run_glue.py 24.6 KB
Newer Older
1
#!/usr/bin/env python
thomwolf's avatar
thomwolf committed
2
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
3
# Copyright 2020 The HuggingFace Inc. team. All rights reserved.
thomwolf's avatar
thomwolf committed
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Lysandre's avatar
Lysandre committed
16
""" Finetuning the library models for sequence classification on GLUE."""
Sylvain Gugger's avatar
Sylvain Gugger committed
17
# You can also adapt this script on your own text classification task. Pointers for this are left as comments.
thomwolf's avatar
thomwolf committed
18
19
20

import logging
import os
Sylvain Gugger's avatar
Sylvain Gugger committed
21
import random
22
import sys
23
from dataclasses import dataclass, field
Sylvain Gugger's avatar
Sylvain Gugger committed
24
from typing import Optional
thomwolf's avatar
thomwolf committed
25

26
import datasets
thomwolf's avatar
thomwolf committed
27
import numpy as np
Sylvain Gugger's avatar
Sylvain Gugger committed
28
from datasets import load_dataset, load_metric
thomwolf's avatar
thomwolf committed
29

Sylvain Gugger's avatar
Sylvain Gugger committed
30
import transformers
31
from transformers import (
Sylvain Gugger's avatar
Sylvain Gugger committed
32
33
34
    AutoConfig,
    AutoModelForSequenceClassification,
    AutoTokenizer,
35
    DataCollatorWithPadding,
Sylvain Gugger's avatar
Sylvain Gugger committed
36
    EvalPrediction,
37
    HfArgumentParser,
Sylvain Gugger's avatar
Sylvain Gugger committed
38
    PretrainedConfig,
Julien Chaumond's avatar
Julien Chaumond committed
39
    Trainer,
40
    TrainingArguments,
Sylvain Gugger's avatar
Sylvain Gugger committed
41
    default_data_collator,
Julien Chaumond's avatar
Julien Chaumond committed
42
    set_seed,
43
)
44
from transformers.trainer_utils import get_last_checkpoint
45
from transformers.utils import check_min_version
46
from transformers.utils.versions import require_version
Sylvain Gugger's avatar
Sylvain Gugger committed
47

Aymeric Augustin's avatar
Aymeric Augustin committed
48

49
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Lysandre's avatar
Lysandre committed
50
check_min_version("4.14.0")
Lysandre's avatar
Lysandre committed
51

52
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
53

Sylvain Gugger's avatar
Sylvain Gugger committed
54
55
56
57
58
59
60
61
62
63
64
task_to_keys = {
    "cola": ("sentence", None),
    "mnli": ("premise", "hypothesis"),
    "mrpc": ("sentence1", "sentence2"),
    "qnli": ("question", "sentence"),
    "qqp": ("question1", "question2"),
    "rte": ("sentence1", "sentence2"),
    "sst2": ("sentence", None),
    "stsb": ("sentence1", "sentence2"),
    "wnli": ("sentence1", "sentence2"),
}
thomwolf's avatar
thomwolf committed
65
66
67

logger = logging.getLogger(__name__)

thomwolf's avatar
thomwolf committed
68

Sylvain Gugger's avatar
Sylvain Gugger committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.

    Using `HfArgumentParser` we can turn this class
    into argparse arguments to be able to specify them on
    the command line.
    """

    task_name: Optional[str] = field(
        default=None,
        metadata={"help": "The name of the task to train on: " + ", ".join(task_to_keys.keys())},
    )
83
84
85
86
87
88
    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
    max_seq_length: int = field(
        default=128,
        metadata={
            "help": "The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
    )
    pad_to_max_length: bool = field(
        default=True,
        metadata={
            "help": "Whether to pad all samples to `max_seq_length`. "
            "If False, will pad the samples dynamically when batching to the maximum length in the batch."
        },
    )
106
107
108
109
110
111
112
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        },
    )
113
    max_eval_samples: Optional[int] = field(
114
115
        default=None,
        metadata={
116
            "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
117
118
119
            "value if set."
        },
    )
120
    max_predict_samples: Optional[int] = field(
121
122
        default=None,
        metadata={
123
            "help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
124
125
126
            "value if set."
        },
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
127
128
129
130
131
132
    train_file: Optional[str] = field(
        default=None, metadata={"help": "A csv or a json file containing the training data."}
    )
    validation_file: Optional[str] = field(
        default=None, metadata={"help": "A csv or a json file containing the validation data."}
    )
133
    test_file: Optional[str] = field(default=None, metadata={"help": "A csv or a json file containing the test data."})
Sylvain Gugger's avatar
Sylvain Gugger committed
134
135
136
137
138
139

    def __post_init__(self):
        if self.task_name is not None:
            self.task_name = self.task_name.lower()
            if self.task_name not in task_to_keys.keys():
                raise ValueError("Unknown task, you should pick one in " + ",".join(task_to_keys.keys()))
140
141
        elif self.dataset_name is not None:
            pass
Sylvain Gugger's avatar
Sylvain Gugger committed
142
        elif self.train_file is None or self.validation_file is None:
143
            raise ValueError("Need either a GLUE task, a training/validation file or a dataset name.")
Sylvain Gugger's avatar
Sylvain Gugger committed
144
        else:
145
146
147
148
149
150
            train_extension = self.train_file.split(".")[-1]
            assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            validation_extension = self.validation_file.split(".")[-1]
            assert (
                validation_extension == train_extension
            ), "`validation_file` should have the same extension (csv or json) as `train_file`."
Sylvain Gugger's avatar
Sylvain Gugger committed
151
152


153
154
155
156
157
158
159
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
Julien Chaumond's avatar
Julien Chaumond committed
160
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
161
    )
162
163
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
164
    )
165
166
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
167
    )
168
    cache_dir: Optional[str] = field(
169
170
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
171
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
172
173
174
175
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
176
177
178
179
180
181
182
183
184
185
186
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
            "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
            "with private models)."
        },
    )
187
188


189
def main():
Julien Chaumond's avatar
Julien Chaumond committed
190
191
192
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.
193

194
195
196
197
198
199
200
    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()
thomwolf's avatar
thomwolf committed
201
202

    # Setup logging
203
    logging.basicConfig(
204
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
205
        datefmt="%m/%d/%Y %H:%M:%S",
206
        handlers=[logging.StreamHandler(sys.stdout)],
207
    )
208
209
210
211
212
213
214

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
Sylvain Gugger's avatar
Sylvain Gugger committed
215
216

    # Log on each process the small summary:
217
    logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
218
219
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
220
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
221
    logger.info(f"Training/evaluation parameters {training_args}")
thomwolf's avatar
thomwolf committed
222

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

Sylvain Gugger's avatar
Sylvain Gugger committed
238
    # Set seed before initializing model.
Julien Chaumond's avatar
Julien Chaumond committed
239
    set_seed(training_args.seed)
thomwolf's avatar
thomwolf committed
240

Sylvain Gugger's avatar
Sylvain Gugger committed
241
    # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
Sylvain Gugger's avatar
Sylvain Gugger committed
242
    # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
Sylvain Gugger's avatar
Sylvain Gugger committed
243
244
245
246
247
248
249
250
251
252
253
254
    #
    # For CSV/JSON files, this script will use as labels the column called 'label' and as pair of sentences the
    # sentences in columns called 'sentence1' and 'sentence2' if such column exists or the first two columns not named
    # label if at least two columns are provided.
    #
    # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
    # single column. You can easily tweak this behavior (see below)
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.task_name is not None:
        # Downloading and loading a dataset from the hub.
255
        raw_datasets = load_dataset("glue", data_args.task_name, cache_dir=model_args.cache_dir)
256
257
    elif data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
258
259
260
        raw_datasets = load_dataset(
            data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
261
    else:
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
        # Loading a dataset from your local files.
        # CSV/JSON training and evaluation files are needed.
        data_files = {"train": data_args.train_file, "validation": data_args.validation_file}

        # Get the test dataset: you can provide your own CSV/JSON test file (see below)
        # when you use `do_predict` without specifying a GLUE benchmark task.
        if training_args.do_predict:
            if data_args.test_file is not None:
                train_extension = data_args.train_file.split(".")[-1]
                test_extension = data_args.test_file.split(".")[-1]
                assert (
                    test_extension == train_extension
                ), "`test_file` should have the same extension (csv or json) as `train_file`."
                data_files["test"] = data_args.test_file
            else:
                raise ValueError("Need either a GLUE task or a test file for `do_predict`.")

        for key in data_files.keys():
            logger.info(f"load a local file for {key}: {data_files[key]}")

        if data_args.train_file.endswith(".csv"):
            # Loading a dataset from local csv files
284
            raw_datasets = load_dataset("csv", data_files=data_files, cache_dir=model_args.cache_dir)
285
286
        else:
            # Loading a dataset from local json files
287
            raw_datasets = load_dataset("json", data_files=data_files, cache_dir=model_args.cache_dir)
Sylvain Gugger's avatar
Sylvain Gugger committed
288
289
290
291
292
293
294
    # See more about loading any type of standard or custom dataset at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Labels
    if data_args.task_name is not None:
        is_regression = data_args.task_name == "stsb"
        if not is_regression:
295
            label_list = raw_datasets["train"].features["label"].names
Sylvain Gugger's avatar
Sylvain Gugger committed
296
297
298
299
300
            num_labels = len(label_list)
        else:
            num_labels = 1
    else:
        # Trying to have good defaults here, don't hesitate to tweak to your needs.
301
        is_regression = raw_datasets["train"].features["label"].dtype in ["float32", "float64"]
Sylvain Gugger's avatar
Sylvain Gugger committed
302
303
304
305
306
        if is_regression:
            num_labels = 1
        else:
            # A useful fast method:
            # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique
307
            label_list = raw_datasets["train"].unique("label")
Sylvain Gugger's avatar
Sylvain Gugger committed
308
309
            label_list.sort()  # Let's sort it for determinism
            num_labels = len(label_list)
thomwolf's avatar
thomwolf committed
310
311

    # Load pretrained model and tokenizer
Julien Chaumond's avatar
Julien Chaumond committed
312
    #
Sylvain Gugger's avatar
Sylvain Gugger committed
313
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
Julien Chaumond's avatar
Julien Chaumond committed
314
    # download model & vocab.
315
    config = AutoConfig.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
316
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
317
        num_labels=num_labels,
Julien Chaumond's avatar
Julien Chaumond committed
318
319
        finetuning_task=data_args.task_name,
        cache_dir=model_args.cache_dir,
320
321
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
322
    )
323
    tokenizer = AutoTokenizer.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
324
325
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
Sylvain Gugger's avatar
Sylvain Gugger committed
326
        use_fast=model_args.use_fast_tokenizer,
327
328
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
329
    )
330
    model = AutoModelForSequenceClassification.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
331
332
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
333
        config=config,
Julien Chaumond's avatar
Julien Chaumond committed
334
        cache_dir=model_args.cache_dir,
335
336
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
337
    )
thomwolf's avatar
thomwolf committed
338

339
    # Preprocessing the raw_datasets
Sylvain Gugger's avatar
Sylvain Gugger committed
340
341
342
343
    if data_args.task_name is not None:
        sentence1_key, sentence2_key = task_to_keys[data_args.task_name]
    else:
        # Again, we try to have some nice defaults but don't hesitate to tweak to your use case.
344
        non_label_column_names = [name for name in raw_datasets["train"].column_names if name != "label"]
Sylvain Gugger's avatar
Sylvain Gugger committed
345
346
347
348
349
350
351
352
353
354
355
356
357
358
        if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names:
            sentence1_key, sentence2_key = "sentence1", "sentence2"
        else:
            if len(non_label_column_names) >= 2:
                sentence1_key, sentence2_key = non_label_column_names[:2]
            else:
                sentence1_key, sentence2_key = non_label_column_names[0], None

    # Padding strategy
    if data_args.pad_to_max_length:
        padding = "max_length"
    else:
        # We will pad later, dynamically at batch creation, to the max sequence length in each batch
        padding = False
thomwolf's avatar
thomwolf committed
359

Sylvain Gugger's avatar
Sylvain Gugger committed
360
361
362
363
364
    # Some models have set the order of the labels to use, so let's make sure we do use it.
    label_to_id = None
    if (
        model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id
        and data_args.task_name is not None
365
        and not is_regression
Sylvain Gugger's avatar
Sylvain Gugger committed
366
367
368
369
    ):
        # Some have all caps in their config, some don't.
        label_name_to_id = {k.lower(): v for k, v in model.config.label2id.items()}
        if list(sorted(label_name_to_id.keys())) == list(sorted(label_list)):
370
            label_to_id = {i: int(label_name_to_id[label_list[i]]) for i in range(num_labels)}
Sylvain Gugger's avatar
Sylvain Gugger committed
371
        else:
372
            logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
373
374
375
376
                "Your model seems to have been trained with labels, but they don't match the dataset: ",
                f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}."
                "\nIgnoring the model labels as a result.",
            )
377
    elif data_args.task_name is None and not is_regression:
Sylvain Gugger's avatar
Sylvain Gugger committed
378
        label_to_id = {v: i for i, v in enumerate(label_list)}
379

380
381
382
    if label_to_id is not None:
        model.config.label2id = label_to_id
        model.config.id2label = {id: label for label, id in config.label2id.items()}
383
384
385
    elif data_args.task_name is not None and not is_regression:
        model.config.label2id = {l: i for i, l in enumerate(label_list)}
        model.config.id2label = {id: label for label, id in config.label2id.items()}
386

387
    if data_args.max_seq_length > tokenizer.model_max_length:
388
        logger.warning(
389
390
391
392
393
            f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
            f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
        )
    max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

Sylvain Gugger's avatar
Sylvain Gugger committed
394
395
396
397
398
    def preprocess_function(examples):
        # Tokenize the texts
        args = (
            (examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key])
        )
399
        result = tokenizer(*args, padding=padding, max_length=max_seq_length, truncation=True)
Sylvain Gugger's avatar
Sylvain Gugger committed
400
401
402

        # Map labels to IDs (not necessary for GLUE tasks)
        if label_to_id is not None and "label" in examples:
403
            result["label"] = [(label_to_id[l] if l != -1 else -1) for l in examples["label"]]
Sylvain Gugger's avatar
Sylvain Gugger committed
404
405
        return result

406
407
408
409
410
411
412
    with training_args.main_process_first(desc="dataset map pre-processing"):
        raw_datasets = raw_datasets.map(
            preprocess_function,
            batched=True,
            load_from_cache_file=not data_args.overwrite_cache,
            desc="Running tokenizer on dataset",
        )
413
    if training_args.do_train:
414
        if "train" not in raw_datasets:
415
            raise ValueError("--do_train requires a train dataset")
416
        train_dataset = raw_datasets["train"]
417
418
        if data_args.max_train_samples is not None:
            train_dataset = train_dataset.select(range(data_args.max_train_samples))
Sylvain Gugger's avatar
Sylvain Gugger committed
419

420
    if training_args.do_eval:
421
        if "validation" not in raw_datasets and "validation_matched" not in raw_datasets:
422
            raise ValueError("--do_eval requires a validation dataset")
423
        eval_dataset = raw_datasets["validation_matched" if data_args.task_name == "mnli" else "validation"]
424
425
        if data_args.max_eval_samples is not None:
            eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
426
427

    if training_args.do_predict or data_args.task_name is not None or data_args.test_file is not None:
428
        if "test" not in raw_datasets and "test_matched" not in raw_datasets:
429
            raise ValueError("--do_predict requires a test dataset")
430
        predict_dataset = raw_datasets["test_matched" if data_args.task_name == "mnli" else "test"]
431
432
        if data_args.max_predict_samples is not None:
            predict_dataset = predict_dataset.select(range(data_args.max_predict_samples))
Sylvain Gugger's avatar
Sylvain Gugger committed
433
434

    # Log a few random samples from the training set:
435
436
437
    if training_args.do_train:
        for index in random.sample(range(len(train_dataset)), 3):
            logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
Sylvain Gugger's avatar
Sylvain Gugger committed
438
439
440
441

    # Get the metric function
    if data_args.task_name is not None:
        metric = load_metric("glue", data_args.task_name)
442
443
    else:
        metric = load_metric("accuracy")
Sylvain Gugger's avatar
Sylvain Gugger committed
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458

    # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
    # predictions and label_ids field) and has to return a dictionary string to float.
    def compute_metrics(p: EvalPrediction):
        preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
        preds = np.squeeze(preds) if is_regression else np.argmax(preds, axis=1)
        if data_args.task_name is not None:
            result = metric.compute(predictions=preds, references=p.label_ids)
            if len(result) > 1:
                result["combined_score"] = np.mean(list(result.values())).item()
            return result
        elif is_regression:
            return {"mse": ((preds - p.label_ids) ** 2).mean().item()}
        else:
            return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()}
thomwolf's avatar
thomwolf committed
459

460
461
462
463
464
465
466
467
    # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
    if data_args.pad_to_max_length:
        data_collator = default_data_collator
    elif training_args.fp16:
        data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
    else:
        data_collator = None

Julien Chaumond's avatar
Julien Chaumond committed
468
469
470
471
    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
472
        train_dataset=train_dataset if training_args.do_train else None,
Sylvain Gugger's avatar
Sylvain Gugger committed
473
474
475
        eval_dataset=eval_dataset if training_args.do_eval else None,
        compute_metrics=compute_metrics,
        tokenizer=tokenizer,
476
        data_collator=data_collator,
Julien Chaumond's avatar
Julien Chaumond committed
477
    )
thomwolf's avatar
thomwolf committed
478

thomwolf's avatar
thomwolf committed
479
    # Training
Julien Chaumond's avatar
Julien Chaumond committed
480
    if training_args.do_train:
481
        checkpoint = None
482
483
484
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
485
486
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
487
        metrics = train_result.metrics
488
489
490
491
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))
492

Sylvain Gugger's avatar
Sylvain Gugger committed
493
        trainer.save_model()  # Saves the tokenizer too for easy upload
thomwolf's avatar
thomwolf committed
494

495
496
497
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
498

thomwolf's avatar
thomwolf committed
499
    # Evaluation
500
    if training_args.do_eval:
Julien Chaumond's avatar
Julien Chaumond committed
501
502
503
        logger.info("*** Evaluate ***")

        # Loop to handle MNLI double evaluation (matched, mis-matched)
Sylvain Gugger's avatar
Sylvain Gugger committed
504
        tasks = [data_args.task_name]
Julien Chaumond's avatar
Julien Chaumond committed
505
506
        eval_datasets = [eval_dataset]
        if data_args.task_name == "mnli":
Sylvain Gugger's avatar
Sylvain Gugger committed
507
            tasks.append("mnli-mm")
508
            eval_datasets.append(raw_datasets["validation_mismatched"])
Julien Chaumond's avatar
Julien Chaumond committed
509

Sylvain Gugger's avatar
Sylvain Gugger committed
510
        for eval_dataset, task in zip(eval_datasets, tasks):
511
            metrics = trainer.evaluate(eval_dataset=eval_dataset)
Julien Chaumond's avatar
Julien Chaumond committed
512

513
514
515
516
            max_eval_samples = (
                data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
            )
            metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
517

518
519
            trainer.log_metrics("eval", metrics)
            trainer.save_metrics("eval", metrics)
thomwolf's avatar
thomwolf committed
520

521
    if training_args.do_predict:
522
        logger.info("*** Predict ***")
Sylvain Gugger's avatar
Sylvain Gugger committed
523
524
525

        # Loop to handle MNLI double evaluation (matched, mis-matched)
        tasks = [data_args.task_name]
526
        predict_datasets = [predict_dataset]
527
        if data_args.task_name == "mnli":
Sylvain Gugger's avatar
Sylvain Gugger committed
528
            tasks.append("mnli-mm")
529
            predict_datasets.append(raw_datasets["test_mismatched"])
530

531
        for predict_dataset, task in zip(predict_datasets, tasks):
Sylvain Gugger's avatar
Sylvain Gugger committed
532
            # Removing the `label` columns because it contains -1 and Trainer won't like that.
533
            predict_dataset = predict_dataset.remove_columns("label")
534
            predictions = trainer.predict(predict_dataset, metric_key_prefix="predict").predictions
Sylvain Gugger's avatar
Sylvain Gugger committed
535
            predictions = np.squeeze(predictions) if is_regression else np.argmax(predictions, axis=1)
536

537
            output_predict_file = os.path.join(training_args.output_dir, f"predict_results_{task}.txt")
Sylvain Gugger's avatar
Sylvain Gugger committed
538
            if trainer.is_world_process_zero():
539
540
                with open(output_predict_file, "w") as writer:
                    logger.info(f"***** Predict results {task} *****")
541
542
                    writer.write("index\tprediction\n")
                    for index, item in enumerate(predictions):
Sylvain Gugger's avatar
Sylvain Gugger committed
543
544
                        if is_regression:
                            writer.write(f"{index}\t{item:3.3f}\n")
545
                        else:
Sylvain Gugger's avatar
Sylvain Gugger committed
546
547
                            item = label_list[item]
                            writer.write(f"{index}\t{item}\n")
thomwolf's avatar
thomwolf committed
548

549
550
551
552
553
554
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"}
    if data_args.task_name is not None:
        kwargs["language"] = "en"
        kwargs["dataset_tags"] = "glue"
        kwargs["dataset_args"] = data_args.task_name
        kwargs["dataset"] = f"GLUE {data_args.task_name.upper()}"
Sylvain Gugger's avatar
Sylvain Gugger committed
555

556
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
557
        trainer.push_to_hub(**kwargs)
558
559
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
560

thomwolf's avatar
thomwolf committed
561

Lysandre Debut's avatar
Lysandre Debut committed
562
563
564
565
566
def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


thomwolf's avatar
thomwolf committed
567
568
if __name__ == "__main__":
    main()