"test/srt/test_llama31_fp4.py" did not exist on "3bc99e6fe4d77979f0e0de707a59a9cf305504d6"
test_modeling_transfo_xl.py 21.2 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15
import copy
thomwolf's avatar
thomwolf committed
16
import random
17
import unittest
thomwolf's avatar
thomwolf committed
18

19
from transformers import is_torch_available
20
from transformers.testing_utils import require_torch, require_torch_multigpu, slow, torch_device
thomwolf's avatar
thomwolf committed
21

22
from .test_configuration_common import ConfigTester
23
from .test_generation_utils import GenerationTesterMixin
24
from .test_modeling_common import ModelTesterMixin, ids_tensor
Aymeric Augustin's avatar
Aymeric Augustin committed
25
26


27
if is_torch_available():
thomwolf's avatar
thomwolf committed
28
    import torch
29
30

    from transformers import TransfoXLConfig, TransfoXLLMHeadModel, TransfoXLModel
31
    from transformers.modeling_transfo_xl import TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST
thomwolf's avatar
thomwolf committed
32

33

34
35
class TransfoXLModelTester:
    def __init__(
Lysandre's avatar
Lysandre committed
36
37
        self,
        parent,
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
    ):
        self.parent = parent
        self.batch_size = 14
        self.seq_length = 7
        self.mem_len = 30
        self.key_length = self.seq_length + self.mem_len
        self.clamp_len = 15
        self.is_training = True
        self.use_labels = True
        self.vocab_size = 99
        self.cutoffs = [10, 50, 80]
        self.hidden_size = 32
        self.d_embed = 32
        self.num_attention_heads = 4
        self.d_head = 8
        self.d_inner = 128
        self.div_val = 2
        self.num_hidden_layers = 5
        self.scope = None
        self.seed = 1
        self.eos_token_id = 0

    def prepare_config_and_inputs(self):
        input_ids_1 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        input_ids_2 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        lm_labels = None
        if self.use_labels:
            lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        config = TransfoXLConfig(
            vocab_size=self.vocab_size,
            mem_len=self.mem_len,
            clamp_len=self.clamp_len,
            cutoffs=self.cutoffs,
            d_model=self.hidden_size,
            d_embed=self.d_embed,
            n_head=self.num_attention_heads,
            d_head=self.d_head,
            d_inner=self.d_inner,
            div_val=self.div_val,
            n_layer=self.num_hidden_layers,
            eos_token_id=self.eos_token_id,
Sylvain Gugger's avatar
Sylvain Gugger committed
81
            return_dict=True,
82
83
84
85
86
87
88
89
90
91
92
93
94
        )

        return (config, input_ids_1, input_ids_2, lm_labels)

    def set_seed(self):
        random.seed(self.seed)
        torch.manual_seed(self.seed)

    def create_transfo_xl_model(self, config, input_ids_1, input_ids_2, lm_labels):
        model = TransfoXLModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
95
96
        outputs1 = model(input_ids_1)
        outputs2 = model(input_ids_2, outputs1["mems"])
97
        outputs = {
Sylvain Gugger's avatar
Sylvain Gugger committed
98
99
100
101
            "hidden_states_1": outputs1["last_hidden_state"],
            "mems_1": outputs1["mems"],
            "hidden_states_2": outputs2["last_hidden_state"],
            "mems_2": outputs2["mems"],
102
103
104
105
        }
        return outputs

    def check_transfo_xl_model_output(self, result):
106
107
        self.parent.assertEqual(result["hidden_states_1"].shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result["hidden_states_2"].shape, (self.batch_size, self.seq_length, self.hidden_size))
108
        self.parent.assertListEqual(
109
110
            [mem.shape for mem in result["mems_1"]],
            [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
111
112
        )
        self.parent.assertListEqual(
113
114
            [mem.shape for mem in result["mems_2"]],
            [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
115
116
117
118
119
120
121
        )

    def create_transfo_xl_lm_head(self, config, input_ids_1, input_ids_2, lm_labels):
        model = TransfoXLLMHeadModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
122
123
124
125
        lm_logits_1 = model(input_ids_1)["prediction_scores"]
        outputs1 = model(input_ids_1, labels=lm_labels)
        lm_logits_2 = model(input_ids_2, mems=outputs1["mems"])["prediction_scores"]
        outputs2 = model(input_ids_2, labels=lm_labels, mems=outputs1["mems"])
126
127

        outputs = {
Sylvain Gugger's avatar
Sylvain Gugger committed
128
129
            "loss_1": outputs1["losses"],
            "mems_1": outputs1["mems"],
130
            "lm_logits_1": lm_logits_1,
Sylvain Gugger's avatar
Sylvain Gugger committed
131
132
            "loss_2": outputs2["losses"],
            "mems_2": outputs2["mems"],
133
134
135
136
137
            "lm_logits_2": lm_logits_2,
        }
        return outputs

    def check_transfo_xl_lm_head_output(self, result):
138
139
        self.parent.assertEqual(result["loss_1"].shape, (self.batch_size, self.seq_length - 1))
        self.parent.assertEqual(result["lm_logits_1"].shape, (self.batch_size, self.seq_length, self.vocab_size))
140
        self.parent.assertListEqual(
141
142
            [mem.shape for mem in result["mems_1"]],
            [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
143
144
        )

145
146
        self.parent.assertEqual(result["loss_2"].shape, (self.batch_size, self.seq_length - 1))
        self.parent.assertEqual(result["lm_logits_2"].shape, (self.batch_size, self.seq_length, self.vocab_size))
147
        self.parent.assertListEqual(
148
149
            [mem.shape for mem in result["mems_2"]],
            [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
150
151
152
153
154
155
156
157
158
        )

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (config, input_ids_1, input_ids_2, lm_labels) = config_and_inputs
        inputs_dict = {"input_ids": input_ids_1}
        return config, inputs_dict


159
@require_torch
160
class TransfoXLModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
161
    all_model_classes = (TransfoXLModel, TransfoXLLMHeadModel) if is_torch_available() else ()
162
    all_generative_model_classes = (TransfoXLLMHeadModel,) if is_torch_available() else ()
thomwolf's avatar
thomwolf committed
163
164
    test_pruning = False
    test_torchscript = False
165
    test_resize_embeddings = True
thomwolf's avatar
thomwolf committed
166

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
    def check_cutoffs_and_n_token(
        self, copied_cutoffs, layer, model_embed, model, model_class, resized_value, vocab_size
    ):
        # Check that the cutoffs were modified accordingly
        for i in range(len(copied_cutoffs)):
            if i < layer:
                self.assertEqual(model_embed.cutoffs[i], copied_cutoffs[i])
                if model_class == TransfoXLLMHeadModel:
                    self.assertEqual(model.crit.cutoffs[i], copied_cutoffs[i])
                if i < len(model.config.cutoffs):
                    self.assertEqual(model.config.cutoffs[i], copied_cutoffs[i])
            else:
                self.assertEqual(model_embed.cutoffs[i], copied_cutoffs[i] + resized_value)
                if model_class == TransfoXLLMHeadModel:
                    self.assertEqual(model.crit.cutoffs[i], copied_cutoffs[i] + resized_value)
                if i < len(model.config.cutoffs):
                    self.assertEqual(model.config.cutoffs[i], copied_cutoffs[i] + resized_value)

        self.assertEqual(model_embed.n_token, vocab_size + resized_value)
        if model_class == TransfoXLLMHeadModel:
            self.assertEqual(model.crit.n_token, vocab_size + resized_value)

thomwolf's avatar
thomwolf committed
189
    def setUp(self):
190
        self.model_tester = TransfoXLModelTester(self)
thomwolf's avatar
thomwolf committed
191
        self.config_tester = ConfigTester(self, config_class=TransfoXLConfig, d_embed=37)
thomwolf's avatar
thomwolf committed
192

thomwolf's avatar
thomwolf committed
193
    def test_config(self):
thomwolf's avatar
thomwolf committed
194
195
196
197
198
199
200
201
202
203
204
205
206
        self.config_tester.run_common_tests()

    def test_transfo_xl_model(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        output_result = self.model_tester.create_transfo_xl_model(*config_and_inputs)
        self.model_tester.check_transfo_xl_model_output(output_result)

    def test_transfo_xl_lm_head(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        output_result = self.model_tester.create_transfo_xl_lm_head(*config_and_inputs)
        self.model_tester.check_transfo_xl_lm_head_output(output_result)
207

208
    @require_torch_multigpu
209
210
211
212
    def test_multigpu_data_parallel_forward(self):
        # Opt-out of this test.
        pass

213
    @slow
214
    def test_model_from_pretrained(self):
215
        for model_name in TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
216
            model = TransfoXLModel.from_pretrained(model_name)
217
            self.assertIsNotNone(model)
218

219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
    def test_resize_tokens_embeddings(self):
        (original_config, inputs_dict) = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.test_resize_embeddings:
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)

            if self.model_tester.is_training is False:
                model.eval()

            model_vocab_size = config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = [emb.weight.clone() for emb in model_embed.emb_layers]
            # Retrieve the cutoffs and copy them
            copied_cutoffs = copy.copy(model_embed.cutoffs)

            test_layers = [x for x in range(config.div_val)]
            for layer in test_layers:
                # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
                model_embed = model.resize_token_embeddings(model_vocab_size + 10, layer)
                self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
                # Check that it actually resizes the embeddings matrix
                self.assertEqual(model_embed.emb_layers[layer].weight.shape[0], cloned_embeddings[layer].shape[0] + 10)
                # Check that the cutoffs were modified accordingly
                self.check_cutoffs_and_n_token(
                    copied_cutoffs, layer, model_embed, model, model_class, 10, model_vocab_size
                )

                # Check that the model can still do a forward pass successfully (every parameter should be resized)
                model(**inputs_dict)

                # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
                model_embed = model.resize_token_embeddings(model_vocab_size - 5, layer)
                self.assertEqual(model.config.vocab_size, model_vocab_size - 5)
                # Check that it actually resizes the embeddings matrix
                self.assertEqual(model_embed.emb_layers[layer].weight.shape[0], cloned_embeddings[layer].shape[0] - 5)
                # Check that the cutoffs were modified accordingly
                self.check_cutoffs_and_n_token(
                    copied_cutoffs, layer, model_embed, model, model_class, -5, model_vocab_size
                )

                # Check that the model can still do a forward pass successfully (every parameter should be resized)
                # Input ids should be clamped to the maximum size of the vocabulary
                inputs_dict["input_ids"].clamp_(max=model_vocab_size - 5 - 1)
                model(**inputs_dict)

                # Check that adding and removing tokens has not modified the first part of the embedding matrix.
                models_equal = True
                for p1, p2 in zip(cloned_embeddings[layer], model_embed.emb_layers[layer].weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False

                self.assertTrue(models_equal)

                # Reset model embeddings to original size
                model.resize_token_embeddings(model_vocab_size, layer)
                self.assertEqual(model_vocab_size, model.config.vocab_size)
                self.assertEqual(model_embed.emb_layers[layer].weight.shape[0], cloned_embeddings[layer].shape[0])

282

Lysandre Debut's avatar
Lysandre Debut committed
283
@require_torch
284
285
286
287
class TransfoXLModelLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_transfo_xl_wt103(self):
        model = TransfoXLLMHeadModel.from_pretrained("transfo-xl-wt103")
288
        model.to(torch_device)
patrickvonplaten's avatar
patrickvonplaten committed
289
        input_ids = torch.tensor(
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
            [
                [
                    33,
                    1297,
                    2,
                    1,
                    1009,
                    4,
                    1109,
                    11739,
                    4762,
                    358,
                    5,
                    25,
                    245,
                    22,
                    1706,
                    17,
                    20098,
                    5,
                    3215,
                    21,
                    37,
                    1110,
                    3,
                    13,
                    1041,
                    4,
                    24,
                    603,
                    490,
                    2,
                    71477,
                    20098,
                    104447,
                    2,
                    20961,
                    1,
                    2604,
                    4,
                    1,
                    329,
                    3,
                    6224,
                    831,
                    16002,
                    2,
                    8,
                    603,
                    78967,
                    29546,
                    23,
                    803,
                    20,
                    25,
                    416,
                    5,
                    8,
                    232,
                    4,
                    277,
                    6,
                    1855,
                    4601,
                    3,
                    29546,
                    54,
                    8,
                    3609,
                    5,
                    57211,
                    49,
                    4,
                    1,
                    277,
                    18,
                    8,
                    1755,
                    15691,
                    3,
                    341,
                    25,
                    416,
                    693,
                    42573,
                    71,
                    17,
                    401,
                    94,
                    31,
                    17919,
                    2,
                    29546,
                    7873,
                    18,
                    1,
                    435,
                    23,
                    11011,
                    755,
                    5,
                    5167,
                    3,
                    7983,
                    98,
                    84,
                    2,
                    29546,
                    3267,
                    8,
                    3609,
                    4,
                    1,
                    4865,
                    1075,
                    2,
                    6087,
                    71,
                    6,
                    346,
                    8,
                    5854,
                    3,
                    29546,
                    824,
                    1400,
                    1868,
                    2,
                    19,
                    160,
                    2,
                    311,
                    8,
                    5496,
                    2,
                    20920,
                    17,
                    25,
                    15097,
                    3,
                    24,
                    24,
                    0,
                ]
patrickvonplaten's avatar
patrickvonplaten committed
434
435
436
437
            ],
            dtype=torch.long,
            device=torch_device,
        )
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
        #  In 1991 , the remains of Russian Tsar Nicholas II and his family
        #  ( except for Alexei and Maria ) are discovered .
        #  The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the
        #  remainder of the story . 1883 Western Siberia ,
        #  a young Grigori Rasputin is asked by his father and a group of men to perform magic .
        #  Rasputin has a vision and denounces one of the men as a horse thief . Although his
        #  father initially slaps him for making such an accusation , Rasputin watches as the
        #  man is chased outside and beaten . Twenty years later , Rasputin sees a vision of
        #  the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous ,
        #  with people , even a bishop , begging for his blessing . <eod> </s> <eos>

        expected_output_ids = [
            33,
            1297,
            2,
            1,
            1009,
            4,
            1109,
            11739,
            4762,
            358,
            5,
            25,
            245,
            22,
            1706,
            17,
            20098,
            5,
            3215,
            21,
            37,
            1110,
            3,
            13,
            1041,
            4,
            24,
            603,
            490,
            2,
            71477,
            20098,
            104447,
            2,
            20961,
            1,
            2604,
            4,
            1,
            329,
            3,
            6224,
            831,
            16002,
            2,
            8,
            603,
            78967,
            29546,
            23,
            803,
            20,
            25,
            416,
            5,
            8,
            232,
            4,
            277,
            6,
            1855,
            4601,
            3,
            29546,
            54,
            8,
            3609,
            5,
            57211,
            49,
            4,
            1,
            277,
            18,
            8,
            1755,
            15691,
            3,
            341,
            25,
            416,
            693,
            42573,
            71,
            17,
            401,
            94,
            31,
            17919,
            2,
            29546,
            7873,
            18,
            1,
            435,
            23,
            11011,
            755,
            5,
            5167,
            3,
            7983,
            98,
            84,
            2,
            29546,
            3267,
            8,
            3609,
            4,
            1,
            4865,
            1075,
            2,
            6087,
            71,
            6,
            346,
            8,
            5854,
            3,
            29546,
            824,
            1400,
            1868,
            2,
            19,
            160,
            2,
            311,
            8,
            5496,
            2,
            20920,
            17,
            25,
            15097,
            3,
            24,
            24,
            0,
patrickvonplaten's avatar
patrickvonplaten committed
591
            33,
592
            1,
593
594
595
            142,
            1298,
            188,
patrickvonplaten's avatar
patrickvonplaten committed
596
            2,
597
598
599
600
            29546,
            113,
            8,
            3654,
601
            4,
602
            1,
603
            1109,
604
605
            7136,
            833,
606
            3,
patrickvonplaten's avatar
patrickvonplaten committed
607
            13,
608
            1645,
patrickvonplaten's avatar
patrickvonplaten committed
609
            4,
610
611
612
613
614
615
616
617
            29546,
            11,
            104,
            7,
            1,
            1109,
            532,
            7129,
patrickvonplaten's avatar
patrickvonplaten committed
618
            2,
619
620
            10,
            83507,
patrickvonplaten's avatar
patrickvonplaten committed
621
            2,
622
623
624
625
626
627
628
629
630
631
632
            1162,
            1123,
            2,
            6,
            7245,
            10,
            2,
            5,
            11,
            104,
            7,
patrickvonplaten's avatar
patrickvonplaten committed
633
            1,
634
635
636
637
638
639
640
641
642
643
644
645
646
            1109,
            532,
            7129,
            2,
            10,
            24,
            24,
            10,
            22,
            10,
            13,
            770,
            5863,
patrickvonplaten's avatar
patrickvonplaten committed
647
            4,
648
649
            7245,
            10,
650
        ]
651
652
653
654
655
656
657
658
659
660
661
662
663
        #  In 1991, the remains of Russian Tsar Nicholas II and his family ( except for
        #  Alexei and Maria ) are discovered. The voice of young son, Tsarevich Alexei
        #  Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young
        #  Grigori Rasputin is asked by his father and a group of men to perform magic.
        #  Rasputin has a vision and denounces one of the men as a horse thief. Although
        #  his father initially slaps him for making such an accusation, Rasputin watches
        #  as the man is chased outside and beaten. Twenty years later, Rasputin sees a
        #  vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly
        #  becomes famous, with people, even a bishop, begging for his blessing. In the
        #  early 20th century, Rasputin became a symbol of the Russian Orthodox Church.
        #  The image of Rasputin was used in the Russian national anthem, " Nearer, My God,
        #  to Heaven ", and was used in the Russian national anthem, " " ( " The Great Spirit
        #  of Heaven "
664

patrickvonplaten's avatar
patrickvonplaten committed
665
        output_ids = model.generate(input_ids, max_length=200, do_sample=False)
666
        self.assertListEqual(output_ids[0].tolist(), expected_output_ids)