modeling_gpt2.py 35.7 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OpenAI GPT-2 model."""

18
19
from __future__ import absolute_import, division, print_function, unicode_literals

thomwolf's avatar
thomwolf committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import collections
import copy
import json
import logging
import math
import os
import shutil
import tarfile
import tempfile
import sys
from io import open

import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from torch.nn.parameter import Parameter

37
from .file_utils import cached_path, CONFIG_NAME, WEIGHTS_NAME
thomwolf's avatar
thomwolf committed
38
39
40
41
from .modeling import BertLayerNorm as LayerNorm

logger = logging.getLogger(__name__)

thomwolf's avatar
thomwolf committed
42
43
44
45
PRETRAINED_MODEL_ARCHIVE_MAP = {"gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-pytorch_model.bin",
                                "gpt2-medium": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-pytorch_model.bin"}
PRETRAINED_CONFIG_ARCHIVE_MAP = {"gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-config.json",
                                 "gpt2-medium": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-config.json"}
thomwolf's avatar
thomwolf committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

def load_tf_weights_in_gpt2(model, gpt2_checkpoint_path):
    """ Load tf checkpoints in a pytorch model
    """
    try:
        import re
        import numpy as np
        import tensorflow as tf
    except ImportError:
        print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
    tf_path = os.path.abspath(gpt2_checkpoint_path)
    print("Converting TensorFlow checkpoint from {}".format(tf_path))
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
        print("Loading TF weight {} with shape {}".format(name, shape))
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
thomwolf's avatar
thomwolf committed
68
        arrays.append(array.squeeze())
thomwolf's avatar
thomwolf committed
69
70

    for name, array in zip(names, arrays):
thomwolf's avatar
thomwolf committed
71
        name = name[6:]  # skip "model/"
thomwolf's avatar
thomwolf committed
72
73
74
        name = name.split('/')
        pointer = model
        for m_name in name:
thomwolf's avatar
thomwolf committed
75
76
            if re.fullmatch(r'[A-Za-z]+\d+', m_name):
                l = re.split(r'(\d+)', m_name)
thomwolf's avatar
thomwolf committed
77
78
79
80
81
82
            else:
                l = [m_name]
            if l[0] == 'w' or l[0] == 'g':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'b':
                pointer = getattr(pointer, 'bias')
thomwolf's avatar
thomwolf committed
83
84
85
            elif l[0] == 'wpe' or l[0] == 'wte':
                pointer = getattr(pointer, l[0])
                pointer = getattr(pointer, 'weight')
thomwolf's avatar
thomwolf committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
            else:
                pointer = getattr(pointer, l[0])
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        print("Initialize PyTorch weight {}".format(name))
        pointer.data = torch.from_numpy(array)
    return model


def gelu(x):
    return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))


class GPT2Config(object):
    """Configuration class to store the configuration of a `GPT2Model`.
    """

    def __init__(
        self,
thomwolf's avatar
thomwolf committed
111
        vocab_size_or_config_json_file=50257,
thomwolf's avatar
thomwolf committed
112
        n_special=0,
thomwolf's avatar
thomwolf committed
113
114
115
116
117
        n_positions=1024,
        n_ctx=1024,
        n_embd=768,
        n_layer=12,
        n_head=12,
118
119
120
        resid_pdrop=0.1,
        embd_pdrop=0.1,
        attn_pdrop=0.1,
thomwolf's avatar
thomwolf committed
121
122
        layer_norm_epsilon=1e-5,
        initializer_range=0.02,
123
        predict_special_tokens=True
thomwolf's avatar
thomwolf committed
124
125
126
127
128
    ):
        """Constructs GPT2Config.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `GPT2Model` or a configuration json file.
thomwolf's avatar
thomwolf committed
129
            n_special: The number of special tokens to learn during fine-tuning ('[SEP]', '[CLF]', ...)
thomwolf's avatar
thomwolf committed
130
131
132
133
134
135
136
            n_positions: Number of positional embeddings.
            n_ctx: Size of the causal mask (usually same as n_positions).
            n_embd: Dimensionality of the embeddings and hidden states.
            n_layer: Number of hidden layers in the Transformer encoder.
            n_head: Number of attention heads for each attention layer in
                the Transformer encoder.
            layer_norm_epsilon: epsilon to use in the layer norm layers
137
138
139
140
141
            resid_pdrop: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attn_pdrop: The dropout ratio for the attention
                probabilities.
            embd_pdrop: The dropout ratio for the embeddings.
thomwolf's avatar
thomwolf committed
142
143
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
144
            predict_special_tokens: should we predict special tokens (when the model has a LM head)
thomwolf's avatar
thomwolf committed
145
146
147
148
149
150
151
152
153
        """
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
            with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader:
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
thomwolf's avatar
thomwolf committed
154
            self.n_special = n_special
thomwolf's avatar
thomwolf committed
155
156
157
158
159
            self.n_ctx = n_ctx
            self.n_positions = n_positions
            self.n_embd = n_embd
            self.n_layer = n_layer
            self.n_head = n_head
160
161
162
            self.resid_pdrop = resid_pdrop
            self.embd_pdrop = embd_pdrop
            self.attn_pdrop = attn_pdrop
thomwolf's avatar
thomwolf committed
163
164
            self.layer_norm_epsilon = layer_norm_epsilon
            self.initializer_range = initializer_range
165
            self.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
166
167
168
169
170
171
        else:
            raise ValueError(
                "First argument must be either a vocabulary size (int)"
                "or the path to a pretrained model config file (str)"
            )

thomwolf's avatar
thomwolf committed
172
173
174
175
    @property
    def total_tokens_embeddings(self):
        return self.vocab_size + self.n_special

thomwolf's avatar
thomwolf committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
    @classmethod
    def from_dict(cls, json_object):
        """Constructs a `GPT2Config` from a Python dictionary of parameters."""
        config = GPT2Config(vocab_size_or_config_json_file=-1)
        for key, value in json_object.items():
            config.__dict__[key] = value
        return config

    @classmethod
    def from_json_file(cls, json_file):
        """Constructs a `GPT2Config` from a json file of parameters."""
        with open(json_file, "r", encoding="utf-8") as reader:
            text = reader.read()
        return cls.from_dict(json.loads(text))

    def __repr__(self):
        return str(self.to_json_string())

    def to_dict(self):
        """Serializes this instance to a Python dictionary."""
        output = copy.deepcopy(self.__dict__)
        return output

    def to_json_string(self):
        """Serializes this instance to a JSON string."""
        return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"

203
204
205
206
207
    def to_json_file(self, json_file_path):
        """ Save this instance to a json file."""
        with open(json_file_path, "w", encoding='utf-8') as writer:
            writer.write(self.to_json_string())

thomwolf's avatar
thomwolf committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

class Conv1D(nn.Module):
    def __init__(self, nf, nx):
        super(Conv1D, self).__init__()
        self.nf = nf
        w = torch.empty(nx, nf)
        nn.init.normal_(w, std=0.02)
        self.weight = Parameter(w)
        self.bias = Parameter(torch.zeros(nf))

    def forward(self, x):
        size_out = x.size()[:-1] + (self.nf,)
        x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
        x = x.view(*size_out)
        return x


class Attention(nn.Module):
    def __init__(self, nx, n_ctx, config, scale=False):
        super(Attention, self).__init__()
        n_state = nx  # in Attention: n_state=768 (nx=n_embd)
        # [switch nx => n_state from Block to Attention to keep identical to TF implem]
        assert n_state % config.n_head == 0
        self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
        self.n_head = config.n_head
        self.split_size = n_state
        self.scale = scale
        self.c_attn = Conv1D(n_state * 3, nx)
        self.c_proj = Conv1D(n_state, nx)
237
238
        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
239
240
241
242
243

    def _attn(self, q, k, v):
        w = torch.matmul(q, k)
        if self.scale:
            w = w / math.sqrt(v.size(-1))
thomwolf's avatar
thomwolf committed
244
245
        nd, ns = w.size(-2), w.size(-1)
        b = self.bias[:, :, ns-nd:ns, :ns]
246
        w = w * b - 1e4 * (1 - b)
thomwolf's avatar
thomwolf committed
247
248

        w = nn.Softmax(dim=-1)(w)
249
        w = self.attn_dropout(w)
thomwolf's avatar
thomwolf committed
250
251
252
253
254
255
256
257
258
259
260
        return torch.matmul(w, v)

    def merge_heads(self, x):
        x = x.permute(0, 2, 1, 3).contiguous()
        new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
        return x.view(*new_x_shape)  # in Tensorflow implem: fct merge_states

    def split_heads(self, x, k=False):
        new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
        x = x.view(*new_x_shape)  # in Tensorflow implem: fct split_states
        if k:
thomwolf's avatar
thomwolf committed
261
            return x.permute(0, 2, 3, 1)  # (batch, head, head_features, seq_length)
thomwolf's avatar
thomwolf committed
262
        else:
thomwolf's avatar
thomwolf committed
263
            return x.permute(0, 2, 1, 3)  # (batch, head, seq_length, head_features)
thomwolf's avatar
thomwolf committed
264

thomwolf's avatar
thomwolf committed
265
    def forward(self, x, layer_past=None):
thomwolf's avatar
thomwolf committed
266
267
268
269
270
        x = self.c_attn(x)
        query, key, value = x.split(self.split_size, dim=2)
        query = self.split_heads(query)
        key = self.split_heads(key, k=True)
        value = self.split_heads(value)
thomwolf's avatar
thomwolf committed
271
        if layer_past is not None:
thomwolf's avatar
thomwolf committed
272
            past_key, past_value = layer_past[0].transpose(-2, -1), layer_past[1]  # transpose back cf below
thomwolf's avatar
thomwolf committed
273
            key = torch.cat((past_key, key), dim=-1)
thomwolf's avatar
thomwolf committed
274
            value = torch.cat((past_value, value), dim=-2)
thomwolf's avatar
thomwolf committed
275
        present = torch.stack((key.transpose(-2, -1), value))  # transpose to have same shapes for stacking
thomwolf's avatar
thomwolf committed
276
277
278
        a = self._attn(query, key, value)
        a = self.merge_heads(a)
        a = self.c_proj(a)
279
        a = self.resid_dropout(a)
thomwolf's avatar
thomwolf committed
280
281
282
283
284
285
286
287
288
289
        return a, present


class MLP(nn.Module):
    def __init__(self, n_state, config):  # in MLP: n_state=3072 (4 * n_embd)
        super(MLP, self).__init__()
        nx = config.n_embd
        self.c_fc = Conv1D(n_state, nx)
        self.c_proj = Conv1D(nx, n_state)
        self.act = gelu
290
        self.dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
291
292
293
294

    def forward(self, x):
        h = self.act(self.c_fc(x))
        h2 = self.c_proj(h)
295
        return self.dropout(h2)
thomwolf's avatar
thomwolf committed
296
297
298
299
300
301
302
303
304
305
306


class Block(nn.Module):
    def __init__(self, n_ctx, config, scale=False):
        super(Block, self).__init__()
        nx = config.n_embd
        self.ln_1 = LayerNorm(nx, eps=config.layer_norm_epsilon)
        self.attn = Attention(nx, n_ctx, config, scale)
        self.ln_2 = LayerNorm(nx, eps=config.layer_norm_epsilon)
        self.mlp = MLP(4 * nx, config)

thomwolf's avatar
thomwolf committed
307
    def forward(self, x, layer_past=None):
thomwolf's avatar
thomwolf committed
308
        a, present = self.attn(self.ln_1(x), layer_past=layer_past)
thomwolf's avatar
thomwolf committed
309
        x = x + a
thomwolf's avatar
thomwolf committed
310
        m = self.mlp(self.ln_2(x))
thomwolf's avatar
thomwolf committed
311
312
313
314
315
316
317
318
319
320
        x = x + m
        return x, present


class GPT2LMHead(nn.Module):
    """ Language Model Head for the transformer """

    def __init__(self, model_embeddings_weights, config):
        super(GPT2LMHead, self).__init__()
        self.n_embd = config.n_embd
321
322
        self.vocab_size = config.vocab_size
        self.predict_special_tokens = config.predict_special_tokens
thomwolf's avatar
thomwolf committed
323
324
        embed_shape = model_embeddings_weights.shape
        self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False)
thomwolf's avatar
thomwolf committed
325
326
        self.set_embeddings_weights(model_embeddings_weights)

327
328
    def set_embeddings_weights(self, model_embeddings_weights, predict_special_tokens=True):
        self.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
329
330
331
332
        self.decoder.weight = model_embeddings_weights  # Tied weights

    def forward(self, hidden_state):
        lm_logits = self.decoder(hidden_state)
333
334
        if not self.predict_special_tokens:
            lm_logits = lm_logits[..., :self.vocab_size]
thomwolf's avatar
thomwolf committed
335
336
337
338
339
340
341
342
343
        return lm_logits


class GPT2MultipleChoiceHead(nn.Module):
    """ Classifier Head for the transformer """

    def __init__(self, config):
        super(GPT2MultipleChoiceHead, self).__init__()
        self.n_embd = config.n_embd
344
        self.dropout = nn.Dropout2d(config.resid_pdrop)  # To reproduce the noise_shape parameter of TF implementation
thomwolf's avatar
thomwolf committed
345
346
347
348
349
350
351
352
353
354
355
356
357
        self.linear = nn.Linear(config.n_embd, 1)

        nn.init.normal_(self.linear.weight, std=0.02)
        nn.init.normal_(self.linear.bias, 0)

    def forward(self, hidden_states, mc_token_ids):
        # Classification logits
        # hidden_state (bsz, num_choices, seq_length, hidden_size)
        # mc_token_ids (bsz, num_choices)
        mc_token_ids = mc_token_ids.unsqueeze(-1).unsqueeze(-1).expand(-1, -1, -1, hidden_states.size(-1))
        # (bsz, num_choices, 1, hidden_size)
        multiple_choice_h = hidden_states.gather(2, mc_token_ids).squeeze(2)
        # (bsz, num_choices, hidden_size)
358
        multiple_choice_h = self.dropout(multiple_choice_h.transpose(1, 2)).transpose(1, 2)
thomwolf's avatar
thomwolf committed
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
        multiple_choice_logits = self.linear(multiple_choice_h).squeeze(-1)
        # (bsz, num_choices)
        return multiple_choice_logits


class GPT2PreTrainedModel(nn.Module):
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """

    def __init__(self, config, *inputs, **kwargs):
        super(GPT2PreTrainedModel, self).__init__()
        if not isinstance(config, GPT2Config):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `GPT2Config`. "
                "To create a model from a pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
                )
            )
        self.config = config

    def init_weights(self, module):
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()

    @classmethod
    def from_pretrained(
396
        cls, pretrained_model_name_or_path, num_special_tokens=None, state_dict=None, cache_dir=None, from_tf=False, *inputs, **kwargs
thomwolf's avatar
thomwolf committed
397
398
399
400
401
402
403
404
    ):
        """
        Instantiate a GPT2PreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.

        Params:
            pretrained_model_name_or_path: either:
                - a str with the name of a pre-trained model to load selected in the list of:
Joel Grus's avatar
Joel Grus committed
405
                    . `gpt2`
thomwolf's avatar
thomwolf committed
406
407
408
409
                - a path or url to a pretrained model archive containing:
                    . `gpt2_config.json` a configuration file for the model
                    . `pytorch_model.bin` a PyTorch dump of a GPT2Model instance
                - a path or url to a pretrained model archive containing:
Joel Grus's avatar
Joel Grus committed
410
                    . `gpt2_config.json` a configuration file for the model
thomwolf's avatar
thomwolf committed
411
412
413
                    . a TensorFlow checkpoint with trained weights
            from_tf: should we load the weights from a locally saved TensorFlow checkpoint
            cache_dir: an optional path to a folder in which the pre-trained models will be cached.
Joel Grus's avatar
Joel Grus committed
414
415
            state_dict: an optional state dictionary (collections.OrderedDict object) to use instead of pre-trained models
            *inputs, **kwargs: additional input for the specific GPT class
thomwolf's avatar
thomwolf committed
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
        """
        if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP:
            archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name_or_path]
            config_file = PRETRAINED_CONFIG_ARCHIVE_MAP[pretrained_model_name_or_path]
        else:
            archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
            config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
        # redirect to the cache, if necessary
        try:
            resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir)
            resolved_config_file = cached_path(config_file, cache_dir=cache_dir)
        except EnvironmentError:
            logger.error(
                "Model name '{}' was not found in model name list ({}). "
                "We assumed '{}' was a path or url but couldn't find files {} and {} "
                "at this path or url.".format(
                    pretrained_model_name_or_path, ", ".join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()), pretrained_model_name_or_path,
                    archive_file, config_file
                )
            )
            return None
        if resolved_archive_file == archive_file and resolved_config_file == config_file:
            logger.info("loading weights file {}".format(archive_file))
            logger.info("loading configuration file {}".format(config_file))
        else:
            logger.info("loading weights file {} from cache at {}".format(
                archive_file, resolved_archive_file))
            logger.info("loading configuration file {} from cache at {}".format(
                config_file, resolved_config_file))
        # Load config
        config = GPT2Config.from_json_file(resolved_config_file)
        logger.info("Model config {}".format(config))
        # Instantiate model.
        model = cls(config, *inputs, **kwargs)
        if state_dict is None and not from_tf:
thomwolf's avatar
thomwolf committed
451
            state_dict = torch.load(resolved_archive_file, map_location='cpu')
thomwolf's avatar
thomwolf committed
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
        if from_tf:
            # Directly load from a TensorFlow checkpoint (stored as NumPy array)
            return load_tf_weights_in_gpt2(model, resolved_archive_file)

        old_keys = []
        new_keys = []
        for key in state_dict.keys():
            new_key = None
            if key.endswith(".g"):
                new_key = key[:-2] + ".weight"
            elif key.endswith(".b"):
                new_key = key[:-2] + ".bias"
            elif key.endswith(".w"):
                new_key = key[:-2] + ".weight"
            if new_key:
                old_keys.append(key)
                new_keys.append(new_key)
        for old_key, new_key in zip(old_keys, new_keys):
            state_dict[new_key] = state_dict.pop(old_key)

        missing_keys = []
        unexpected_keys = []
        error_msgs = []
        # copy state_dict so _load_from_state_dict can modify it
        metadata = getattr(state_dict, "_metadata", None)
        state_dict = state_dict.copy()
        if metadata is not None:
            state_dict._metadata = metadata

        def load(module, prefix=""):
            local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
            module._load_from_state_dict(
                state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs
            )
            for name, child in module._modules.items():
                if child is not None:
                    load(child, prefix + name + ".")

        start_model = model
        if hasattr(model, "transformer") and all(not s.startswith('transformer.') for s in state_dict.keys()):
            start_model = model.transformer
        load(start_model, prefix="")

        if len(missing_keys) > 0:
            logger.info(
                "Weights of {} not initialized from pretrained model: {}".format(model.__class__.__name__, missing_keys)
            )
        if len(unexpected_keys) > 0:
            logger.info(
                "Weights from pretrained model not used in {}: {}".format(model.__class__.__name__, unexpected_keys)
            )
        if len(error_msgs) > 0:
            raise RuntimeError(
                "Error(s) in loading state_dict for {}:\n\t{}".format(model.__class__.__name__, "\n\t".join(error_msgs))
            )

thomwolf's avatar
thomwolf committed
508
509
510
        # Add additional embeddings for special tokens if needed
        # This step also make sure we are still sharing the output and input embeddings after loading weights
        model.set_num_special_tokens(num_special_tokens if num_special_tokens is not None else config.n_special)
thomwolf's avatar
thomwolf committed
511
512
513
514
515
516
        return model


class GPT2Model(GPT2PreTrainedModel):
    """OpenAI GPT-2 model ("Language Models are Unsupervised Multitask Learners").

thomwolf's avatar
thomwolf committed
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
    GPT-2 use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    The embeddings are ordered as follow in the token embeddings matrice:
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
         config.vocab_size + config.n_special - 1]                  ______________________

    where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
        total_tokens_embeddings = config.vocab_size + config.n_special
    You should use the associate indices to index the embeddings.

thomwolf's avatar
thomwolf committed
534
535
536
537
538
539
540
541
542
543
544
545
546
    Params:
        config: a GPT2Config class instance with the configuration to build a new model

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
            were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, config.vocab_size[
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
            with the position indices (selected in the range [0, config.n_positions - 1[.
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
Joel Grus's avatar
Joel Grus committed
547
548
549
        `past`: an optional list of torch.LongTensor that contains pre-computed hidden-states
            (key and values in the attention blocks) to speed up sequential decoding
            (this is the presents output of the model, cf. below).
thomwolf's avatar
thomwolf committed
550

Joel Grus's avatar
Joel Grus committed
551
    Outputs a tuple consisting of:
thomwolf's avatar
thomwolf committed
552
553
554
        `hidden_states`: the encoded-hidden-states at the top of the model
            as a torch.FloatTensor of size [batch_size, sequence_length, hidden_size]
            (or more generally [d_1, ..., d_n, hidden_size] were d_1 ... d_n are the dimension of input_ids)
Joel Grus's avatar
Joel Grus committed
555
556
        `presents`: a list of pre-computed hidden-states (key and values in each attention blocks) as
            torch.FloatTensors. They can be reused to speed up sequential decoding.
thomwolf's avatar
thomwolf committed
557
558
559
560
561
562
563
564
565

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

    config = modeling_gpt2.GPT2Config()

    model = modeling_gpt2.GPT2Model(config)
Joel Grus's avatar
Joel Grus committed
566
    hidden_states, presents = model(input_ids)
thomwolf's avatar
thomwolf committed
567
568
569
570
571
    ```
    """

    def __init__(self, config):
        super(GPT2Model, self).__init__(config)
thomwolf's avatar
thomwolf committed
572
        self.wte = nn.Embedding(config.total_tokens_embeddings, config.n_embd)
thomwolf's avatar
thomwolf committed
573
        self.wpe = nn.Embedding(config.n_positions, config.n_embd)
574
        self.drop = nn.Dropout(config.embd_pdrop)
thomwolf's avatar
thomwolf committed
575
576
        block = Block(config.n_ctx, config, scale=True)
        self.h = nn.ModuleList([copy.deepcopy(block) for _ in range(config.n_layer)])
thomwolf's avatar
thomwolf committed
577
        self.ln_f = LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
578
579
580

        self.apply(self.init_weights)

thomwolf's avatar
thomwolf committed
581
582
583
584
585
586
587
588
589
590
591
592
593
594
    def set_num_special_tokens(self, num_special_tokens):
        " Update input embeddings with new embedding matrice if needed "
        if self.config.n_special == num_special_tokens:
            return
        # Update config
        self.config.n_special = num_special_tokens
        # Build new embeddings and initialize all new embeddings (in particular the special tokens)
        old_embed = self.wte
        self.wte = nn.Embedding(self.config.total_tokens_embeddings, self.config.n_embd)
        self.wte.to(old_embed.weight.device)
        self.init_weights(self.wte)
        # Copy word embeddings from the previous weights
        self.wte.weight.data[:self.config.vocab_size, :] = old_embed.weight.data[:self.config.vocab_size, :]

thomwolf's avatar
thomwolf committed
595
596
    def forward(self, input_ids, position_ids=None, token_type_ids=None, past=None):
        if past is None:
thomwolf's avatar
thomwolf committed
597
            past_length = 0
thomwolf's avatar
thomwolf committed
598
            past = [None] * len(self.h)
thomwolf's avatar
thomwolf committed
599
        else:
thomwolf's avatar
thomwolf committed
600
            past_length = past[0][0].size(-2)
thomwolf's avatar
thomwolf committed
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
        if position_ids is None:
            position_ids = torch.arange(past_length, input_ids.size(-1) + past_length, dtype=torch.long, device=input_ids.device)
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)

        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_ids.size(-1))
        position_ids = position_ids.view(-1, position_ids.size(-1))

        inputs_embeds = self.wte(input_ids)
        position_embeds = self.wpe(position_ids)
        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
            token_type_embeds = self.wte(token_type_ids)
        else:
            token_type_embeds = 0
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
617
618
        hidden_states = self.drop(hidden_states)

thomwolf's avatar
thomwolf committed
619
        presents = []
thomwolf's avatar
thomwolf committed
620
621
        for block, layer_past in zip(self.h, past):
            hidden_states, present = block(hidden_states, layer_past)
thomwolf's avatar
thomwolf committed
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
            presents.append(present)
        hidden_states = self.ln_f(hidden_states)
        output_shape = input_shape + (hidden_states.size(-1),)
        return hidden_states.view(*output_shape), presents


class GPT2LMHeadModel(GPT2PreTrainedModel):
    """OpenAI GPT-2 model with a Language Modeling head ("Language Models are Unsupervised Multitask Learners").

    Params:
        config: a GPT2Config class instance with the configuration to build a new model

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
            were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, config.vocab_size[
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
            with the position indices (selected in the range [0, config.n_positions - 1[.
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
        `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
            with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., vocab_size]
Joel Grus's avatar
Joel Grus committed
647
648
649
        `past`: an optional list of torch.LongTensor that contains pre-computed hidden-states
            (key and values in the attention blocks) to speed up sequential decoding
            (this is the presents output of the model, cf. below).
thomwolf's avatar
thomwolf committed
650
651
652
653

    Outputs:
        if `lm_labels` is not `None`:
            Outputs the language modeling loss.
Joel Grus's avatar
Joel Grus committed
654
        else a tuple:
thomwolf's avatar
thomwolf committed
655
656
            `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, sequence_length, config.vocab_size]
                (or more generally [d_1, ..., d_n, config.vocab_size] were d_1 ... d_n are the dimension of input_ids)
Joel Grus's avatar
Joel Grus committed
657
658
            `presents`: a list of pre-computed hidden-states (key and values in each attention blocks) as
                torch.FloatTensors. They can be reused to speed up sequential decoding.
thomwolf's avatar
thomwolf committed
659
660
661
662
663
664
665
666
667

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

    config = modeling_gpt2.GPT2Config()

    model = modeling_gpt2.GPT2LMHeadModel(config)
Joel Grus's avatar
Joel Grus committed
668
    lm_logits, presents = model(input_ids)
thomwolf's avatar
thomwolf committed
669
670
671
672
673
674
675
676
677
    ```
    """

    def __init__(self, config):
        super(GPT2LMHeadModel, self).__init__(config)
        self.transformer = GPT2Model(config)
        self.lm_head = GPT2LMHead(self.transformer.wte.weight, config)
        self.apply(self.init_weights)

678
    def set_num_special_tokens(self, num_special_tokens, predict_special_tokens=True):
thomwolf's avatar
thomwolf committed
679
680
        """ Update input and output embeddings with new embedding matrice
            Make sure we are sharing the embeddings
thomwolf's avatar
thomwolf committed
681
        """
682
        self.config.predict_special_tokens = self.transformer.config.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
683
        self.transformer.set_num_special_tokens(num_special_tokens)
684
        self.lm_head.set_embeddings_weights(self.transformer.wte.weight, predict_special_tokens=predict_special_tokens)
thomwolf's avatar
thomwolf committed
685

thomwolf's avatar
thomwolf committed
686
687
    def forward(self, input_ids, position_ids=None, token_type_ids=None, lm_labels=None, past=None):
        hidden_states, presents = self.transformer(input_ids, position_ids, token_type_ids, past)
thomwolf's avatar
thomwolf committed
688
689
        lm_logits = self.lm_head(hidden_states)
        if lm_labels is not None:
690
            # Shift so that tokens < n predict n
691
692
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
Catalin Voss's avatar
Catalin Voss committed
693
            # Flatten the tokens
thomwolf's avatar
thomwolf committed
694
            loss_fct = CrossEntropyLoss(ignore_index=-1)
695
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
696
                            shift_labels.view(-1))
thomwolf's avatar
thomwolf committed
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
            return loss
        return lm_logits, presents


class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
    """OpenAI GPT-2 model with a Language Modeling and a Multiple Choice head ("Language Models are Unsupervised Multitask Learners").

    Params:
        config: a GPT2Config class instance with the configuration to build a new model

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length] with the BPE token
            indices selected in the range [0, config.vocab_size[
        `mc_token_ids`: a torch.LongTensor of shape [batch_size, num_choices] with the index of the token from
            which we should take the hidden state to feed the multiple choice classifier (usually last token of the sequence)
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
            with the position indices (selected in the range [0, config.n_positions - 1[.
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
        `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, num_choices, sequence_length]
            with indices selected in [-1, 0, ..., config.vocab_size]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., config.vocab_size]
        `multiple_choice_labels`: optional multiple choice labels: torch.LongTensor of shape [batch_size]
            with indices selected in [0, ..., num_choices].
Joel Grus's avatar
Joel Grus committed
724
725
726
        `past`: an optional list of torch.LongTensor that contains pre-computed hidden-states
            (key and values in the attention blocks) to speed up sequential decoding
            (this is the presents output of the model, cf. below).
thomwolf's avatar
thomwolf committed
727
728
729
730
731
732
733

    Outputs:
        if `lm_labels` and `multiple_choice_labels` are not `None`:
            Outputs a tuple of losses with the language modeling loss and the multiple choice loss.
        else: a tuple with
            `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, num_choices, sequence_length, config.vocab_size]
            `multiple_choice_logits`: the multiple choice logits as a torch.FloatTensor of size [batch_size, num_choices]
Joel Grus's avatar
Joel Grus committed
734
735
            `presents`: a list of pre-computed hidden-states (key and values in each attention blocks) as
                torch.FloatTensors. They can be reused to speed up sequential decoding.
thomwolf's avatar
thomwolf committed
736
737
738
739
740
741
742
743
744
745

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]]])  # (bsz, number of choice, seq length)
    mc_token_ids = torch.LongTensor([[2], [1]]) # (bsz, number of choice)

    config = modeling_gpt2.GPT2Config()

    model = modeling_gpt2.GPT2LMHeadModel(config)
Joel Grus's avatar
Joel Grus committed
746
    lm_logits, multiple_choice_logits, presents = model(input_ids, mc_token_ids)
thomwolf's avatar
thomwolf committed
747
748
749
750
751
752
753
754
755
756
    ```
    """

    def __init__(self, config):
        super(GPT2DoubleHeadsModel, self).__init__(config)
        self.transformer = GPT2Model(config)
        self.lm_head = GPT2LMHead(self.transformer.wte.weight, config)
        self.multiple_choice_head = GPT2MultipleChoiceHead(config)
        self.apply(self.init_weights)

757
    def set_num_special_tokens(self, num_special_tokens, predict_special_tokens=True):
thomwolf's avatar
thomwolf committed
758
759
        """ Update input and output embeddings with new embedding matrice
            Make sure we are sharing the embeddings
thomwolf's avatar
thomwolf committed
760
        """
761
        self.config.predict_special_tokens = self.transformer.config.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
762
        self.transformer.set_num_special_tokens(num_special_tokens)
763
        self.lm_head.set_embeddings_weights(self.transformer.wte.weight, predict_special_tokens=predict_special_tokens)
thomwolf's avatar
thomwolf committed
764

thomwolf's avatar
thomwolf committed
765
766
    def forward(self, input_ids, mc_token_ids, lm_labels=None, mc_labels=None, token_type_ids=None, position_ids=None, past=None):
        hidden_states, presents = self.transformer(input_ids, position_ids, token_type_ids, past)
thomwolf's avatar
thomwolf committed
767
768
769
770
        lm_logits = self.lm_head(hidden_states)
        mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids)
        losses = []
        if lm_labels is not None:
771
772
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
thomwolf's avatar
thomwolf committed
773
            loss_fct = CrossEntropyLoss(ignore_index=-1)
774
            losses.append(loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)))
thomwolf's avatar
thomwolf committed
775
776
777
778
779
780
        if mc_labels is not None:
            loss_fct = CrossEntropyLoss()
            losses.append(loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1)))
        if losses:
            return losses
        return lm_logits, mc_logits, presents