test_modeling_transfo_xl.py 20.2 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sylvain Gugger's avatar
Sylvain Gugger committed
15

16
import copy
thomwolf's avatar
thomwolf committed
17
import random
18
import unittest
thomwolf's avatar
thomwolf committed
19

20
from transformers import TransfoXLConfig, is_torch_available
21
from transformers.testing_utils import require_torch, require_torch_multi_gpu, slow, torch_device
thomwolf's avatar
thomwolf committed
22

23
from .test_configuration_common import ConfigTester
24
from .test_generation_utils import GenerationTesterMixin
25
from .test_modeling_common import ModelTesterMixin, ids_tensor
Aymeric Augustin's avatar
Aymeric Augustin committed
26
27


28
if is_torch_available():
thomwolf's avatar
thomwolf committed
29
    import torch
30
    from torch import nn
31

32
    from transformers import TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel
Sylvain Gugger's avatar
Sylvain Gugger committed
33
    from transformers.models.transfo_xl.modeling_transfo_xl import TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST
thomwolf's avatar
thomwolf committed
34

35

36
37
class TransfoXLModelTester:
    def __init__(
Lysandre's avatar
Lysandre committed
38
39
        self,
        parent,
40
41
42
43
44
45
46
    ):
        self.parent = parent
        self.batch_size = 14
        self.seq_length = 7
        self.mem_len = 30
        self.key_length = self.seq_length + self.mem_len
        self.clamp_len = 15
47
        self.is_training = False
48
49
50
51
52
53
54
55
56
57
58
59
60
        self.use_labels = True
        self.vocab_size = 99
        self.cutoffs = [10, 50, 80]
        self.hidden_size = 32
        self.d_embed = 32
        self.num_attention_heads = 4
        self.d_head = 8
        self.d_inner = 128
        self.div_val = 2
        self.num_hidden_layers = 5
        self.scope = None
        self.seed = 1
        self.eos_token_id = 0
sandip's avatar
sandip committed
61
62
        self.num_labels = 3
        self.pad_token_id = self.vocab_size - 1
63
64
65
66
67
68
69
70
71

    def prepare_config_and_inputs(self):
        input_ids_1 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        input_ids_2 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        lm_labels = None
        if self.use_labels:
            lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

72
73
74
75
76
77
        config = self.get_config()

        return (config, input_ids_1, input_ids_2, lm_labels)

    def get_config(self):
        return TransfoXLConfig(
78
79
80
81
82
83
84
85
86
87
88
89
            vocab_size=self.vocab_size,
            mem_len=self.mem_len,
            clamp_len=self.clamp_len,
            cutoffs=self.cutoffs,
            d_model=self.hidden_size,
            d_embed=self.d_embed,
            n_head=self.num_attention_heads,
            d_head=self.d_head,
            d_inner=self.d_inner,
            div_val=self.div_val,
            n_layer=self.num_hidden_layers,
            eos_token_id=self.eos_token_id,
sandip's avatar
sandip committed
90
            pad_token_id=self.pad_token_id,
91
92
93
94
95
96
97
98
99
100
101
        )

    def set_seed(self):
        random.seed(self.seed)
        torch.manual_seed(self.seed)

    def create_transfo_xl_model(self, config, input_ids_1, input_ids_2, lm_labels):
        model = TransfoXLModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
102
103
        outputs1 = model(input_ids_1)
        outputs2 = model(input_ids_2, outputs1["mems"])
104
        outputs = {
Sylvain Gugger's avatar
Sylvain Gugger committed
105
106
107
108
            "hidden_states_1": outputs1["last_hidden_state"],
            "mems_1": outputs1["mems"],
            "hidden_states_2": outputs2["last_hidden_state"],
            "mems_2": outputs2["mems"],
109
110
111
112
        }
        return outputs

    def check_transfo_xl_model_output(self, result):
113
114
        self.parent.assertEqual(result["hidden_states_1"].shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result["hidden_states_2"].shape, (self.batch_size, self.seq_length, self.hidden_size))
115
        self.parent.assertListEqual(
116
117
            [mem.shape for mem in result["mems_1"]],
            [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
118
119
        )
        self.parent.assertListEqual(
120
121
            [mem.shape for mem in result["mems_2"]],
            [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
122
123
124
125
126
127
128
        )

    def create_transfo_xl_lm_head(self, config, input_ids_1, input_ids_2, lm_labels):
        model = TransfoXLLMHeadModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
129
130
131
132
        lm_logits_1 = model(input_ids_1)["prediction_scores"]
        outputs1 = model(input_ids_1, labels=lm_labels)
        lm_logits_2 = model(input_ids_2, mems=outputs1["mems"])["prediction_scores"]
        outputs2 = model(input_ids_2, labels=lm_labels, mems=outputs1["mems"])
133
134

        outputs = {
Sylvain Gugger's avatar
Sylvain Gugger committed
135
136
            "loss_1": outputs1["losses"],
            "mems_1": outputs1["mems"],
137
            "lm_logits_1": lm_logits_1,
Sylvain Gugger's avatar
Sylvain Gugger committed
138
139
            "loss_2": outputs2["losses"],
            "mems_2": outputs2["mems"],
140
141
142
143
144
            "lm_logits_2": lm_logits_2,
        }
        return outputs

    def check_transfo_xl_lm_head_output(self, result):
145
146
        self.parent.assertEqual(result["loss_1"].shape, (self.batch_size, self.seq_length - 1))
        self.parent.assertEqual(result["lm_logits_1"].shape, (self.batch_size, self.seq_length, self.vocab_size))
147
        self.parent.assertListEqual(
148
149
            [mem.shape for mem in result["mems_1"]],
            [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
150
151
        )

152
153
        self.parent.assertEqual(result["loss_2"].shape, (self.batch_size, self.seq_length - 1))
        self.parent.assertEqual(result["lm_logits_2"].shape, (self.batch_size, self.seq_length, self.vocab_size))
154
        self.parent.assertListEqual(
155
156
            [mem.shape for mem in result["mems_2"]],
            [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
157
158
        )

sandip's avatar
sandip committed
159
160
161
162
163
164
165
166
    def create_and_check_transfo_xl_for_sequence_classification(self, config, input_ids_1, input_ids_2, lm_labels):
        config.num_labels = self.num_labels
        model = TransfoXLForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids_1)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

167
168
169
170
171
172
173
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (config, input_ids_1, input_ids_2, lm_labels) = config_and_inputs
        inputs_dict = {"input_ids": input_ids_1}
        return config, inputs_dict


174
@require_torch
175
class TransfoXLModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
sandip's avatar
sandip committed
176
177
178
    all_model_classes = (
        (TransfoXLModel, TransfoXLLMHeadModel, TransfoXLForSequenceClassification) if is_torch_available() else ()
    )
179
    all_generative_model_classes = (TransfoXLLMHeadModel,) if is_torch_available() else ()
thomwolf's avatar
thomwolf committed
180
181
    test_pruning = False
    test_torchscript = False
182
    test_resize_embeddings = True
183
    test_mismatched_shapes = False
thomwolf's avatar
thomwolf committed
184

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
    def check_cutoffs_and_n_token(
        self, copied_cutoffs, layer, model_embed, model, model_class, resized_value, vocab_size
    ):
        # Check that the cutoffs were modified accordingly
        for i in range(len(copied_cutoffs)):
            if i < layer:
                self.assertEqual(model_embed.cutoffs[i], copied_cutoffs[i])
                if model_class == TransfoXLLMHeadModel:
                    self.assertEqual(model.crit.cutoffs[i], copied_cutoffs[i])
                if i < len(model.config.cutoffs):
                    self.assertEqual(model.config.cutoffs[i], copied_cutoffs[i])
            else:
                self.assertEqual(model_embed.cutoffs[i], copied_cutoffs[i] + resized_value)
                if model_class == TransfoXLLMHeadModel:
                    self.assertEqual(model.crit.cutoffs[i], copied_cutoffs[i] + resized_value)
                if i < len(model.config.cutoffs):
                    self.assertEqual(model.config.cutoffs[i], copied_cutoffs[i] + resized_value)

        self.assertEqual(model_embed.n_token, vocab_size + resized_value)
        if model_class == TransfoXLLMHeadModel:
            self.assertEqual(model.crit.n_token, vocab_size + resized_value)

thomwolf's avatar
thomwolf committed
207
    def setUp(self):
208
        self.model_tester = TransfoXLModelTester(self)
thomwolf's avatar
thomwolf committed
209
        self.config_tester = ConfigTester(self, config_class=TransfoXLConfig, d_embed=37)
thomwolf's avatar
thomwolf committed
210

thomwolf's avatar
thomwolf committed
211
    def test_config(self):
thomwolf's avatar
thomwolf committed
212
213
214
215
216
217
218
219
220
221
222
223
224
        self.config_tester.run_common_tests()

    def test_transfo_xl_model(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        output_result = self.model_tester.create_transfo_xl_model(*config_and_inputs)
        self.model_tester.check_transfo_xl_model_output(output_result)

    def test_transfo_xl_lm_head(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        output_result = self.model_tester.create_transfo_xl_lm_head(*config_and_inputs)
        self.model_tester.check_transfo_xl_lm_head_output(output_result)
225

sandip's avatar
sandip committed
226
227
228
229
    def test_transfo_xl_sequence_classification_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*config_and_inputs)

230
231
232
233
    def test_retain_grad_hidden_states_attentions(self):
        # xlnet cannot keep gradients in attentions or hidden states
        return

234
    @require_torch_multi_gpu
235
236
237
    @unittest.skip(
        reason="Transfo-XL does not work with data parallel (DP) because of a bug in PyTorch: https://github.com/pytorch/pytorch/issues/36035"
    )
238
    def test_multi_gpu_data_parallel_forward(self):
239
240
        pass

241
    @slow
242
    def test_model_from_pretrained(self):
243
        for model_name in TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
244
            model = TransfoXLModel.from_pretrained(model_name)
245
            self.assertIsNotNone(model)
246

247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
    def test_resize_tokens_embeddings(self):
        (original_config, inputs_dict) = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.test_resize_embeddings:
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)

            if self.model_tester.is_training is False:
                model.eval()

            model_vocab_size = config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = [emb.weight.clone() for emb in model_embed.emb_layers]
            # Retrieve the cutoffs and copy them
            copied_cutoffs = copy.copy(model_embed.cutoffs)

            test_layers = [x for x in range(config.div_val)]
            for layer in test_layers:
                # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
                model_embed = model.resize_token_embeddings(model_vocab_size + 10, layer)
                self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
                # Check that it actually resizes the embeddings matrix
                self.assertEqual(model_embed.emb_layers[layer].weight.shape[0], cloned_embeddings[layer].shape[0] + 10)
                # Check that the cutoffs were modified accordingly
                self.check_cutoffs_and_n_token(
                    copied_cutoffs, layer, model_embed, model, model_class, 10, model_vocab_size
                )

                # Check that the model can still do a forward pass successfully (every parameter should be resized)
                model(**inputs_dict)

                # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
                model_embed = model.resize_token_embeddings(model_vocab_size - 5, layer)
                self.assertEqual(model.config.vocab_size, model_vocab_size - 5)
                # Check that it actually resizes the embeddings matrix
                self.assertEqual(model_embed.emb_layers[layer].weight.shape[0], cloned_embeddings[layer].shape[0] - 5)
                # Check that the cutoffs were modified accordingly
                self.check_cutoffs_and_n_token(
                    copied_cutoffs, layer, model_embed, model, model_class, -5, model_vocab_size
                )

                # Check that the model can still do a forward pass successfully (every parameter should be resized)
                # Input ids should be clamped to the maximum size of the vocabulary
                inputs_dict["input_ids"].clamp_(max=model_vocab_size - 5 - 1)
                model(**inputs_dict)

                # Check that adding and removing tokens has not modified the first part of the embedding matrix.
                models_equal = True
                for p1, p2 in zip(cloned_embeddings[layer], model_embed.emb_layers[layer].weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False

                self.assertTrue(models_equal)

                # Reset model embeddings to original size
                model.resize_token_embeddings(model_vocab_size, layer)
                self.assertEqual(model_vocab_size, model.config.vocab_size)
                self.assertEqual(model_embed.emb_layers[layer].weight.shape[0], cloned_embeddings[layer].shape[0])

310
311
312
313
    def test_resize_embeddings_untied(self):
        # transfo-xl requires special resize for lm-head
        return

314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
    def _check_attentions_for_generate(
        self, batch_size, attentions, min_length, max_length, config, use_cache=False, num_beam_groups=1
    ):
        self.assertIsInstance(attentions, tuple)
        self.assertListEqual(
            [isinstance(iter_attentions, tuple) for iter_attentions in attentions], [True] * len(attentions)
        )
        self.assertEqual(len(attentions), (max_length - min_length) * num_beam_groups)

        for idx, iter_attentions in enumerate(attentions):
            tgt_len = min_length if idx == 0 else (min_length - 2)
            src_len = (min_length + config.mem_len) if idx == 0 else (min_length + config.mem_len - 2)

            expected_shape = (
                batch_size * num_beam_groups,
                config.num_attention_heads,
                tgt_len,
                src_len,
            )

            # check attn size
            self.assertListEqual(
                [layer_attention.shape for layer_attention in iter_attentions], [expected_shape] * len(iter_attentions)
            )

    def _check_hidden_states_for_generate(
        self, batch_size, hidden_states, min_length, max_length, config, use_cache=False, num_beam_groups=1
    ):
        self.assertIsInstance(hidden_states, tuple)
        self.assertListEqual(
            [isinstance(iter_hidden_states, tuple) for iter_hidden_states in hidden_states],
            [True] * len(hidden_states),
        )
        self.assertEqual(len(hidden_states), (max_length - min_length) * num_beam_groups)

        for idx, iter_hidden_states in enumerate(hidden_states):
            seq_len = min_length if idx == 0 else min_length - 2
            expected_shape = (batch_size * num_beam_groups, seq_len, config.hidden_size)
            # check hidden size
            self.assertListEqual(
                [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states],
                [expected_shape] * len(iter_hidden_states),
            )

358
359
360
361
362
363
364
365
366
367
368
369
370
371
    # overwrite from test_modeling_common
    def _mock_init_weights(self, module):
        if hasattr(module, "weight") and module.weight is not None:
            module.weight.data.fill_(3)
        if hasattr(module, "cluster_weight") and module.cluster_weight is not None:
            module.cluster_weight.data.fill_(3)
        if hasattr(module, "bias") and module.bias is not None:
            module.bias.data.fill_(3)
        if hasattr(module, "cluster_bias") and module.cluster_bias is not None:
            module.cluster_bias.data.fill_(3)

        if hasattr(module, "emb_projs"):
            for i in range(len(module.emb_projs)):
                if module.emb_projs[i] is not None:
372
                    nn.init.constant_(module.emb_projs[i], 0.0003)
373
374
375
        if hasattr(module, "out_projs"):
            for i in range(len(module.out_projs)):
                if module.out_projs[i] is not None:
376
                    nn.init.constant_(module.out_projs[i], 0.0003)
377
378
379
380
381
382

        for param in ["r_emb", "r_w_bias", "r_r_bias", "r_bias"]:
            if hasattr(module, param) and getattr(module, param) is not None:
                weight = getattr(module, param)
                weight.data.fill_(3)

383

Lysandre Debut's avatar
Lysandre Debut committed
384
@require_torch
385
386
387
388
class TransfoXLModelLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_transfo_xl_wt103(self):
        model = TransfoXLLMHeadModel.from_pretrained("transfo-xl-wt103")
389
        model.to(torch_device)
390
391
392
393

        # fmt: off
        input_ids = torch.tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]],dtype=torch.long,device=torch_device)  # noqa: E231
        # fmt: on
394
395
396
397
398
399
400
401
402
403
404
        #  In 1991 , the remains of Russian Tsar Nicholas II and his family
        #  ( except for Alexei and Maria ) are discovered .
        #  The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the
        #  remainder of the story . 1883 Western Siberia ,
        #  a young Grigori Rasputin is asked by his father and a group of men to perform magic .
        #  Rasputin has a vision and denounces one of the men as a horse thief . Although his
        #  father initially slaps him for making such an accusation , Rasputin watches as the
        #  man is chased outside and beaten . Twenty years later , Rasputin sees a vision of
        #  the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous ,
        #  with people , even a bishop , begging for his blessing . <eod> </s> <eos>

405
406
407
        # fmt: off
        expected_output_ids = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,142,1298,188,2,29546,113,8,3654,4,1,1109,7136,833,3,13,1645,4,29546,11,104,7,1,1109,532,7129,2,10,83507,2,1162,1123,2,6,7245,10,2,5,11,104,7,1,1109,532,7129,2,10,24,24,10,22,10,13,770,5863,4,7245,10]  # noqa: E231
        # fmt: on
408
409
410
411
412
413
414
415
416
417
418
419
420
        #  In 1991, the remains of Russian Tsar Nicholas II and his family ( except for
        #  Alexei and Maria ) are discovered. The voice of young son, Tsarevich Alexei
        #  Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young
        #  Grigori Rasputin is asked by his father and a group of men to perform magic.
        #  Rasputin has a vision and denounces one of the men as a horse thief. Although
        #  his father initially slaps him for making such an accusation, Rasputin watches
        #  as the man is chased outside and beaten. Twenty years later, Rasputin sees a
        #  vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly
        #  becomes famous, with people, even a bishop, begging for his blessing. In the
        #  early 20th century, Rasputin became a symbol of the Russian Orthodox Church.
        #  The image of Rasputin was used in the Russian national anthem, " Nearer, My God,
        #  to Heaven ", and was used in the Russian national anthem, " " ( " The Great Spirit
        #  of Heaven "
421

patrickvonplaten's avatar
patrickvonplaten committed
422
        output_ids = model.generate(input_ids, max_length=200, do_sample=False)
423
        self.assertListEqual(output_ids[0].tolist(), expected_output_ids)