test_modeling_transfo_xl.py 8.34 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16
17

import random
18
import unittest
thomwolf's avatar
thomwolf committed
19

20
from transformers import is_torch_available
thomwolf's avatar
thomwolf committed
21

22
from .test_configuration_common import ConfigTester
23
from .test_modeling_common import ModelTesterMixin, ids_tensor
Aymeric Augustin's avatar
Aymeric Augustin committed
24
25
26
from .utils import CACHE_DIR, require_torch, slow, torch_device


27
if is_torch_available():
thomwolf's avatar
thomwolf committed
28
    import torch
29
    from transformers import TransfoXLConfig, TransfoXLModel, TransfoXLLMHeadModel
30
    from transformers.modeling_transfo_xl import TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP
thomwolf's avatar
thomwolf committed
31

32
33

@require_torch
34
class TransfoXLModelTest(ModelTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
35

thomwolf's avatar
thomwolf committed
36
    all_model_classes = (TransfoXLModel, TransfoXLLMHeadModel) if is_torch_available() else ()
37
    all_generative_model_classes = (TransfoXLLMHeadModel,) if is_torch_available() else ()
thomwolf's avatar
thomwolf committed
38
39
40
    test_pruning = False
    test_torchscript = False
    test_resize_embeddings = False
thomwolf's avatar
thomwolf committed
41

thomwolf's avatar
thomwolf committed
42
    class TransfoXLModelTester(object):
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            mem_len=30,
            clamp_len=15,
            is_training=True,
            use_labels=True,
            vocab_size=99,
            cutoffs=[10, 50, 80],
            hidden_size=32,
            d_embed=32,
            num_attention_heads=4,
            d_head=8,
            d_inner=128,
            div_val=2,
            num_hidden_layers=5,
            scope=None,
            seed=1,
63
            eos_token_id=0,
64
        ):
thomwolf's avatar
thomwolf committed
65
66
67
68
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.mem_len = mem_len
thomwolf's avatar
thomwolf committed
69
            self.key_length = seq_length + mem_len
thomwolf's avatar
thomwolf committed
70
71
72
73
74
            self.clamp_len = clamp_len
            self.is_training = is_training
            self.use_labels = use_labels
            self.vocab_size = vocab_size
            self.cutoffs = cutoffs
thomwolf's avatar
thomwolf committed
75
            self.hidden_size = hidden_size
thomwolf's avatar
thomwolf committed
76
            self.d_embed = d_embed
thomwolf's avatar
thomwolf committed
77
            self.num_attention_heads = num_attention_heads
thomwolf's avatar
thomwolf committed
78
79
80
            self.d_head = d_head
            self.d_inner = d_inner
            self.div_val = div_val
thomwolf's avatar
thomwolf committed
81
            self.num_hidden_layers = num_hidden_layers
thomwolf's avatar
thomwolf committed
82
83
            self.scope = scope
            self.seed = seed
84
            self.eos_token_id = eos_token_id
thomwolf's avatar
thomwolf committed
85
86

        def prepare_config_and_inputs(self):
thomwolf's avatar
thomwolf committed
87
88
            input_ids_1 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
            input_ids_2 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
thomwolf's avatar
thomwolf committed
89
90
91

            lm_labels = None
            if self.use_labels:
thomwolf's avatar
thomwolf committed
92
                lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
thomwolf's avatar
thomwolf committed
93
94

            config = TransfoXLConfig(
thomwolf's avatar
thomwolf committed
95
                vocab_size=self.vocab_size,
thomwolf's avatar
thomwolf committed
96
97
98
                mem_len=self.mem_len,
                clamp_len=self.clamp_len,
                cutoffs=self.cutoffs,
thomwolf's avatar
thomwolf committed
99
                d_model=self.hidden_size,
thomwolf's avatar
thomwolf committed
100
                d_embed=self.d_embed,
thomwolf's avatar
thomwolf committed
101
                n_head=self.num_attention_heads,
thomwolf's avatar
thomwolf committed
102
103
104
                d_head=self.d_head,
                d_inner=self.d_inner,
                div_val=self.div_val,
105
                n_layer=self.num_hidden_layers,
106
                eos_token_ids=self.eos_token_id,
107
            )
thomwolf's avatar
thomwolf committed
108
109
110
111
112
113
114
115
116

            return (config, input_ids_1, input_ids_2, lm_labels)

        def set_seed(self):
            random.seed(self.seed)
            torch.manual_seed(self.seed)

        def create_transfo_xl_model(self, config, input_ids_1, input_ids_2, lm_labels):
            model = TransfoXLModel(config)
117
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
            model.eval()

            hidden_states_1, mems_1 = model(input_ids_1)
            hidden_states_2, mems_2 = model(input_ids_2, mems_1)
            outputs = {
                "hidden_states_1": hidden_states_1,
                "mems_1": mems_1,
                "hidden_states_2": hidden_states_2,
                "mems_2": mems_2,
            }
            return outputs

        def check_transfo_xl_model_output(self, result):
            self.parent.assertListEqual(
132
133
                list(result["hidden_states_1"].size()), [self.batch_size, self.seq_length, self.hidden_size]
            )
134
            self.parent.assertListEqual(
135
136
                list(result["hidden_states_2"].size()), [self.batch_size, self.seq_length, self.hidden_size]
            )
thomwolf's avatar
thomwolf committed
137
138
            self.parent.assertListEqual(
                list(list(mem.size()) for mem in result["mems_1"]),
139
140
                [[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )
thomwolf's avatar
thomwolf committed
141
142
            self.parent.assertListEqual(
                list(list(mem.size()) for mem in result["mems_2"]),
143
144
                [[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )
thomwolf's avatar
thomwolf committed
145
146
147

        def create_transfo_xl_lm_head(self, config, input_ids_1, input_ids_2, lm_labels):
            model = TransfoXLLMHeadModel(config)
148
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
149
150
            model.eval()

thomwolf's avatar
thomwolf committed
151
152
153
154
            lm_logits_1, mems_1 = model(input_ids_1)
            loss_1, _, mems_1 = model(input_ids_1, labels=lm_labels)
            lm_logits_2, mems_2 = model(input_ids_2, mems=mems_1)
            loss_2, _, mems_2 = model(input_ids_2, labels=lm_labels, mems=mems_1)
thomwolf's avatar
thomwolf committed
155
156
157

            outputs = {
                "loss_1": loss_1,
thomwolf's avatar
thomwolf committed
158
                "mems_1": mems_1,
thomwolf's avatar
thomwolf committed
159
160
                "lm_logits_1": lm_logits_1,
                "loss_2": loss_2,
thomwolf's avatar
thomwolf committed
161
                "mems_2": mems_2,
thomwolf's avatar
thomwolf committed
162
163
164
165
166
                "lm_logits_2": lm_logits_2,
            }
            return outputs

        def check_transfo_xl_lm_head_output(self, result):
167
            self.parent.assertListEqual(list(result["loss_1"].size()), [self.batch_size, self.seq_length])
thomwolf's avatar
thomwolf committed
168
            self.parent.assertListEqual(
169
170
                list(result["lm_logits_1"].size()), [self.batch_size, self.seq_length, self.vocab_size]
            )
thomwolf's avatar
thomwolf committed
171
            self.parent.assertListEqual(
thomwolf's avatar
thomwolf committed
172
                list(list(mem.size()) for mem in result["mems_1"]),
173
174
                [[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )
thomwolf's avatar
thomwolf committed
175

176
            self.parent.assertListEqual(list(result["loss_2"].size()), [self.batch_size, self.seq_length])
thomwolf's avatar
thomwolf committed
177
            self.parent.assertListEqual(
178
179
                list(result["lm_logits_2"].size()), [self.batch_size, self.seq_length, self.vocab_size]
            )
thomwolf's avatar
thomwolf committed
180
            self.parent.assertListEqual(
thomwolf's avatar
thomwolf committed
181
                list(list(mem.size()) for mem in result["mems_2"]),
182
183
                [[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )
thomwolf's avatar
thomwolf committed
184

thomwolf's avatar
thomwolf committed
185
186
187
        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
            (config, input_ids_1, input_ids_2, lm_labels) = config_and_inputs
188
            inputs_dict = {"input_ids": input_ids_1}
thomwolf's avatar
thomwolf committed
189
190
191
192
193
            return config, inputs_dict

    def setUp(self):
        self.model_tester = TransfoXLModelTest.TransfoXLModelTester(self)
        self.config_tester = ConfigTester(self, config_class=TransfoXLConfig, d_embed=37)
thomwolf's avatar
thomwolf committed
194

thomwolf's avatar
thomwolf committed
195
    def test_config(self):
thomwolf's avatar
thomwolf committed
196
197
198
199
200
201
202
203
204
205
206
207
208
        self.config_tester.run_common_tests()

    def test_transfo_xl_model(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        output_result = self.model_tester.create_transfo_xl_model(*config_and_inputs)
        self.model_tester.check_transfo_xl_model_output(output_result)

    def test_transfo_xl_lm_head(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        output_result = self.model_tester.create_transfo_xl_lm_head(*config_and_inputs)
        self.model_tester.check_transfo_xl_lm_head_output(output_result)
209

210
    @slow
211
    def test_model_from_pretrained(self):
212
        for model_name in list(TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
213
            model = TransfoXLModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
214
            self.assertIsNotNone(model)