x))
thomwolf's avatar
thomwolf committed
309
310
311
312
313
314
315
316
317
318
        x = x + m
        return x, present


class GPT2LMHead(nn.Module):
    """ Language Model Head for the transformer """

    def __init__(self, model_embeddings_weights, config):
        super(GPT2LMHead, self).__init__()
        self.n_embd = config.n_embd
319
320
        self.vocab_size = config.vocab_size
        self.predict_special_tokens = config.predict_special_tokens
thomwolf's avatar
thomwolf committed
321
322
        embed_shape = model_embeddings_weights.shape
        self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False)
thomwolf's avatar
thomwolf committed
323
324
        self.set_embeddings_weights(model_embeddings_weights)

325
326
    def set_embeddings_weights(self, model_embeddings_weights, predict_special_tokens=True):
        self.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
327
328
329
330
        self.decoder.weight = model_embeddings_weights  # Tied weights

    def forward(self, hidden_state):
        lm_logits = self.decoder(hidden_state)
331
332
        if not self.predict_special_tokens:
            lm_logits = lm_logits[..., :self.vocab_size]
thomwolf's avatar
thomwolf committed
333
334
335
336
337
338
339
340
341
        return lm_logits


class GPT2MultipleChoiceHead(nn.Module):
    """ Classifier Head for the transformer """

    def __init__(self, config):
        super(GPT2MultipleChoiceHead, self).__init__()
        self.n_embd = config.n_embd
342
        self.dropout = nn.Dropout2d(config.resid_pdrop)  # To reproduce the noise_shape parameter of TF implementation
thomwolf's avatar
thomwolf committed
343
344
345
346
347
348
349
350
351
352
353
354
355
        self.linear = nn.Linear(config.n_embd, 1)

        nn.init.normal_(self.linear.weight, std=0.02)
        nn.init.normal_(self.linear.bias, 0)

    def forward(self, hidden_states, mc_token_ids):
        # Classification logits
        # hidden_state (bsz, num_choices, seq_length, hidden_size)
        # mc_token_ids (bsz, num_choices)
        mc_token_ids = mc_token_ids.unsqueeze(-1).unsqueeze(-1).expand(-1, -1, -1, hidden_states.size(-1))
        # (bsz, num_choices, 1, hidden_size)
        multiple_choice_h = hidden_states.gather(2, mc_token_ids).squeeze(2)
        # (bsz, num_choices, hidden_size)
356
        multiple_choice_h = self.dropout(multiple_choice_h.transpose(1, 2)).transpose(1, 2)
thomwolf's avatar
thomwolf committed
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
        multiple_choice_logits = self.linear(multiple_choice_h).squeeze(-1)
        # (bsz, num_choices)
        return multiple_choice_logits


class GPT2PreTrainedModel(nn.Module):
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """

    def __init__(self, config, *inputs, **kwargs):
        super(GPT2PreTrainedModel, self).__init__()
        if not isinstance(config, GPT2Config):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `GPT2Config`. "
                "To create a model from a pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
                )
            )
        self.config = config

    def init_weights(self, module):
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()

    @classmethod
    def from_pretrained(
394
        cls, pretrained_model_name_or_path, num_special_tokens=None, state_dict=None, cache_dir=None, from_tf=False, *inputs, **kwargs
thomwolf's avatar
thomwolf committed
395
396
397
398
399
400
401
402
    ):
        """
        Instantiate a GPT2PreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.

        Params:
            pretrained_model_name_or_path: either:
                - a str with the name of a pre-trained model to load selected in the list of:
Joel Grus's avatar
Joel Grus committed
403
                    . `gpt2`
thomwolf's avatar
thomwolf committed
404
405
406
407
                - a path or url to a pretrained model archive containing:
                    . `gpt2_config.json` a configuration file for the model
                    . `pytorch_model.bin` a PyTorch dump of a GPT2Model instance
                - a path or url to a pretrained model archive containing:
Joel Grus's avatar
Joel Grus committed
408
                    . `gpt2_config.json` a configuration file for the model
thomwolf's avatar
thomwolf committed
409
410
411
                    . a TensorFlow checkpoint with trained weights
            from_tf: should we load the weights from a locally saved TensorFlow checkpoint
            cache_dir: an optional path to a folder in which the pre-trained models will be cached.
Joel Grus's avatar
Joel Grus committed
412
413
            state_dict: an optional state dictionary (collections.OrderedDict object) to use instead of pre-trained models
            *inputs, **kwargs: additional input for the specific GPT class
thomwolf's avatar
thomwolf committed
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
        """
        if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP:
            archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name_or_path]
            config_file = PRETRAINED_CONFIG_ARCHIVE_MAP[pretrained_model_name_or_path]
        else:
            archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
            config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
        # redirect to the cache, if necessary
        try:
            resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir)
            resolved_config_file = cached_path(config_file, cache_dir=cache_dir)
        except EnvironmentError:
            logger.error(
                "Model name '{}' was not found in model name list ({}). "
                "We assumed '{}' was a path or url but couldn't find files {} and {} "
                "at this path or url.".format(
                    pretrained_model_name_or_path, ", ".join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()), pretrained_model_name_or_path,
                    archive_file, config_file
                )
            )
            return None
        if resolved_archive_file == archive_file and resolved_config_file == config_file:
            logger.info("loading weights file {}".format(archive_file))
            logger.info("loading configuration file {}".format(config_file))
        else:
            logger.info("loading weights file {} from cache at {}".format(
                archive_file, resolved_archive_file))
            logger.info("loading configuration file {} from cache at {}".format(
                config_file, resolved_config_file))
        # Load config
        config = GPT2Config.from_json_file(resolved_config_file)
        logger.info("Model config {}".format(config))
        # Instantiate model.
        model = cls(config, *inputs, **kwargs)
        if state_dict is None and not from_tf:
thomwolf's avatar
thomwolf committed
449
            state_dict = torch.load(resolved_archive_file, map_location='cpu')
thomwolf's avatar
thomwolf committed
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
        if from_tf:
            # Directly load from a TensorFlow checkpoint (stored as NumPy array)
            return load_tf_weights_in_gpt2(model, resolved_archive_file)

        old_keys = []
        new_keys = []
        for key in state_dict.keys():
            new_key = None
            if key.endswith(".g"):
                new_key = key[:-2] + ".weight"
            elif key.endswith(".b"):
                new_key = key[:-2] + ".bias"
            elif key.endswith(".w"):
                new_key = key[:-2] + ".weight"
            if new_key:
                old_keys.append(key)
                new_keys.append(new_key)
        for old_key, new_key in zip(old_keys, new_keys):
            state_dict[new_key] = state_dict.pop(old_key)

        missing_keys = []
        unexpected_keys = []
        error_msgs = []
        # copy state_dict so _load_from_state_dict can modify it
        metadata = getattr(state_dict, "_metadata", None)
        state_dict = state_dict.copy()
        if metadata is not None:
            state_dict._metadata = metadata

        def load(module, prefix=""):
            local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
            module._load_from_state_dict(
                state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs
            )
            for name, child in module._modules.items():
                if child is not None:
                    load(child, prefix + name + ".")

        start_model = model
        if hasattr(model, "transformer") and all(not s.startswith('transformer.') for s in state_dict.keys()):
            start_model = model.transformer
        load(start_model, prefix="")

        if len(missing_keys) > 0:
            logger.info(
                "Weights of {} not initialized from pretrained model: {}".format(model.__class__.__name__, missing_keys)
            )
        if len(unexpected_keys) > 0:
            logger.info(
                "Weights from pretrained model not used in {}: {}".format(model.__class__.__name__, unexpected_keys)
            )
        if len(error_msgs) > 0:
            raise RuntimeError(
                "Error(s) in loading state_dict for {}:\n\t{}".format(model.__class__.__name__, "\n\t".join(error_msgs))
            )

thomwolf's avatar
thomwolf committed
506
507
508
        # Add additional embeddings for special tokens if needed
        # This step also make sure we are still sharing the output and input embeddings after loading weights
        model.set_num_special_tokens(num_special_tokens if num_special_tokens is not None else config.n_special)
thomwolf's avatar
thomwolf committed
509
510
511
512
513
514
        return model


class GPT2Model(GPT2PreTrainedModel):
    """OpenAI GPT-2 model ("Language Models are Unsupervised Multitask Learners").

thomwolf's avatar
thomwolf committed
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
    GPT-2 use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    The embeddings are ordered as follow in the token embeddings matrice:
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
         config.vocab_size + config.n_special - 1]                  ______________________

    where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
        total_tokens_embeddings = config.vocab_size + config.n_special
    You should use the associate indices to index the embeddings.

thomwolf's avatar
thomwolf committed
532
533
534
535
536
537
538
539
540
541
542
543
544
    Params:
        config: a GPT2Config class instance with the configuration to build a new model

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
            were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, config.vocab_size[
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
            with the position indices (selected in the range [0, config.n_positions - 1[.
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
Joel Grus's avatar
Joel Grus committed
545
546
547
        `past`: an optional list of torch.LongTensor that contains pre-computed hidden-states
            (key and values in the attention blocks) to speed up sequential decoding
            (this is the presents output of the model, cf. below).
thomwolf's avatar
thomwolf committed
548

Joel Grus's avatar
Joel Grus committed
549
    Outputs a tuple consisting of:
thomwolf's avatar
thomwolf committed
550
551
552
        `hidden_states`: the encoded-hidden-states at the top of the model
            as a torch.FloatTensor of size [batch_size, sequence_length, hidden_size]
            (or more generally [d_1, ..., d_n, hidden_size] were d_1 ... d_n are the dimension of input_ids)
Joel Grus's avatar
Joel Grus committed
553
554
        `presents`: a list of pre-computed hidden-states (key and values in each attention blocks) as
            torch.FloatTensors. They can be reused to speed up sequential decoding.
thomwolf's avatar
thomwolf committed
555
556
557
558
559
560
561
562
563

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

    config = modeling_gpt2.GPT2Config()

    model = modeling_gpt2.GPT2Model(config)
Joel Grus's avatar
Joel Grus committed
564
    hidden_states, presents = model(input_ids)
thomwolf's avatar
thomwolf committed
565
566
567
568
569
    ```
    """

    def __init__(self, config):
        super(GPT2Model, self).__init__(config)
thomwolf's avatar
thomwolf committed
570
        self.wte = nn.Embedding(config.total_tokens_embeddings, config.n_embd)
thomwolf's avatar
thomwolf committed
571
        self.wpe = nn.Embedding(config.n_positions, config.n_embd)
572
        self.drop = nn.Dropout(config.embd_pdrop)
thomwolf's avatar
thomwolf committed
573
574
        block = Block(config.n_ctx, config, scale=True)
        self.h = nn.ModuleList([copy.deepcopy(block) for _ in range(config.n_layer)])
thomwolf's avatar
thomwolf committed
575
        self.ln_f = LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
576
577
578

        self.apply(self.init_weights)

thomwolf's avatar
thomwolf committed
579
580
581
582
583
584
585
586
587
588
589
590
591
592
    def set_num_special_tokens(self, num_special_tokens):
        " Update input embeddings with new embedding matrice if needed "
        if self.config.n_special == num_special_tokens:
            return
        # Update config
        self.config.n_special = num_special_tokens
        # Build new embeddings and initialize all new embeddings (in particular the special tokens)
        old_embed = self.wte
        self.wte = nn.Embedding(self.config.total_tokens_embeddings, self.config.n_embd)
        self.wte.to(old_embed.weight.device)
        self.init_weights(self.wte)
        # Copy word embeddings from the previous weights
        self.wte.weight.data[:self.config.vocab_size, :] = old_embed.weight.data[:self.config.vocab_size, :]

thomwolf's avatar
thomwolf committed
593
594
    def forward(self, input_ids, position_ids=None, token_type_ids=None, past=None):
        if past is None:
thomwolf's avatar
thomwolf committed
595
            past_length = 0
thomwolf's avatar
thomwolf committed
596
            past = [None] * len(self.h)
thomwolf's avatar
thomwolf committed
597
        else:
thomwolf's avatar
thomwolf committed
598
            past_length = past[0][0].size(-2)
thomwolf's avatar
thomwolf committed
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
        if position_ids is None:
            position_ids = torch.arange(past_length, input_ids.size(-1) + past_length, dtype=torch.long, device=input_ids.device)
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)

        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_ids.size(-1))
        position_ids = position_ids.view(-1, position_ids.size(-1))

        inputs_embeds = self.wte(input_ids)
        position_embeds = self.wpe(position_ids)
        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
            token_type_embeds = self.wte(token_type_ids)
        else:
            token_type_embeds = 0
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
615
616
        hidden_states = self.drop(hidden_states)

thomwolf's avatar
thomwolf committed
617
        presents = []
thomwolf's avatar
thomwolf committed
618
619
        for block, layer_past in zip(self.h, past):
            hidden_states, present = block(hidden_states, layer_past)
thomwolf's avatar
thomwolf committed
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
            presents.append(present)
        hidden_states = self.ln_f(hidden_states)
        output_shape = input_shape + (hidden_states.size(-1),)
        return hidden_states.view(*output_shape), presents


class GPT2LMHeadModel(GPT2PreTrainedModel):
    """OpenAI GPT-2 model with a Language Modeling head ("Language Models are Unsupervised Multitask Learners").

    Params:
        config: a GPT2Config class instance with the configuration to build a new model

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
            were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, config.vocab_size[
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
            with the position indices (selected in the range [0, config.n_positions - 1[.
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
        `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
            with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., vocab_size]
Joel Grus's avatar
Joel Grus committed
645
646
647
        `past`: an optional list of torch.LongTensor that contains pre-computed hidden-states
            (key and values in the attention blocks) to speed up sequential decoding
            (this is the presents output of the model, cf. below).
thomwolf's avatar
thomwolf committed
648
649
650
651

    Outputs:
        if `lm_labels` is not `None`:
            Outputs the language modeling loss.
Joel Grus's avatar
Joel Grus committed
652
        else a tuple:
thomwolf's avatar
thomwolf committed
653
654
            `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, sequence_length, config.vocab_size]
                (or more generally [d_1, ..., d_n, config.vocab_size] were d_1 ... d_n are the dimension of input_ids)
Joel Grus's avatar
Joel Grus committed
655
656
            `presents`: a list of pre-computed hidden-states (key and values in each attention blocks) as
                torch.FloatTensors. They can be reused to speed up sequential decoding.
thomwolf's avatar
thomwolf committed
657
658
659
660
661
662
663
664
665

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

    config = modeling_gpt2.GPT2Config()

    model = modeling_gpt2.GPT2LMHeadModel(config)
Joel Grus's avatar
Joel Grus committed
666
    lm_logits, presents = model(input_ids)
thomwolf's avatar
thomwolf committed
667
668
669
670
671
672
673
674
675
    ```
    """

    def __init__(self, config):
        super(GPT2LMHeadModel, self).__init__(config)
        self.transformer = GPT2Model(config)
        self.lm_head = GPT2LMHead(self.transformer.wte.weight, config)
        self.apply(self.init_weights)

676
    def set_num_special_tokens(self, num_special_tokens, predict_special_tokens=True):
thomwolf's avatar
thomwolf committed
677
678
        """ Update input and output embeddings with new embedding matrice
            Make sure we are sharing the embeddings
thomwolf's avatar
thomwolf committed
679
        """
680
        self.config.predict_special_tokens = self.transformer.config.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
681
        self.transformer.set_num_special_tokens(num_special_tokens)
682
        self.lm_head.set_embeddings_weights(self.transformer.wte.weight, predict_special_tokens=predict_special_tokens)
thomwolf's avatar
thomwolf committed
683

thomwolf's avatar
thomwolf committed
684
685
    def forward(self, input_ids, position_ids=None, token_type_ids=None, lm_labels=None, past=None):
        hidden_states, presents = self.transformer(input_ids, position_ids, token_type_ids, past)
thomwolf's avatar
thomwolf committed
686
687
        lm_logits = self.lm_head(hidden_states)
        if lm_labels is not None:
688
            # Shift so that tokens < n predict n
689
690
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
Catalin Voss's avatar
Catalin Voss committed
691
            # Flatten the tokens
thomwolf's avatar
thomwolf committed
692
            loss_fct = CrossEntropyLoss(ignore_index=-1)
693
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
694
                            shift_labels.view(-1))
thomwolf's avatar
thomwolf committed
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
            return loss
        return lm_logits, presents


class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
    """OpenAI GPT-2 model with a Language Modeling and a Multiple Choice head ("Language Models are Unsupervised Multitask Learners").

    Params:
        config: a GPT2Config class instance with the configuration to build a new model

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length] with the BPE token
            indices selected in the range [0, config.vocab_size[
        `mc_token_ids`: a torch.LongTensor of shape [batch_size, num_choices] with the index of the token from
            which we should take the hidden state to feed the multiple choice classifier (usually last token of the sequence)
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
            with the position indices (selected in the range [0, config.n_positions - 1[.
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
        `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, num_choices, sequence_length]
            with indices selected in [-1, 0, ..., config.vocab_size]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., config.vocab_size]
        `multiple_choice_labels`: optional multiple choice labels: torch.LongTensor of shape [batch_size]
            with indices selected in [0, ..., num_choices].
Joel Grus's avatar
Joel Grus committed
722
723
724
        `past`: an optional list of torch.LongTensor that contains pre-computed hidden-states
            (key and values in the attention blocks) to speed up sequential decoding
            (this is the presents output of the model, cf. below).
thomwolf's avatar
thomwolf committed
725
726
727
728
729
730
731

    Outputs:
        if `lm_labels` and `multiple_choice_labels` are not `None`:
            Outputs a tuple of losses with the language modeling loss and the multiple choice loss.
        else: a tuple with
            `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, num_choices, sequence_length, config.vocab_size]
            `multiple_choice_logits`: the multiple choice logits as a torch.FloatTensor of size [batch_size, num_choices]
Joel Grus's avatar
Joel Grus committed
732
733
            `presents`: a list of pre-computed hidden-states (key and values in each attention blocks) as
                torch.FloatTensors. They can be reused to speed up sequential decoding.
thomwolf's avatar
thomwolf committed
734
735
736
737
738
739
740
741
742
743

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]]])  # (bsz, number of choice, seq length)
    mc_token_ids = torch.LongTensor([[2], [1]]) # (bsz, number of choice)

    config = modeling_gpt2.GPT2Config()

    model = modeling_gpt2.GPT2LMHeadModel(config)
Joel Grus's avatar
Joel Grus committed
744
    lm_logits, multiple_choice_logits, presents = model(input_ids, mc_token_ids)
thomwolf's avatar
thomwolf committed
745
746
747
748
749
750
751
752
753
754
    ```
    """

    def __init__(self, config):
        super(GPT2DoubleHeadsModel, self).__init__(config)
        self.transformer = GPT2Model(config)
        self.lm_head = GPT2LMHead(self.transformer.wte.weight, config)
        self.multiple_choice_head = GPT2MultipleChoiceHead(config)
        self.apply(self.init_weights)

755
    def set_num_special_tokens(self, num_special_tokens, predict_special_tokens=True):
thomwolf's avatar
thomwolf committed
756
757
        """ Update input and output embeddings with new embedding matrice
            Make sure we are sharing the embeddings
thomwolf's avatar
thomwolf committed
758
        """
759
        self.config.predict_special_tokens = self.transformer.config.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
760
        self.transformer.set_num_special_tokens(num_special_tokens)
761
        self.lm_head.set_embeddings_weights(self.transformer.wte.weight, predict_special_tokens=predict_special_tokens)
thomwolf's avatar
thomwolf committed
762

thomwolf's avatar
thomwolf committed
763
764
    def forward(self, input_ids, mc_token_ids, lm_labels=None, mc_labels=None, token_type_ids=None, position_ids=None, past=None):
        hidden_states, presents = self.transformer(input_ids, position_ids, token_type_ids, past)
thomwolf's avatar
thomwolf committed
765
766
767
768
        lm_logits = self.lm_head(hidden_states)
        mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids)
        losses = []
        if lm_labels is not None:
769
770
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
thomwolf's avatar
thomwolf committed
771
            loss_fct = CrossEntropyLoss(ignore_index=-1)
772
            losses.append(loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)))
thomwolf's avatar
thomwolf committed
773
774
775
776
777
778
        if mc_labels is not None:
            loss_fct = CrossEntropyLoss()
            losses.append(loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1)))
        if losses:
            return losses
        return lm_logits, mc_logits, presents