test_modeling_transfo_xl.py 8.13 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16
17

import random
18
import unittest
thomwolf's avatar
thomwolf committed
19

20
from transformers import is_torch_available
thomwolf's avatar
thomwolf committed
21

22
from .test_configuration_common import ConfigTester
23
from .test_modeling_common import ModelTesterMixin, ids_tensor
Aymeric Augustin's avatar
Aymeric Augustin committed
24
25
26
from .utils import CACHE_DIR, require_torch, slow, torch_device


27
if is_torch_available():
thomwolf's avatar
thomwolf committed
28
    import torch
29
    from transformers import TransfoXLConfig, TransfoXLModel, TransfoXLLMHeadModel
30
    from transformers.modeling_transfo_xl import TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP
thomwolf's avatar
thomwolf committed
31

32
33

@require_torch
34
class TransfoXLModelTest(ModelTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
35

thomwolf's avatar
thomwolf committed
36
    all_model_classes = (TransfoXLModel, TransfoXLLMHeadModel) if is_torch_available() else ()
thomwolf's avatar
thomwolf committed
37
38
39
    test_pruning = False
    test_torchscript = False
    test_resize_embeddings = False
thomwolf's avatar
thomwolf committed
40

thomwolf's avatar
thomwolf committed
41
    class TransfoXLModelTester(object):
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            mem_len=30,
            clamp_len=15,
            is_training=True,
            use_labels=True,
            vocab_size=99,
            cutoffs=[10, 50, 80],
            hidden_size=32,
            d_embed=32,
            num_attention_heads=4,
            d_head=8,
            d_inner=128,
            div_val=2,
            num_hidden_layers=5,
            scope=None,
            seed=1,
        ):
thomwolf's avatar
thomwolf committed
63
64
65
66
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.mem_len = mem_len
thomwolf's avatar
thomwolf committed
67
            self.key_length = seq_length + mem_len
thomwolf's avatar
thomwolf committed
68
69
70
71
72
            self.clamp_len = clamp_len
            self.is_training = is_training
            self.use_labels = use_labels
            self.vocab_size = vocab_size
            self.cutoffs = cutoffs
thomwolf's avatar
thomwolf committed
73
            self.hidden_size = hidden_size
thomwolf's avatar
thomwolf committed
74
            self.d_embed = d_embed
thomwolf's avatar
thomwolf committed
75
            self.num_attention_heads = num_attention_heads
thomwolf's avatar
thomwolf committed
76
77
78
            self.d_head = d_head
            self.d_inner = d_inner
            self.div_val = div_val
thomwolf's avatar
thomwolf committed
79
            self.num_hidden_layers = num_hidden_layers
thomwolf's avatar
thomwolf committed
80
81
82
83
            self.scope = scope
            self.seed = seed

        def prepare_config_and_inputs(self):
thomwolf's avatar
thomwolf committed
84
85
            input_ids_1 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
            input_ids_2 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
thomwolf's avatar
thomwolf committed
86
87
88

            lm_labels = None
            if self.use_labels:
thomwolf's avatar
thomwolf committed
89
                lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
thomwolf's avatar
thomwolf committed
90
91

            config = TransfoXLConfig(
thomwolf's avatar
thomwolf committed
92
                vocab_size=self.vocab_size,
thomwolf's avatar
thomwolf committed
93
94
95
                mem_len=self.mem_len,
                clamp_len=self.clamp_len,
                cutoffs=self.cutoffs,
thomwolf's avatar
thomwolf committed
96
                d_model=self.hidden_size,
thomwolf's avatar
thomwolf committed
97
                d_embed=self.d_embed,
thomwolf's avatar
thomwolf committed
98
                n_head=self.num_attention_heads,
thomwolf's avatar
thomwolf committed
99
100
101
                d_head=self.d_head,
                d_inner=self.d_inner,
                div_val=self.div_val,
102
103
                n_layer=self.num_hidden_layers,
            )
thomwolf's avatar
thomwolf committed
104
105
106
107
108
109
110
111
112

            return (config, input_ids_1, input_ids_2, lm_labels)

        def set_seed(self):
            random.seed(self.seed)
            torch.manual_seed(self.seed)

        def create_transfo_xl_model(self, config, input_ids_1, input_ids_2, lm_labels):
            model = TransfoXLModel(config)
113
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
            model.eval()

            hidden_states_1, mems_1 = model(input_ids_1)
            hidden_states_2, mems_2 = model(input_ids_2, mems_1)
            outputs = {
                "hidden_states_1": hidden_states_1,
                "mems_1": mems_1,
                "hidden_states_2": hidden_states_2,
                "mems_2": mems_2,
            }
            return outputs

        def check_transfo_xl_model_output(self, result):
            self.parent.assertListEqual(
128
129
                list(result["hidden_states_1"].size()), [self.batch_size, self.seq_length, self.hidden_size]
            )
130
            self.parent.assertListEqual(
131
132
                list(result["hidden_states_2"].size()), [self.batch_size, self.seq_length, self.hidden_size]
            )
thomwolf's avatar
thomwolf committed
133
134
            self.parent.assertListEqual(
                list(list(mem.size()) for mem in result["mems_1"]),
135
136
                [[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )
thomwolf's avatar
thomwolf committed
137
138
            self.parent.assertListEqual(
                list(list(mem.size()) for mem in result["mems_2"]),
139
140
                [[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )
thomwolf's avatar
thomwolf committed
141
142
143

        def create_transfo_xl_lm_head(self, config, input_ids_1, input_ids_2, lm_labels):
            model = TransfoXLLMHeadModel(config)
144
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
145
146
            model.eval()

thomwolf's avatar
thomwolf committed
147
148
149
150
            lm_logits_1, mems_1 = model(input_ids_1)
            loss_1, _, mems_1 = model(input_ids_1, labels=lm_labels)
            lm_logits_2, mems_2 = model(input_ids_2, mems=mems_1)
            loss_2, _, mems_2 = model(input_ids_2, labels=lm_labels, mems=mems_1)
thomwolf's avatar
thomwolf committed
151
152
153

            outputs = {
                "loss_1": loss_1,
thomwolf's avatar
thomwolf committed
154
                "mems_1": mems_1,
thomwolf's avatar
thomwolf committed
155
156
                "lm_logits_1": lm_logits_1,
                "loss_2": loss_2,
thomwolf's avatar
thomwolf committed
157
                "mems_2": mems_2,
thomwolf's avatar
thomwolf committed
158
159
160
161
162
                "lm_logits_2": lm_logits_2,
            }
            return outputs

        def check_transfo_xl_lm_head_output(self, result):
163
            self.parent.assertListEqual(list(result["loss_1"].size()), [self.batch_size, self.seq_length])
thomwolf's avatar
thomwolf committed
164
            self.parent.assertListEqual(
165
166
                list(result["lm_logits_1"].size()), [self.batch_size, self.seq_length, self.vocab_size]
            )
thomwolf's avatar
thomwolf committed
167
            self.parent.assertListEqual(
thomwolf's avatar
thomwolf committed
168
                list(list(mem.size()) for mem in result["mems_1"]),
169
170
                [[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )
thomwolf's avatar
thomwolf committed
171

172
            self.parent.assertListEqual(list(result["loss_2"].size()), [self.batch_size, self.seq_length])
thomwolf's avatar
thomwolf committed
173
            self.parent.assertListEqual(
174
175
                list(result["lm_logits_2"].size()), [self.batch_size, self.seq_length, self.vocab_size]
            )
thomwolf's avatar
thomwolf committed
176
            self.parent.assertListEqual(
thomwolf's avatar
thomwolf committed
177
                list(list(mem.size()) for mem in result["mems_2"]),
178
179
                [[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )
thomwolf's avatar
thomwolf committed
180

thomwolf's avatar
thomwolf committed
181
182
183
        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
            (config, input_ids_1, input_ids_2, lm_labels) = config_and_inputs
184
            inputs_dict = {"input_ids": input_ids_1}
thomwolf's avatar
thomwolf committed
185
186
187
188
189
            return config, inputs_dict

    def setUp(self):
        self.model_tester = TransfoXLModelTest.TransfoXLModelTester(self)
        self.config_tester = ConfigTester(self, config_class=TransfoXLConfig, d_embed=37)
thomwolf's avatar
thomwolf committed
190

thomwolf's avatar
thomwolf committed
191
    def test_config(self):
thomwolf's avatar
thomwolf committed
192
193
194
195
196
197
198
199
200
201
202
203
204
        self.config_tester.run_common_tests()

    def test_transfo_xl_model(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        output_result = self.model_tester.create_transfo_xl_model(*config_and_inputs)
        self.model_tester.check_transfo_xl_model_output(output_result)

    def test_transfo_xl_lm_head(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        output_result = self.model_tester.create_transfo_xl_lm_head(*config_and_inputs)
        self.model_tester.check_transfo_xl_lm_head_output(output_result)
205

206
    @slow
207
    def test_model_from_pretrained(self):
208
        for model_name in list(TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
209
            model = TransfoXLModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
210
            self.assertIsNotNone(model)