utils.py 199 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2020 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team.
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

17
import copy
18
19
20
import inspect
import warnings
from dataclasses import dataclass
21
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
22
23
24
25
26

import torch
import torch.distributed as dist
from torch import nn

27
from ..cache_utils import Cache, DynamicCache, StaticCache
28
from ..integrations.deepspeed import is_deepspeed_zero3_enabled
29
30
31
32
33
34
35
36
from ..modeling_outputs import CausalLMOutputWithPast, Seq2SeqLMOutput
from ..models.auto import (
    MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING,
    MODEL_FOR_CAUSAL_LM_MAPPING,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
    MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING,
    MODEL_FOR_VISION_2_SEQ_MAPPING,
)
37
from ..utils import ModelOutput, is_accelerate_available, is_torchdynamo_compiling, logging
38
from .beam_constraints import DisjunctiveConstraint, PhrasalConstraint
39
from .beam_search import BeamScorer, BeamSearchScorer, ConstrainedBeamSearchScorer
40
41
42
from .candidate_generator import (
    AssistedCandidateGenerator,
    CandidateGenerator,
43
    PromptLookupCandidateGenerator,
44
45
46
47
    _crop_past_key_values,
    _prepare_attention_mask,
    _prepare_token_type_ids,
)
48
from .configuration_utils import GenerationConfig, GenerationMode
49
50
from .logits_process import (
    EncoderNoRepeatNGramLogitsProcessor,
Karim Foda's avatar
Karim Foda committed
51
    EncoderRepetitionPenaltyLogitsProcessor,
52
53
    EpsilonLogitsWarper,
    EtaLogitsWarper,
54
55
56
57
58
59
60
61
62
    ExponentialDecayLengthPenalty,
    ForcedBOSTokenLogitsProcessor,
    ForcedEOSTokenLogitsProcessor,
    ForceTokensLogitsProcessor,
    HammingDiversityLogitsProcessor,
    InfNanRemoveLogitsProcessor,
    LogitNormalization,
    LogitsProcessorList,
    MinLengthLogitsProcessor,
63
    MinNewTokensLengthLogitsProcessor,
64
    MinPLogitsWarper,
65
66
67
68
    NoBadWordsLogitsProcessor,
    NoRepeatNGramLogitsProcessor,
    PrefixConstrainedLogitsProcessor,
    RepetitionPenaltyLogitsProcessor,
69
    SequenceBiasLogitsProcessor,
70
71
72
73
74
75
    SuppressTokensAtBeginLogitsProcessor,
    SuppressTokensLogitsProcessor,
    TemperatureLogitsWarper,
    TopKLogitsWarper,
    TopPLogitsWarper,
    TypicalLogitsWarper,
76
    UnbatchedClassifierFreeGuidanceLogitsProcessor,
77
    WatermarkLogitsProcessor,
78
79
)
from .stopping_criteria import (
80
    EosTokenCriteria,
81
82
83
84
    MaxLengthCriteria,
    MaxTimeCriteria,
    StoppingCriteria,
    StoppingCriteriaList,
85
    StopStringCriteria,
86
87
88
)


89
if TYPE_CHECKING:
90
    from ..modeling_utils import PreTrainedModel
91
    from ..tokenization_utils_base import PreTrainedTokenizerBase
92
93
    from .streamers import BaseStreamer

94
95
logger = logging.get_logger(__name__)

Marc Sun's avatar
Marc Sun committed
96
97
98
if is_accelerate_available():
    from accelerate.hooks import AlignDevicesHook, add_hook_to_module

99
100
101
102
NEED_SETUP_CACHE_CLASSES_MAPPING = {
    "static": StaticCache,
}

103
104

@dataclass
105
class GenerateDecoderOnlyOutput(ModelOutput):
106
    """
107
    Outputs of decoder-only generation models, when using non-beam methods.
108
109
110
111
112
113
114
115
116

    Args:
        sequences (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
            each generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
117
118
119
120
        logits (`tuple(torch.FloatTensor)` *optional*, returned when `output_logits=True` is passed or when `config.output_logits=True`):
            Unprocessed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
            each generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
121
122
123
124
125
126
        attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
        hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, generated_length, hidden_size)`.
127
128
129
130
131
132
133
        past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            NOTE: some models have a different `past_key_values` format, confirm with the model's documentation.
            Usually a Tuple (one element for each layer of the decoder) of tuples (two elements, key tensor and value
            tensor). The first Tuple is of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
            `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
            encoder_sequence_length, embed_size_per_head)`.
134
135
136
137
    """

    sequences: torch.LongTensor = None
    scores: Optional[Tuple[torch.FloatTensor]] = None
138
    logits: Optional[Tuple[torch.FloatTensor]] = None
139
140
    attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
141
    past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
142
143
144


@dataclass
145
class GenerateEncoderDecoderOutput(ModelOutput):
146
    """
147
    Outputs of encoder-decoder generation models, when using non-beam methods.
148
149

    Args:
150
        sequences (`torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`):
151
152
153
154
155
156
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
            each generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
157
158
159
160
        logits (`tuple(torch.FloatTensor)` *optional*, returned when `output_logits=True` is passed or when `config.output_logits=True`):
            Unprocessed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
            each generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
        encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer of the decoder) of shape `(batch_size, num_heads,
            sequence_length, sequence_length)`.
        encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`.
        decoder_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
        cross_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
        decoder_hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, generated_length, hidden_size)`.
176
177
178
179
180
181
182
        past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            NOTE: some models have a different `past_key_values` format, confirm with the model's documentation.
            Usually a Tuple (one element for each layer of the decoder) of tuples (two elements, key tensor and value
            tensor). The first Tuple is of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
            `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
            encoder_sequence_length, embed_size_per_head)`.
183
184
185
186
    """

    sequences: torch.LongTensor = None
    scores: Optional[Tuple[torch.FloatTensor]] = None
187
    logits: Optional[Tuple[torch.FloatTensor]] = None
188
189
190
191
192
    encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
    encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    decoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    cross_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    decoder_hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
193
    past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
194
195
196


@dataclass
197
class GenerateBeamDecoderOnlyOutput(ModelOutput):
198
    """
199
    Outputs of decoder-only generation models, when using beam methods.
200
201
202
203
204
205
206
207
208
209
210

    Args:
        sequences (`torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        sequences_scores (`torch.FloatTensor` of shape `(batch_size*num_return_sequences)`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Final beam scores of the generated `sequences`.
        scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Beam transition scores for each vocabulary token at each generation step. Beam transition scores consisting
            of log probabilities of tokens conditioned on log softmax of previously generated tokens in this beam.
            Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token),
211
            with each tensor of shape `(batch_size*num_beams, config.vocab_size)`.
212
213
214
215
        logits (`tuple(torch.FloatTensor)` *optional*, returned when `output_logits=True` is passed or when `config.output_logits=True`):
            Unprocessed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
            each generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
216
        beam_indices (`torch.LongTensor`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
217
            Beam indices of generated token id at each generation step. `torch.LongTensor` of shape
218
            `(batch_size*num_return_sequences, sequence_length)`.
219
220
221
222
223
224
        attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size*num_beams, num_heads, generated_length, sequence_length)`.
        hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size*num_beams*num_return_sequences, generated_length, hidden_size)`.
225
226
227
228
229
230
231
        past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            NOTE: some models have a different `past_key_values` format, confirm with the model's documentation.
            Usually a Tuple (one element for each layer of the decoder) of tuples (two elements, key tensor and value
            tensor). The first Tuple is of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
            `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
            encoder_sequence_length, embed_size_per_head)`.
232
233
234
235
236
    """

    sequences: torch.LongTensor = None
    sequences_scores: Optional[torch.FloatTensor] = None
    scores: Optional[Tuple[torch.FloatTensor]] = None
237
    logits: Optional[Tuple[torch.FloatTensor]] = None
238
239
240
    beam_indices: Optional[torch.LongTensor] = None
    attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
241
    past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
242
243
244


@dataclass
245
class GenerateBeamEncoderDecoderOutput(ModelOutput):
246
    """
247
    Outputs of encoder-decoder generation models, when using beam methods.
248
249
250
251
252
253
254
255
256
257
258
259

    Args:
        sequences (`torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        sequences_scores (`torch.FloatTensor` of shape `(batch_size*num_return_sequences)`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Final beam scores of the generated `sequences`.
        scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Beam transition scores for each vocabulary token at each generation step. Beam transition scores consisting
            of log probabilities of tokens conditioned on log softmax of previously generated tokens in this beam.
            Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token),
            with each tensor of shape `(batch_size*num_beams, config.vocab_size)`.
260
261
262
263
        logits (`tuple(torch.FloatTensor)` *optional*, returned when `output_logits=True` is passed or when `config.output_logits=True`):
            Unprocessed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
            each generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
264
        beam_indices (`torch.LongTensor`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
265
            Beam indices of generated token id at each generation step. `torch.LongTensor` of shape
266
            `(batch_size*num_return_sequences, sequence_length)`.
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
        encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer of the decoder) of shape `(batch_size, num_heads,
            sequence_length, sequence_length)`.
        encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size*num_beams*num_return_sequences, sequence_length, hidden_size)`.
        decoder_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size*num_beams*num_return_sequences, num_heads, generated_length,
            sequence_length)`.
        cross_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
        decoder_hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `torch.FloatTensor` of shape `(batch_size*num_beams*num_return_sequences, generated_length, hidden_size)`.
283
284
285
286
287
288
289
        past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            NOTE: some models have a different `past_key_values` format, confirm with the model's documentation.
            Usually a Tuple (one element for each layer of the decoder) of tuples (two elements, key tensor and value
            tensor). The first Tuple is of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
            `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
            encoder_sequence_length, embed_size_per_head)`.
290
291
292
293
294
    """

    sequences: torch.LongTensor = None
    sequences_scores: Optional[torch.FloatTensor] = None
    scores: Optional[Tuple[torch.FloatTensor]] = None
295
    logits: Optional[Tuple[torch.FloatTensor]] = None
296
297
298
299
300
301
    beam_indices: Optional[torch.LongTensor] = None
    encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
    encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    decoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    cross_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    decoder_hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
302
    past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
303
304


305
306
307
308
# Equivalent classes (kept for retrocompatibility purposes)
GreedySearchDecoderOnlyOutput = GenerateDecoderOnlyOutput
ContrastiveSearchDecoderOnlyOutput = GenerateDecoderOnlyOutput
SampleDecoderOnlyOutput = GenerateDecoderOnlyOutput
309

310
311
312
ContrastiveSearchEncoderDecoderOutput = GenerateEncoderDecoderOutput
GreedySearchEncoderDecoderOutput = GenerateEncoderDecoderOutput
SampleEncoderDecoderOutput = GenerateEncoderDecoderOutput
313

314
315
BeamSearchDecoderOnlyOutput = GenerateBeamDecoderOnlyOutput
BeamSampleDecoderOnlyOutput = GenerateBeamDecoderOnlyOutput
316

317
318
BeamSearchEncoderDecoderOutput = GenerateBeamEncoderDecoderOutput
BeamSampleEncoderDecoderOutput = GenerateBeamEncoderDecoderOutput
319

320
321
322
323
324
GreedySearchOutput = Union[GreedySearchEncoderDecoderOutput, GreedySearchDecoderOnlyOutput]
SampleOutput = Union[SampleEncoderDecoderOutput, SampleDecoderOnlyOutput]
BeamSearchOutput = Union[BeamSearchEncoderDecoderOutput, BeamSearchDecoderOnlyOutput]
BeamSampleOutput = Union[BeamSampleEncoderDecoderOutput, BeamSampleDecoderOnlyOutput]
ContrastiveSearchOutput = Union[ContrastiveSearchEncoderDecoderOutput, ContrastiveSearchDecoderOnlyOutput]
325

326
327
328
329
# Typing shortcuts
GenerateNonBeamOutput = Union[GenerateDecoderOnlyOutput, GenerateEncoderDecoderOutput]
GenerateBeamOutput = Union[GenerateBeamDecoderOnlyOutput, GenerateBeamEncoderDecoderOutput]
GenerateOutput = Union[GenerateNonBeamOutput, GenerateBeamOutput]
330
331
332
333
334
335
336


class GenerationMixin:
    """
    A class containing all functions for auto-regressive text generation, to be used as a mixin in [`PreTrainedModel`].

    The class exposes [`~generation.GenerationMixin.generate`], which can be used for:
337
338
339
340
341
342
343
344
345
346
        - *greedy decoding* if `num_beams=1` and `do_sample=False`
        - *contrastive search* if `penalty_alpha>0` and `top_k>1`
        - *multinomial sampling* if `num_beams=1` and `do_sample=True`
        - *beam-search decoding* if `num_beams>1` and `do_sample=False`
        - *beam-search multinomial sampling* if `num_beams>1` and `do_sample=True`
        - *diverse beam-search decoding* if `num_beams>1` and `num_beam_groups>1`
        - *constrained beam-search decoding* if `constraints!=None` or `force_words_ids!=None`
        - *assisted decoding* if `assistant_model` or `prompt_lookup_num_tokens` is passed to `.generate()`

    To learn more about decoding strategies refer to the [text generation strategies guide](../generation_strategies).
347
348
    """

349
350
    def prepare_inputs_for_generation(self, *args, **kwargs):
        raise NotImplementedError(
351
            "A model class needs to define a `prepare_inputs_for_generation` method in order to use `.generate()`."
352
353
        )

354
355
356
    def _prepare_model_inputs(
        self,
        inputs: Optional[torch.Tensor] = None,
357
        bos_token_id: Optional[torch.Tensor] = None,
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
        model_kwargs: Optional[Dict[str, torch.Tensor]] = None,
    ) -> Tuple[torch.Tensor, Optional[str], Dict[str, torch.Tensor]]:
        """
        This function extracts the model-specific `inputs` for generation.
        """
        # 1. retrieve all kwargs that are non-None or non-model input related.
        # some encoder-decoder models have different names for model and encoder
        if (
            self.config.is_encoder_decoder
            and hasattr(self, "encoder")
            and self.encoder.main_input_name != self.main_input_name
        ):
            input_name = self.encoder.main_input_name
        else:
            input_name = self.main_input_name

        model_kwargs = {k: v for k, v in model_kwargs.items() if v is not None or k != input_name}

        # 2. check whether model_input_name is passed as kwarg
        # if yes and `inputs` is None use kwarg inputs
        inputs_kwarg = model_kwargs.pop(input_name, None)
        if inputs_kwarg is not None and inputs is not None:
            raise ValueError(
381
                f"`inputs`: {inputs}` were passed alongside {input_name} which is not allowed. "
382
383
384
385
386
                f"Make sure to either pass {inputs} or {input_name}=..."
            )
        elif inputs_kwarg is not None:
            inputs = inputs_kwarg

387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
        # 3. In the presence of `inputs_embeds` for text models:
        # - decoder-only models should complain if the user attempts to pass `inputs_embeds`, but the model
        # doesn't have its forwarding implemented. `inputs_embeds` is kept in `model_kwargs` and can coexist with
        # input_ids (`inputs_embeds` will be used in the 1st generation step, as opposed to `input_ids`)
        # - encoder-decoder models should complain if the user attempts to pass `inputs_embeds` and `input_ids`, and
        # pull the former to inputs. It will be used in place of `input_ids` to get the encoder hidden states.
        if input_name == "input_ids" and "inputs_embeds" in model_kwargs:
            if not self.config.is_encoder_decoder:
                has_inputs_embeds_forwarding = "inputs_embeds" in set(
                    inspect.signature(self.prepare_inputs_for_generation).parameters.keys()
                )
                if not has_inputs_embeds_forwarding:
                    raise ValueError(
                        f"You passed `inputs_embeds` to `.generate()`, but the model class {self.__class__.__name__} "
                        "doesn't have its forwarding implemented. See the GPT2 implementation for an example "
                        "(https://github.com/huggingface/transformers/pull/21405), and feel free to open a PR with it!"
                    )
404
405
406
                # In this case, `input_ids` is moved to the `model_kwargs`, so a few automations (like the creation of
                # the attention mask) can rely on the actual model input.
                model_kwargs["input_ids"] = self._maybe_initialize_input_ids_for_generation(
407
                    inputs, bos_token_id, model_kwargs=model_kwargs
408
                )
409
410
411
            else:
                if inputs is not None:
                    raise ValueError("You passed `inputs_embeds` and `input_ids` to `.generate()`. Please pick one.")
412
            inputs, input_name = model_kwargs["inputs_embeds"], "inputs_embeds"
413
414

        # 4. if `inputs` is still None, try to create `input_ids` from BOS token
415
        inputs = self._maybe_initialize_input_ids_for_generation(inputs, bos_token_id, model_kwargs)
416
417
        return inputs, input_name, model_kwargs

418
419
420
    def _maybe_initialize_input_ids_for_generation(
        self,
        inputs: Optional[torch.Tensor] = None,
421
        bos_token_id: Optional[torch.Tensor] = None,
422
        model_kwargs: Optional[Dict[str, torch.Tensor]] = None,
423
    ) -> torch.LongTensor:
424
425
426
427
        """Initializes input ids for generation, if necessary."""
        if inputs is not None:
            return inputs

428
        encoder_outputs = model_kwargs.get("encoder_outputs")
429
430
431
432
433
        if self.config.is_encoder_decoder and encoder_outputs is not None:
            # make dummy input_ids with value -100, as a sanity check ensuring that they won't be used for encoding
            shape = encoder_outputs.last_hidden_state.size()[:-1]
            return torch.ones(shape, dtype=torch.long, device=self.device) * -100

434
435
436
437
438
439
440
        # If there is some tensor in `model_kwargs`, we can infer the batch size from it. This is helpful with
        # soft-prompting or in multimodal implementations built on top of decoder-only language models.
        batch_size = 1
        for value in model_kwargs.values():
            if isinstance(value, torch.Tensor):
                batch_size = value.shape[0]
                break
441
442
443

        if "inputs_embeds" in model_kwargs:
            return torch.ones((batch_size, 0), dtype=torch.long, device=self.device)
444
445
446
447

        if bos_token_id is None:
            raise ValueError("`bos_token_id` has to be defined when no `input_ids` are provided.")

448
        return torch.ones((batch_size, 1), dtype=torch.long, device=self.device) * bos_token_id
449
450
451
452

    def _prepare_attention_mask_for_generation(
        self,
        inputs: torch.Tensor,
453
454
        pad_token_id: Optional[torch.Tensor],
        eos_token_id: Optional[torch.Tensor],
455
    ) -> torch.LongTensor:
456
457
458
459
460
        # No information for attention mask inference -> return default attention mask
        default_attention_mask = torch.ones(inputs.shape[:2], dtype=torch.long, device=inputs.device)
        if pad_token_id is None:
            return default_attention_mask

461
        is_input_ids = len(inputs.shape) == 2 and inputs.dtype in [torch.int, torch.long]
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
        if not is_input_ids:
            return default_attention_mask

        # Otherwise we have may have information -> try to infer the attention mask
        if inputs.device.type == "mps":
            # mps does not support torch.isin (https://github.com/pytorch/pytorch/issues/77764)
            raise ValueError(
                "Can't infer missing attention mask on `mps` device. Please provide an `attention_mask` or use a different device."
            )

        is_pad_token_in_inputs = (pad_token_id is not None) and (
            torch.isin(elements=inputs, test_elements=pad_token_id).any()
        )
        is_pad_token_not_equal_to_eos_token_id = (eos_token_id is None) or ~(
            torch.isin(elements=eos_token_id, test_elements=pad_token_id).any()
        )
        can_infer_attention_mask = is_pad_token_in_inputs * is_pad_token_not_equal_to_eos_token_id
        attention_mask_from_padding = inputs.ne(pad_token_id).long()
480

481
482
483
484
        attention_mask = (
            attention_mask_from_padding * can_infer_attention_mask + default_attention_mask * ~can_infer_attention_mask
        )
        return attention_mask
485
486

    def _prepare_encoder_decoder_kwargs_for_generation(
487
488
489
490
491
        self,
        inputs_tensor: torch.Tensor,
        model_kwargs,
        model_input_name: Optional[str],
        generation_config: GenerationConfig,
492
493
494
    ) -> Dict[str, Any]:
        # 1. get encoder
        encoder = self.get_encoder()
495
496
        # Compatibility with Accelerate big model inference: we need the encoder to outputs stuff on the same device
        # as the inputs.
Marc Sun's avatar
Marc Sun committed
497
498
499
500
501
        if hasattr(self, "hf_device_map"):
            if hasattr(encoder, "_hf_hook"):
                encoder._hf_hook.io_same_device = True
            else:
                add_hook_to_module(encoder, AlignDevicesHook(io_same_device=True))
502

503
        # 2. Prepare encoder args and encoder kwargs from model kwargs and generation config.
504
505
506
507
508
509
        irrelevant_prefix = ["decoder_", "cross_attn", "use_cache"]
        encoder_kwargs = {
            argument: value
            for argument, value in model_kwargs.items()
            if not any(argument.startswith(p) for p in irrelevant_prefix)
        }
510
511
512
513
514
515
        encoder_signature = set(inspect.signature(encoder.forward).parameters)
        encoder_accepts_wildcard = "kwargs" in encoder_signature or "model_kwargs" in encoder_signature
        if not encoder_accepts_wildcard:
            encoder_kwargs = {
                argument: value for argument, value in encoder_kwargs.items() if argument in encoder_signature
            }
516
517
        encoder_kwargs["output_attentions"] = generation_config.output_attentions
        encoder_kwargs["output_hidden_states"] = generation_config.output_hidden_states
518
519
520
521
522
523
524
525
526
527
528
529

        # 3. make sure that encoder returns `ModelOutput`
        model_input_name = model_input_name if model_input_name is not None else self.main_input_name
        encoder_kwargs["return_dict"] = True
        encoder_kwargs[model_input_name] = inputs_tensor
        model_kwargs["encoder_outputs"]: ModelOutput = encoder(**encoder_kwargs)

        return model_kwargs

    def _prepare_decoder_input_ids_for_generation(
        self,
        batch_size: int,
530
531
        model_input_name: str,
        model_kwargs: Dict[str, torch.Tensor],
532
        decoder_start_token_id: torch.Tensor,
533
        device: torch.device = None,
534
535
536
537
    ) -> Tuple[torch.LongTensor, Dict[str, torch.Tensor]]:
        """Prepares `decoder_input_ids` for generation with encoder-decoder models"""
        # 1. Check whether the user has defined `decoder_input_ids` manually. To facilitate in terms of input naming,
        # we also allow the user to pass it under `input_ids`, if the encoder does not use it as the main input.
538
        if model_kwargs is not None and "decoder_input_ids" in model_kwargs:
539
540
541
            decoder_input_ids = model_kwargs.pop("decoder_input_ids")
        elif "input_ids" in model_kwargs and model_input_name != "input_ids":
            decoder_input_ids = model_kwargs.pop("input_ids")
542
        else:
543
544
            decoder_input_ids = None

545
        # 2. `decoder_start_token_id` must have shape (batch_size, 1)
546
547
        if device is None:
            device = self.device
548
549
        if decoder_start_token_id.ndim == 1:
            if decoder_start_token_id.shape[0] != batch_size:
550
                raise ValueError(
551
                    f"`decoder_start_token_id` expected to have length {batch_size} but got {decoder_start_token_id.shape[0]}"
552
                )
553
            decoder_start_token_id = decoder_start_token_id.view(-1, 1)
554
        else:
555
            decoder_start_token_id = (
556
557
                torch.ones((batch_size, 1), dtype=torch.long, device=device) * decoder_start_token_id
            )
558

559
        # 3. Encoder-decoder models expect the `decoder_input_ids` to start with a special token. Let's ensure that.
560
561
        # no user input -> use decoder_start_token_id as decoder_input_ids
        if decoder_input_ids is None:
562
            decoder_input_ids = decoder_start_token_id
563
564
565
        # exception: Donut checkpoints have task-specific decoder starts and don't expect a BOS token
        elif self.config.model_type == "vision-encoder-decoder" and "donut" in self.name_or_path.lower():
            pass
566
567
        elif self.config.model_type in ["whisper"]:
            pass
568
569
        # user input but doesn't start with decoder_start_token_id -> prepend decoder_start_token_id (and adjust
        # decoder_attention_mask if provided)
570
571
        elif (decoder_input_ids[:, 0] != decoder_start_token_id[:, 0]).all().item():
            decoder_input_ids = torch.cat([decoder_start_token_id, decoder_input_ids], dim=-1)
572
573
574
575
576
577
578
579
580
            if "decoder_attention_mask" in model_kwargs:
                decoder_attention_mask = model_kwargs["decoder_attention_mask"]
                decoder_attention_mask = torch.cat(
                    (torch.ones_like(decoder_attention_mask)[:, :1], decoder_attention_mask),
                    dim=-1,
                )
                model_kwargs["decoder_attention_mask"] = decoder_attention_mask

        return decoder_input_ids, model_kwargs
581
582
583
584
585
586
587
588
589

    @staticmethod
    def _expand_inputs_for_generation(
        expand_size: int = 1,
        is_encoder_decoder: bool = False,
        input_ids: Optional[torch.LongTensor] = None,
        **model_kwargs,
    ) -> Tuple[torch.LongTensor, Dict[str, Any]]:
        """Expands tensors from [batch_size, ...] to [batch_size * expand_size, ...]"""
590
591
592

        def _expand_dict_for_generation(dict_to_expand):
            for key in dict_to_expand:
tomeras91's avatar
tomeras91 committed
593
594
595
596
597
                if (
                    key != "cache_position"
                    and dict_to_expand[key] is not None
                    and isinstance(dict_to_expand[key], torch.Tensor)
                ):
598
599
600
                    dict_to_expand[key] = dict_to_expand[key].repeat_interleave(expand_size, dim=0)
            return dict_to_expand

601
602
603
        if input_ids is not None:
            input_ids = input_ids.repeat_interleave(expand_size, dim=0)

604
        model_kwargs = _expand_dict_for_generation(model_kwargs)
605
606

        if is_encoder_decoder:
607
            if model_kwargs.get("encoder_outputs") is None:
608
                raise ValueError("If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined.")
609
            model_kwargs["encoder_outputs"] = _expand_dict_for_generation(model_kwargs["encoder_outputs"])
610
611
612

        return input_ids, model_kwargs

613
    def _extract_past_from_model_output(self, outputs: ModelOutput, standardize_cache_format: bool = False):
614
        past_key_values = None
615
        if "past_key_values" in outputs:
616
            past_key_values = outputs.past_key_values
617
        elif "mems" in outputs:
618
            past_key_values = outputs.mems
619
        elif "past_buckets_states" in outputs:
620
            past_key_values = outputs.past_buckets_states
621
622
623
624

        # Bloom fix: standardizes the cache format when requested
        if standardize_cache_format and hasattr(self, "_convert_to_standard_cache"):
            batch_size = outputs.logits.shape[0]
625
626
            past_key_values = self._convert_to_standard_cache(past_key_values, batch_size=batch_size)
        return past_key_values
627
628

    def _update_model_kwargs_for_generation(
629
630
631
632
633
        self,
        outputs: ModelOutput,
        model_kwargs: Dict[str, Any],
        is_encoder_decoder: bool = False,
        standardize_cache_format: bool = False,
634
        num_new_tokens: int = 1,
635
    ) -> Dict[str, Any]:
636
637
        # update past_key_values
        model_kwargs["past_key_values"] = self._extract_past_from_model_output(
638
639
            outputs, standardize_cache_format=standardize_cache_format
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
640
641
        if getattr(outputs, "state", None) is not None:
            model_kwargs["state"] = outputs.state
642
643
644
645
646
647
648

        # update token_type_ids with last value
        if "token_type_ids" in model_kwargs:
            token_type_ids = model_kwargs["token_type_ids"]
            model_kwargs["token_type_ids"] = torch.cat([token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1)

        if not is_encoder_decoder:
649
            # update attention mask
650
651
652
653
654
            if "attention_mask" in model_kwargs:
                attention_mask = model_kwargs["attention_mask"]
                model_kwargs["attention_mask"] = torch.cat(
                    [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
                )
655
656
657
658
659
660
661
662
        else:
            # update decoder attention mask
            if "decoder_attention_mask" in model_kwargs:
                decoder_attention_mask = model_kwargs["decoder_attention_mask"]
                model_kwargs["decoder_attention_mask"] = torch.cat(
                    [decoder_attention_mask, decoder_attention_mask.new_ones((decoder_attention_mask.shape[0], 1))],
                    dim=-1,
                )
663

664
665
666
667
668
        if (
            model_kwargs.get("use_cache", True)
            and "cache_position" in model_kwargs
            and model_kwargs["cache_position"] is not None
        ):
669
            model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + num_new_tokens
670

671
672
        return model_kwargs

673
    def _reorder_cache(self, past_key_values, beam_idx):
674
675
676
677
678
        raise NotImplementedError(
            f"Make sure that a `_reorder_cache` function is correctly implemented in {self.__class__.__module__} to"
            f" enable beam search for {self.__class__}"
        )

679
680
681
682
683
684
685
686
687
688
689
690
    def _get_candidate_generator(
        self,
        generation_config: GenerationConfig,
        input_ids: torch.LongTensor,
        inputs_tensor: torch.Tensor,
        assistant_model: "PreTrainedModel",
        logits_processor: LogitsProcessorList,
        model_kwargs: Dict,
    ) -> CandidateGenerator:
        """
        Returns the candidate generator to be used in `assisted_generation`
        """
691
692
693
        if generation_config.prompt_lookup_num_tokens is not None:
            candidate_generator = PromptLookupCandidateGenerator(
                num_output_tokens=generation_config.prompt_lookup_num_tokens,
694
                max_matching_ngram_size=generation_config.max_matching_ngram_size,
695
                max_length=generation_config.max_length,
696
697
698
699
700
701
702
703
            )
        else:
            candidate_generator = AssistedCandidateGenerator(
                input_ids=input_ids,
                assistant_model=assistant_model,
                generation_config=generation_config,
                model_kwargs=model_kwargs,
                inputs_tensor=inputs_tensor,
704
                logits_processor=logits_processor,
705
            )
706
707
        return candidate_generator

708
709
    def _get_logits_warper(
        self,
710
        generation_config: GenerationConfig,
711
712
713
714
715
716
717
718
719
    ) -> LogitsProcessorList:
        """
        This class returns a [`LogitsProcessorList`] list object that contains all relevant [`LogitsWarper`] instances
        used for multinomial sampling.
        """

        # instantiate warpers list
        warpers = LogitsProcessorList()

720
721
722
723
724
        # In beam methods, we need to keep at least one non-eos token to explore continuations that might have a
        # better score (i.e. keep len(list(generation_config.eos_token_id)) + 1)
        if generation_config.num_beams > 1:
            if isinstance(generation_config.eos_token_id, list):
                min_tokens_to_keep = len(generation_config.eos_token_id) + 1
725
726
            elif isinstance(generation_config.eos_token_id, torch.Tensor):
                min_tokens_to_keep = generation_config.eos_token_id.shape[0] + 1
727
728
729
730
731
            else:
                min_tokens_to_keep = 2
        else:
            min_tokens_to_keep = 1

732
733
        # the following idea is largely copied from this PR: https://github.com/huggingface/transformers/pull/5420/files
        # all samplers can be found in `generation_utils_samplers.py`
734
735
736
        if generation_config.temperature is not None and generation_config.temperature != 1.0:
            warpers.append(TemperatureLogitsWarper(generation_config.temperature))
        if generation_config.top_k is not None and generation_config.top_k != 0:
737
738
739
            warpers.append(TopKLogitsWarper(top_k=generation_config.top_k, min_tokens_to_keep=min_tokens_to_keep))
        if generation_config.top_p is not None and generation_config.top_p < 1.0:
            warpers.append(TopPLogitsWarper(top_p=generation_config.top_p, min_tokens_to_keep=min_tokens_to_keep))
740
741
742
        if generation_config.min_p is not None:
            # Applied after temperature scaling (see https://github.com/ggerganov/llama.cpp/pull/3841#issuecomment-2073826084)
            warpers.append(MinPLogitsWarper(min_p=generation_config.min_p, min_tokens_to_keep=min_tokens_to_keep))
743
        if generation_config.typical_p is not None and generation_config.typical_p < 1.0:
744
            warpers.append(
745
                TypicalLogitsWarper(mass=generation_config.typical_p, min_tokens_to_keep=min_tokens_to_keep)
746
            )
747
        if generation_config.epsilon_cutoff is not None and 0.0 < generation_config.epsilon_cutoff < 1.0:
748
            warpers.append(
749
                EpsilonLogitsWarper(epsilon=generation_config.epsilon_cutoff, min_tokens_to_keep=min_tokens_to_keep)
750
            )
751
        if generation_config.eta_cutoff is not None and 0.0 < generation_config.eta_cutoff < 1.0:
752
            warpers.append(
753
                EtaLogitsWarper(epsilon=generation_config.eta_cutoff, min_tokens_to_keep=min_tokens_to_keep)
754
            )
755
        # `LogitNormalization` should always be the last logit processor, when present
756
        if generation_config.renormalize_logits is True:
757
758
759
760
761
            warpers.append(LogitNormalization())
        return warpers

    def _get_logits_processor(
        self,
762
        generation_config: GenerationConfig,
763
764
765
766
        input_ids_seq_length: int,
        encoder_input_ids: torch.LongTensor,
        prefix_allowed_tokens_fn: Callable[[int, torch.Tensor], List[int]],
        logits_processor: Optional[LogitsProcessorList],
767
        device: str = None,
768
769
770
        model_kwargs: Optional[Dict[str, Any]] = None,
        negative_prompt_ids: Optional[torch.Tensor] = None,
        negative_prompt_attention_mask: Optional[torch.Tensor] = None,
771
772
773
774
775
776
    ) -> LogitsProcessorList:
        """
        This class returns a [`LogitsProcessorList`] list object that contains all relevant [`LogitsProcessor`]
        instances used to modify the scores of the language model head.
        """
        # instantiate processors list
777
        processors = LogitsProcessorList()
778

779
        if generation_config.guidance_scale is not None and generation_config.guidance_scale != 1:
780
781
782
783
784
785
786
787
788
            processors.append(
                UnbatchedClassifierFreeGuidanceLogitsProcessor(
                    generation_config.guidance_scale,
                    self,
                    unconditional_ids=negative_prompt_ids,
                    unconditional_attention_mask=negative_prompt_attention_mask,
                    use_cache=model_kwargs["use_cache"],
                )
            )
789
790
791
        if generation_config.sequence_bias is not None:
            processors.append(SequenceBiasLogitsProcessor(sequence_bias=generation_config.sequence_bias))

792
        if generation_config.diversity_penalty is not None and generation_config.diversity_penalty > 0.0:
793
794
            processors.append(
                HammingDiversityLogitsProcessor(
795
796
797
                    diversity_penalty=generation_config.diversity_penalty,
                    num_beams=generation_config.num_beams,
                    num_beam_groups=generation_config.num_beam_groups,
798
799
                )
            )
Karim Foda's avatar
Karim Foda committed
800
801
802
803
804
805
806
807
808
        if (
            generation_config.encoder_repetition_penalty is not None
            and generation_config.encoder_repetition_penalty != 1.0
        ):
            processors.append(
                EncoderRepetitionPenaltyLogitsProcessor(
                    penalty=generation_config.encoder_repetition_penalty, encoder_input_ids=encoder_input_ids
                )
            )
809
810
811
812
813
814
815
816
        if generation_config.repetition_penalty is not None and generation_config.repetition_penalty != 1.0:
            processors.append(RepetitionPenaltyLogitsProcessor(penalty=generation_config.repetition_penalty))
        if generation_config.no_repeat_ngram_size is not None and generation_config.no_repeat_ngram_size > 0:
            processors.append(NoRepeatNGramLogitsProcessor(generation_config.no_repeat_ngram_size))
        if (
            generation_config.encoder_no_repeat_ngram_size is not None
            and generation_config.encoder_no_repeat_ngram_size > 0
        ):
817
818
819
            processors.append(
                EncoderNoRepeatNGramLogitsProcessor(generation_config.encoder_no_repeat_ngram_size, encoder_input_ids)
            )
820
821
822
823
824
825
826
827
828
829
        if generation_config.bad_words_ids is not None:
            processors.append(
                NoBadWordsLogitsProcessor(generation_config.bad_words_ids, generation_config.eos_token_id)
            )
        if (
            generation_config.min_length is not None
            and generation_config.eos_token_id is not None
            and generation_config.min_length > 0
        ):
            processors.append(MinLengthLogitsProcessor(generation_config.min_length, generation_config.eos_token_id))
830
831
832
833
834
835
836
837
838
839
        if (
            generation_config.min_new_tokens is not None
            and generation_config.eos_token_id is not None
            and generation_config.min_new_tokens > 0
        ):
            processors.append(
                MinNewTokensLengthLogitsProcessor(
                    input_ids_seq_length, generation_config.min_new_tokens, generation_config.eos_token_id
                )
            )
840
        if prefix_allowed_tokens_fn is not None:
841
842
843
844
845
846
847
848
849
850
851
852
            processors.append(
                PrefixConstrainedLogitsProcessor(
                    prefix_allowed_tokens_fn, generation_config.num_beams // generation_config.num_beam_groups
                )
            )
        if generation_config.forced_bos_token_id is not None:
            processors.append(ForcedBOSTokenLogitsProcessor(generation_config.forced_bos_token_id))
        if generation_config.forced_eos_token_id is not None:
            processors.append(
                ForcedEOSTokenLogitsProcessor(generation_config.max_length, generation_config.forced_eos_token_id)
            )
        if generation_config.remove_invalid_values is True:
853
            processors.append(InfNanRemoveLogitsProcessor())
854
        if generation_config.exponential_decay_length_penalty is not None:
855
            processors.append(
856
857
858
                ExponentialDecayLengthPenalty(
                    generation_config.exponential_decay_length_penalty,
                    generation_config.eos_token_id,
859
                    input_ids_seq_length,
860
                )
861
            )
862
863
864
        if generation_config.suppress_tokens is not None:
            processors.append(SuppressTokensLogitsProcessor(generation_config.suppress_tokens))
        if generation_config.begin_suppress_tokens is not None:
865
            begin_index = input_ids_seq_length
866
867
868
869
870
871
872
873
874
875
876
877
            begin_index = (
                begin_index
                if (input_ids_seq_length > 1 or generation_config.forced_bos_token_id is None)
                else begin_index + 1
            )
            if generation_config.forced_decoder_ids is not None:
                # generation starts after the last token that is forced
                begin_index += generation_config.forced_decoder_ids[-1][0]
            processors.append(
                SuppressTokensAtBeginLogitsProcessor(generation_config.begin_suppress_tokens, begin_index)
            )
        if generation_config.forced_decoder_ids is not None:
878
879
880
881
882
883
            # TODO(Sanchit): deprecate in v4.40 by removing this logic
            warnings.warn(
                "You have explicitly specified `forced_decoder_ids`. This functionality has been deprecated and will throw an error in v4.40. Please remove the `forced_decoder_ids` argument in favour of `input_ids` or `decoder_input_ids` respectively.",
                FutureWarning,
            )
            processors.append(ForceTokensLogitsProcessor(generation_config.forced_decoder_ids, _has_warned=True))
884
885
886
887
888
889
890
891
892
893
894
895
        if generation_config.watermarking_config is not None:
            processors.append(
                WatermarkLogitsProcessor(
                    vocab_size=self.config.vocab_size,
                    device=device,
                    greenlist_ratio=generation_config.watermarking_config.greenlist_ratio,
                    bias=generation_config.watermarking_config.bias,
                    hashing_key=generation_config.watermarking_config.hashing_key,
                    seeding_scheme=generation_config.watermarking_config.seeding_scheme,
                    context_width=generation_config.watermarking_config.context_width,
                )
            )
896
897
        processors = self._merge_criteria_processor_list(processors, logits_processor)
        # `LogitNormalization` should always be the last logit processor, when present
898
        if generation_config.renormalize_logits is True:
899
900
901
902
            processors.append(LogitNormalization())
        return processors

    def _get_stopping_criteria(
903
904
905
906
907
        self,
        generation_config: GenerationConfig,
        stopping_criteria: Optional[StoppingCriteriaList],
        tokenizer: Optional["PreTrainedTokenizerBase"] = None,
        **kwargs,
908
909
    ) -> StoppingCriteriaList:
        criteria = StoppingCriteriaList()
910
        if generation_config.max_length is not None:
911
912
913
914
915
916
917
            max_position_embeddings = getattr(self.config, "max_position_embeddings", None)
            criteria.append(
                MaxLengthCriteria(
                    max_length=generation_config.max_length,
                    max_position_embeddings=max_position_embeddings,
                )
            )
918
919
        if generation_config.max_time is not None:
            criteria.append(MaxTimeCriteria(max_time=generation_config.max_time))
920
921
922
923
924
925
926
927
        if generation_config.stop_strings is not None:
            if tokenizer is None:
                raise ValueError(
                    "There are one or more stop strings, either in the arguments to `generate` or in the "
                    "model's generation config, but we could not locate a tokenizer. When generating with "
                    "stop strings, you must pass the model's tokenizer to the `tokenizer` argument of `generate`."
                )
            criteria.append(StopStringCriteria(stop_strings=generation_config.stop_strings, tokenizer=tokenizer))
928
929
        if generation_config.eos_token_id is not None:
            criteria.append(EosTokenCriteria(eos_token_id=generation_config.eos_token_id))
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
        criteria = self._merge_criteria_processor_list(criteria, stopping_criteria)
        return criteria

    def _merge_criteria_processor_list(
        self,
        default_list: Union[LogitsProcessorList, StoppingCriteriaList],
        custom_list: Union[LogitsProcessorList, StoppingCriteriaList],
    ) -> Union[LogitsProcessorList, StoppingCriteriaList]:
        if len(custom_list) == 0:
            return default_list
        for default in default_list:
            for custom in custom_list:
                if type(custom) is type(default):
                    object_type = "stopping criteria" if isinstance(custom, StoppingCriteria) else "logits processor"
                    raise ValueError(
                        f"A custom {object_type} of type {type(custom)} with values {custom} has been passed to"
946
                        f" `.generate()`, but it has already been created with the values {default}. {default} has been"
947
948
                        " created by passing the corresponding arguments to generate or by the model's config default"
                        f" values. If you just want to change the default values of {object_type} consider passing"
949
                        f" them as arguments to `.generate()` instead of using a custom {object_type}."
950
951
952
953
                    )
        default_list.extend(custom_list)
        return default_list

954
    def compute_transition_scores(
955
956
957
        self,
        sequences: torch.Tensor,
        scores: Tuple[torch.Tensor],
958
959
960
961
962
963
964
965
966
967
968
969
970
        beam_indices: Optional[torch.Tensor] = None,
        normalize_logits: bool = False,
    ) -> torch.Tensor:
        """
        Computes the transition scores of sequences given the generation scores (and beam indices, if beam search was
        used). This is a convenient method to quicky obtain the scores of the selected tokens at generation time.

        Parameters:
            sequences (`torch.LongTensor`):
                The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or
                shorter if all batches finished early due to the `eos_token_id`.
            scores (`tuple(torch.FloatTensor)`):
                Transition scores for each vocabulary token at each generation step. Beam transition scores consisting
971
972
973
                of log probabilities of tokens conditioned on log softmax of previously generated tokens in this beam.
                Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token),
                with each tensor of shape `(batch_size*num_beams, config.vocab_size)`.
974
            beam_indices (`torch.LongTensor`, *optional*):
975
                Beam indices of generated token id at each generation step. `torch.LongTensor` of shape
976
                `(batch_size*num_return_sequences, sequence_length)`. Only required if a `num_beams>1` at
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
                generate-time.
            normalize_logits (`bool`, *optional*, defaults to `False`):
                Whether to normalize the logits (which, for legacy reasons, may be unnormalized).

        Return:
            `torch.Tensor`: A `torch.Tensor` of shape `(batch_size*num_return_sequences, sequence_length)` containing
                the transition scores (logits)

        Examples:

        ```python
        >>> from transformers import GPT2Tokenizer, AutoModelForCausalLM
        >>> import numpy as np

        >>> tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
992
        >>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
993
994
995
996
997
998
999
1000
        >>> tokenizer.pad_token_id = tokenizer.eos_token_id
        >>> inputs = tokenizer(["Today is"], return_tensors="pt")

        >>> # Example 1: Print the scores for each token generated with Greedy Search
        >>> outputs = model.generate(**inputs, max_new_tokens=5, return_dict_in_generate=True, output_scores=True)
        >>> transition_scores = model.compute_transition_scores(
        ...     outputs.sequences, outputs.scores, normalize_logits=True
        ... )
1001
1002
1003
        >>> # input_length is the length of the input prompt for decoder-only models, like the GPT family, and 1 for
        >>> # encoder-decoder models, like BART or T5.
        >>> input_length = 1 if model.config.is_encoder_decoder else inputs.input_ids.shape[1]
1004
1005
        >>> generated_tokens = outputs.sequences[:, input_length:]
        >>> for tok, score in zip(generated_tokens[0], transition_scores[0]):
1006
        ...     # | token | token string | log probability | probability
1007
1008
1009
1010
1011
1012
        ...     print(f"| {tok:5d} | {tokenizer.decode(tok):8s} | {score.numpy():.3f} | {np.exp(score.numpy()):.2%}")
        |   262 |  the     | -1.414 | 24.33%
        |  1110 |  day     | -2.609 | 7.36%
        |   618 |  when    | -2.010 | 13.40%
        |   356 |  we      | -1.859 | 15.58%
        |   460 |  can     | -2.508 | 8.14%
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026

        >>> # Example 2: Reconstruct the sequence scores from Beam Search
        >>> outputs = model.generate(
        ...     **inputs,
        ...     max_new_tokens=5,
        ...     num_beams=4,
        ...     num_return_sequences=4,
        ...     return_dict_in_generate=True,
        ...     output_scores=True,
        ... )
        >>> transition_scores = model.compute_transition_scores(
        ...     outputs.sequences, outputs.scores, outputs.beam_indices, normalize_logits=False
        ... )
        >>> # If you sum the generated tokens' scores and apply the length penalty, you'll get the sequence scores.
1027
        >>> # Tip 1: recomputing the scores is only guaranteed to match with `normalize_logits=False`. Depending on the
1028
        >>> # use case, you might want to recompute it with `normalize_logits=True`.
1029
1030
        >>> # Tip 2: the output length does NOT include the input length
        >>> output_length = np.sum(transition_scores.numpy() < 0, axis=1)
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
        >>> length_penalty = model.generation_config.length_penalty
        >>> reconstructed_scores = transition_scores.sum(axis=1) / (output_length**length_penalty)
        >>> print(np.allclose(outputs.sequences_scores, reconstructed_scores))
        True
        ```"""
        # 1. In absence of `beam_indices`, we can assume that we come from e.g. greedy search, which is equivalent
        # to a beam search approach were the first (and only) beam is always selected
        if beam_indices is None:
            beam_indices = torch.arange(scores[0].shape[0]).view(-1, 1).to(sequences.device)
            beam_indices = beam_indices.expand(-1, len(scores))

        # 2. reshape scores as [batch_size*vocab_size, # generation steps] with # generation steps being
1043
1044
1045
        # seq_len - input_length
        scores = torch.stack(scores).reshape(len(scores), -1).transpose(0, 1)

1046
1047
1048
1049
1050
1051
1052
        # 3. Optionally normalize the logits (across the vocab dimension)
        if normalize_logits:
            scores = scores.reshape(-1, self.config.vocab_size, scores.shape[-1])
            scores = torch.nn.functional.log_softmax(scores, dim=1)
            scores = scores.reshape(-1, scores.shape[-1])

        # 4. cut beam_indices to longest beam length
1053
1054
        beam_indices_mask = beam_indices < 0
        max_beam_length = (1 - beam_indices_mask.long()).sum(-1).max()
1055
        beam_indices = beam_indices.clone()[:, :max_beam_length]
1056
1057
        beam_indices_mask = beam_indices_mask[:, :max_beam_length]

1058
        # 5. Set indices of beams that finished early to 0; such indices will be masked correctly afterwards
1059
1060
        beam_indices[beam_indices_mask] = 0

1061
        # 6. multiply beam_indices with vocab size to gather correctly from scores
1062
1063
        beam_sequence_indices = beam_indices * self.config.vocab_size

1064
        # 7. Define which indices contributed to scores
1065
1066
1067
        cut_idx = sequences.shape[-1] - max_beam_length
        indices = sequences[:, cut_idx:] + beam_sequence_indices

1068
        # 8. Compute scores
1069
1070
        transition_scores = scores.gather(0, indices)

1071
        # 9. Mask out transition_scores of beams that stopped early
1072
1073
1074
1075
1076
1077
1078
1079
1080
        transition_scores[beam_indices_mask] = 0

        return transition_scores

    def _validate_model_class(self):
        """
        Confirms that the model class is compatible with generation. If not, raises an exception that points to the
        right class to use.
        """
1081
        if not self.can_generate():
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
            generate_compatible_mappings = [
                MODEL_FOR_CAUSAL_LM_MAPPING,
                MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING,
                MODEL_FOR_VISION_2_SEQ_MAPPING,
                MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
                MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING,
            ]
            generate_compatible_classes = set()
            for model_mapping in generate_compatible_mappings:
                supported_models = model_mapping.get(type(self.config), default=None)
                if supported_models is not None:
                    generate_compatible_classes.add(supported_models.__name__)
            exception_message = (
                f"The current model class ({self.__class__.__name__}) is not compatible with `.generate()`, as "
                "it doesn't have a language model head."
            )
            if generate_compatible_classes:
                exception_message += f" Please use one of the following classes instead: {generate_compatible_classes}"
            raise TypeError(exception_message)

    def _validate_model_kwargs(self, model_kwargs: Dict[str, Any]):
        """Validates model kwargs for generation. Generate argument typos will also be caught here."""
1104
1105
1106
1107
1108
1109
1110
        # If a `Cache` instance is passed, checks whether the model is compatible with it
        if isinstance(model_kwargs.get("past_key_values", None), Cache) and not self._supports_cache_class:
            raise ValueError(
                f"{self.__class__.__name__} does not support an instance of `Cache` as `past_key_values`. Please "
                "check the model documentation for supported cache formats."
            )

1111
1112
1113
1114
1115
1116
1117
        # Excludes arguments that are handled before calling any model function
        if self.config.is_encoder_decoder:
            for key in ["decoder_input_ids"]:
                model_kwargs.pop(key, None)

        unused_model_args = []
        model_args = set(inspect.signature(self.prepare_inputs_for_generation).parameters)
1118
1119
1120
        # `kwargs`/`model_kwargs` is often used to handle optional forward pass inputs like `attention_mask`. If
        # `prepare_inputs_for_generation` doesn't accept them, then a stricter check can be made ;)
        if "kwargs" in model_args or "model_kwargs" in model_args:
1121
            model_args |= set(inspect.signature(self.forward).parameters)
1122
1123
1124
1125
1126
1127
1128

        # Encoder-Decoder models may also need Encoder arguments from `model_kwargs`
        if self.config.is_encoder_decoder:
            base_model = getattr(self, self.base_model_prefix, None)

            # allow encoder kwargs
            encoder = getattr(self, "encoder", None)
1129
1130
1131
1132
1133
            # `MusicgenForConditionalGeneration` has `text_encoder` and `audio_encoder`.
            # Also, it has `base_model_prefix = "encoder_decoder"` but there is no `self.encoder_decoder`
            # TODO: A better way to handle this.
            if encoder is None and base_model is not None:
                encoder = getattr(base_model, "encoder", None)
1134

1135
1136
1137
            if encoder is not None:
                encoder_model_args = set(inspect.signature(encoder.forward).parameters)
                model_args |= encoder_model_args
1138
1139
1140

            # allow decoder kwargs
            decoder = getattr(self, "decoder", None)
1141
1142
            if decoder is None and base_model is not None:
                decoder = getattr(base_model, "decoder", None)
1143

1144
1145
1146
            if decoder is not None:
                decoder_model_args = set(inspect.signature(decoder.forward).parameters)
                model_args |= {f"decoder_{x}" for x in decoder_model_args}
1147

1148
1149
1150
1151
            # allow assistant_encoder_outputs to be passed if we're doing assisted generating
            if "assistant_encoder_outputs" in model_kwargs:
                model_args |= {"assistant_encoder_outputs"}

1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
        for key, value in model_kwargs.items():
            if value is not None and key not in model_args:
                unused_model_args.append(key)

        if unused_model_args:
            raise ValueError(
                f"The following `model_kwargs` are not used by the model: {unused_model_args} (note: typos in the"
                " generate arguments will also show up in this list)"
            )

1162
1163
1164
1165
    def _validate_generated_length(self, generation_config, input_ids_length, has_default_max_length):
        """Performs validation related to the resulting generated length"""

        # 1. Max length warnings related to poor parameterization
1166
        if has_default_max_length and generation_config.max_new_tokens is None and generation_config.max_length == 20:
1167
1168
            # 20 is the default max_length of the generation config
            warnings.warn(
1169
                f"Using the model-agnostic default `max_length` (={generation_config.max_length}) to control the "
1170
1171
1172
1173
1174
1175
                "generation length. We recommend setting `max_new_tokens` to control the maximum length of the "
                "generation.",
                UserWarning,
            )
        if input_ids_length >= generation_config.max_length:
            input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
1176
            raise ValueError(
1177
1178
                f"Input length of {input_ids_string} is {input_ids_length}, but `max_length` is set to"
                f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
1179
                " increasing `max_length` or, better yet, setting `max_new_tokens`."
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
            )

        # 2. Min length warnings due to unfeasible parameter combinations
        min_length_error_suffix = (
            " Generation will stop at the defined maximum length. You should decrease the minimum length and/or "
            "increase the maximum length."
        )
        if has_default_max_length:
            min_length_error_suffix += (
                f" Note that `max_length` is set to {generation_config.max_length}, its default value."
            )
        if generation_config.min_length is not None and generation_config.min_length > generation_config.max_length:
            warnings.warn(
                f"Unfeasible length constraints: `min_length` ({generation_config.min_length}) is larger than"
                f" the maximum possible length ({generation_config.max_length})." + min_length_error_suffix,
                UserWarning,
            )
        if generation_config.min_new_tokens is not None:
            min_length = generation_config.min_new_tokens + input_ids_length
            if min_length > generation_config.max_length:
                warnings.warn(
                    f"Unfeasible length constraints: `min_new_tokens` ({generation_config.min_new_tokens}), when "
                    f"added to the prompt length ({input_ids_length}), is larger than"
                    f" the maximum possible length ({generation_config.max_length})." + min_length_error_suffix,
                    UserWarning,
                )

1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
    def _prepare_generated_length(
        self,
        generation_config,
        has_default_max_length,
        has_default_min_length,
        model_input_name,
        input_ids_length,
        inputs_tensor,
    ):
        """Prepared max and min length in generaion configs to avoid clashes between similar attributes"""

        if generation_config.max_new_tokens is not None:
            if not has_default_max_length and generation_config.max_length is not None:
                logger.warning(
                    f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
                    f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
                    "Please refer to the documentation for more information. "
                    "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)"
                )
            generation_config.max_length = generation_config.max_new_tokens + input_ids_length

        # if both `inputs_embeds` and `input_ids` are passed, we do not correct the length
        # otherwise we need total length [inputs-embeds-len + new-tokens-len] to not go beyond indicated `max_length``
        elif (
            model_input_name == "inputs_embeds"
            and input_ids_length != inputs_tensor.shape[1]
            and not self.config.is_encoder_decoder
        ):
            generation_config.max_length -= inputs_tensor.shape[1]

        # same for min length
        if generation_config.min_new_tokens is not None:
            if not has_default_min_length:
                logger.warning(
                    f"Both `min_new_tokens` (={generation_config.min_new_tokens}) and `min_length`(="
                    f"{generation_config.min_length}) seem to have been set. `min_new_tokens` will take precedence. "
                    "Please refer to the documentation for more information. "
                    "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)"
                )
            generation_config.min_length = generation_config.min_new_tokens + input_ids_length

        elif (
            model_input_name == "inputs_embeds"
            and input_ids_length != inputs_tensor.shape[1]
            and not self.config.is_encoder_decoder
        ):
            generation_config.min_length = max(generation_config.min_length - inputs_tensor.shape[1], 0)

        return generation_config

1257
    def _prepare_generation_config(
1258
        self, generation_config: Optional[GenerationConfig], **kwargs: Dict
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
    ) -> Tuple[GenerationConfig, Dict]:
        """
        Prepares the base generation config, then applies any generation configuration options from kwargs.
        """
        # TODO joao: when we can detect `fullgraph=True` in `torch.compile` (https://github.com/pytorch/pytorch/pull/120400)
        # replace `is_torchdynamo_compiling` by the corresponding check. As it is, we are being too restrictive with
        # the parameterization in `fullgraph=False` so as to enable `fullgraph=True`.

        # priority: `generation_config` argument > `model.generation_config` (the default generation config)
        if generation_config is None:
            # legacy: users may modify the model configuration to control generation. To trigger this legacy behavior,
            # three conditions must be met
            # 1) the generation config must have been created from the model config (`_from_model_config` field);
            # 2) the generation config must have seen no modification since its creation (the hash is the same);
            # 3) the user must have set generation parameters in the model config.
            # NOTE: `torch.compile` can't compile `hash`, this legacy support is disabled with compilation.
            if (
                not is_torchdynamo_compiling()
                and self.generation_config._from_model_config
                and self.generation_config._original_object_hash == hash(self.generation_config)
                and self.config._has_non_default_generation_parameters()
            ):
                new_generation_config = GenerationConfig.from_model_config(self.config)
                if new_generation_config != self.generation_config:
                    warnings.warn(
                        "You have modified the pretrained model configuration to control generation. This is a"
                        " deprecated strategy to control generation and will be removed soon, in a future version."
                        " Please use and modify the model generation configuration (see"
                        " https://huggingface.co/docs/transformers/generation_strategies#default-text-generation-configuration )"
                    )
                    self.generation_config = new_generation_config
            generation_config = self.generation_config

        # `torch.compile` can't compile `copy.deepcopy`, arguments in `kwargs` that are part of `generation_config`
        # will mutate the object with `.update`. As such, passing these arguments through `kwargs` is disabled.
        if is_torchdynamo_compiling():
            model_kwargs = kwargs
            generate_attributes_in_kwargs = [
                key for key, value in kwargs.items() if getattr(generation_config, key, None) != value
            ]
            if len(generate_attributes_in_kwargs) > 0:
                raise ValueError(
                    "`torch.compile` exception: all generation configuration attributes must be passed within a "
                    f"`generation_config` instance passed to `generate` (found: {generate_attributes_in_kwargs})."
                )
        else:
            generation_config = copy.deepcopy(generation_config)
            model_kwargs = generation_config.update(**kwargs)

        return generation_config, model_kwargs

1310
1311
    def _get_initial_cache_position(self, input_ids, model_kwargs):
        """Calculates `cache_position` for the pre-fill stage based on `input_ids` and optionally past length"""
1312
1313
1314
1315
        if not model_kwargs.get("use_cache", True):
            model_kwargs["cache_position"] = None
            return model_kwargs

1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
        past_length = 0
        if "past_key_values" in model_kwargs:
            if isinstance(model_kwargs["past_key_values"], Cache):
                past_length = model_kwargs["past_key_values"].get_seq_length()
            else:
                past_length = model_kwargs["past_key_values"][0][0].shape[2]
        if "inputs_embeds" in model_kwargs:
            cur_len = model_kwargs["inputs_embeds"].shape[1]
        else:
            cur_len = input_ids.shape[-1]
        model_kwargs["cache_position"] = torch.arange(past_length, cur_len, device=input_ids.device)
        return model_kwargs

1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
    def _get_static_cache(self, max_batch_size: int, max_cache_len: int) -> StaticCache:
        """
        Sets a static cache for `generate`, that will persist across calls. A new cache will only be initialized a
        new `generate` call requires a larger cache.

        Returns the resulting static cache object.
        """
        needs_new_cache = (
            not hasattr(self, "_static_cache")
            or self._static_cache.max_batch_size < max_batch_size
            or self._static_cache.max_cache_len < max_cache_len
        )
        if needs_new_cache:
            if hasattr(self.config, "_pre_quantization_dtype"):
                cache_dtype = self.config._pre_quantization_dtype
            else:
                cache_dtype = self.dtype
            self._static_cache = StaticCache(
                config=self.config,
                max_batch_size=max_batch_size,
                max_cache_len=max_cache_len,
                device=self.device,
                dtype=cache_dtype,
            )
        else:
            self._static_cache.reset()  # reset the cache for a new generation
        return self._static_cache

1357
    def _prepare_special_tokens(
1358
1359
1360
1361
        self,
        generation_config: GenerationConfig,
        kwargs_has_attention_mask: Optional[bool] = None,
        device: Optional[Union[torch.device, str]] = None,
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
    ):
        """
        Prepares the special tokens for generation, overwriting the generation config with their processed versions
        converted to tensor.

        Note that `generation_config` is changed in place and stops being serializable after this method is called.
        That is no problem if called within `generate` (`generation_config` is a local copy that doesn't leave the
        function). However, if called outside `generate`, consider creating a copy of `generation_config` first.
        """

        # Convert special tokens to tensors (if they exist)
1373
1374
1375
1376
        def _tensor_or_none(token, device=None):
            if device is None:
                device = self.device

1377
1378
            if token is None or isinstance(token, torch.Tensor):
                return token
1379
            return torch.tensor(token, device=device, dtype=torch.long)
1380

1381
1382
1383
1384
        bos_token_id = _tensor_or_none(generation_config.bos_token_id, device=device)
        eos_token_id = _tensor_or_none(generation_config.eos_token_id, device=device)
        pad_token_id = _tensor_or_none(generation_config.pad_token_id, device=device)
        decoder_start_token_id = _tensor_or_none(generation_config.decoder_start_token_id, device=device)
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
        decoder_start_token_id = decoder_start_token_id if decoder_start_token_id is not None else bos_token_id

        # We can have more than one eos token. Always treat it as a 1D tensor (when it exists).
        if eos_token_id is not None and eos_token_id.ndim == 0:
            eos_token_id = eos_token_id.unsqueeze(0)

        # Set pad token if unset (and there are conditions to do so)
        if pad_token_id is None and eos_token_id is not None:
            if kwargs_has_attention_mask is not None and not kwargs_has_attention_mask:
                logger.warning(
                    "The attention mask and the pad token id were not set. As a consequence, you may observe "
                    "unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results."
                )
            pad_token_id = eos_token_id[0]
            logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{pad_token_id} for open-end generation.")

        # Sanity checks/warnings
        if self.config.is_encoder_decoder and decoder_start_token_id is None:
            raise ValueError(
                "`decoder_start_token_id` or `bos_token_id` has to be defined for encoder-decoder generation."
            )
        if eos_token_id is not None and (torch.is_floating_point(eos_token_id) or (eos_token_id < 0).any()):
            logger.warning(
                f"`eos_token_id` should consist of positive integers, but is {eos_token_id}. Your generation will not "
                "stop until the maximum length is reached. Depending on other flags, it may even crash."
            )

        # Update generation config with the updated special tokens tensors
        generation_config.bos_token_id = bos_token_id
        generation_config.eos_token_id = eos_token_id
        generation_config.pad_token_id = pad_token_id
        generation_config.decoder_start_token_id = decoder_start_token_id

1418
1419
1420
1421
    @torch.no_grad()
    def generate(
        self,
        inputs: Optional[torch.Tensor] = None,
1422
        generation_config: Optional[GenerationConfig] = None,
1423
1424
        logits_processor: Optional[LogitsProcessorList] = None,
        stopping_criteria: Optional[StoppingCriteriaList] = None,
1425
        prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
1426
        synced_gpus: Optional[bool] = None,
1427
        assistant_model: Optional["PreTrainedModel"] = None,
1428
        streamer: Optional["BaseStreamer"] = None,
1429
1430
        negative_prompt_ids: Optional[torch.Tensor] = None,
        negative_prompt_attention_mask: Optional[torch.Tensor] = None,
1431
        **kwargs,
1432
1433
1434
    ) -> Union[GenerateOutput, torch.LongTensor]:
        r"""

1435
        Generates sequences of token ids for models with a language modeling head.
1436
1437
1438

        <Tip warning={true}>

1439
1440
        Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the
        model's default generation configuration. You can override any `generation_config` by passing the corresponding
1441
        parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`.
1442

1443
        For an overview of generation strategies and code examples, check out the [following
1444
        guide](../generation_strategies).
1445

1446
        </Tip>
1447
1448
1449
1450
1451

        Parameters:
            inputs (`torch.Tensor` of varying shape depending on the modality, *optional*):
                The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the
                method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs`
1452
                should be in the format of `input_ids`. For encoder-decoder models *inputs* can represent any of
1453
                `input_ids`, `input_values`, `input_features`, or `pixel_values`.
1454
            generation_config ([`~generation.GenerationConfig`], *optional*):
1455
1456
                The generation configuration to be used as base parametrization for the generation call. `**kwargs`
                passed to generate matching the attributes of `generation_config` will override them. If
1457
                `generation_config` is not provided, the default will be used, which has the following loading
1458
1459
1460
1461
1462
1463
1464
1465
                priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
                configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
                default values, whose documentation should be checked to parameterize generation.
            logits_processor (`LogitsProcessorList`, *optional*):
                Custom logits processors that complement the default logits processors built from arguments and
                generation config. If a logit processor is passed that is already created with the arguments or a
                generation config an error is thrown. This feature is intended for advanced users.
            stopping_criteria (`StoppingCriteriaList`, *optional*):
1466
                Custom stopping criteria that complements the default stopping criteria built from arguments and a
1467
                generation config. If a stopping criteria is passed that is already created with the arguments or a
1468
1469
1470
                generation config an error is thrown. If your stopping criteria depends on the `scores` input, make
                sure you pass `return_dict_in_generate=True, output_scores=True` to `generate`. This feature is
                intended for advanced users.
1471
1472
1473
1474
1475
1476
1477
            prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`, *optional*):
                If provided, this function constraints the beam search to allowed tokens only at each step. If not
                provided no constraint is applied. This function takes 2 arguments: the batch ID `batch_id` and
                `input_ids`. It has to return a list with the allowed tokens for the next generation step conditioned
                on the batch ID `batch_id` and the previously generated tokens `inputs_ids`. This argument is useful
                for constrained generation conditioned on the prefix, as described in [Autoregressive Entity
                Retrieval](https://arxiv.org/abs/2010.00904).
1478
1479
1480
1481
            synced_gpus (`bool`, *optional*):
                Whether to continue running the while loop until max_length. Unless overridden this flag will be set to
                `True` under DeepSpeed ZeRO Stage 3 multiple GPUs environment to avoid hanging if one GPU finished
                generating before other GPUs. Otherwise it'll be set to `False`.
1482
1483
1484
1485
1486
            assistant_model (`PreTrainedModel`, *optional*):
                An assistant model that can be used to accelerate generation. The assistant model must have the exact
                same tokenizer. The acceleration is achieved when forecasting candidate tokens with the assistent model
                is much faster than running generation with the model you're calling generate from. As such, the
                assistant model should be much smaller.
1487
1488
1489
            streamer (`BaseStreamer`, *optional*):
                Streamer object that will be used to stream the generated sequences. Generated tokens are passed
                through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
1490
1491
1492
1493
1494
            negative_prompt_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                The negative prompt needed for some processors such as CFG. The batch size must match the input batch
                size. This is an experimental feature, subject to breaking API changes in future versions.
            negative_prompt_attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Attention_mask for `negative_prompt_ids`.
1495
            kwargs (`Dict[str, Any]`, *optional*):
1496
                Ad hoc parametrization of `generation_config` and/or additional model-specific kwargs that will be
1497
1498
                forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder
                specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.
1499
1500
1501

        Return:
            [`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True`
1502
            or when `config.return_dict_in_generate=True`) or a `torch.LongTensor`.
1503
1504
1505
1506

                If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible
                [`~utils.ModelOutput`] types are:

1507
1508
                    - [`~generation.GenerateDecoderOnlyOutput`],
                    - [`~generation.GenerateBeamDecoderOnlyOutput`]
1509
1510
1511
1512

                If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible
                [`~utils.ModelOutput`] types are:

1513
1514
                    - [`~generation.GenerateEncoderDecoderOutput`],
                    - [`~generation.GenerateBeamEncoderDecoderOutput`]
1515
        """
1516
1517
        # 1. Handle `generation_config` and kwargs that might update it, and validate the `.generate()` call
        self._validate_model_class()
1518
        tokenizer = kwargs.pop("tokenizer", None)  # Pull this out first, we only use it for stopping criteria
1519
1520
        generation_config, model_kwargs = self._prepare_generation_config(generation_config, **kwargs)
        self._validate_model_kwargs(model_kwargs.copy())
1521

1522
        # 2. Set generation parameters if not already defined
1523
        if synced_gpus is None:
1524
            if is_deepspeed_zero3_enabled() and dist.get_world_size() > 1:
1525
1526
1527
                synced_gpus = True
            else:
                synced_gpus = False
1528

1529
1530
1531
        logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
        stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()

1532
1533
1534
        accepts_attention_mask = "attention_mask" in set(inspect.signature(self.forward).parameters.keys())
        requires_attention_mask = "encoder_outputs" not in model_kwargs
        kwargs_has_attention_mask = model_kwargs.get("attention_mask", None) is not None
1535

1536
1537
1538
1539
        # 3. Define model inputs
        inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs(
            inputs, generation_config.bos_token_id, model_kwargs
        )
1540
1541
        batch_size = inputs_tensor.shape[0]

1542
1543
1544
        device = inputs_tensor.device
        self._prepare_special_tokens(generation_config, kwargs_has_attention_mask, device=device)

1545
1546
        # decoder-only models must use left-padding for batched generation.
        if not self.config.is_encoder_decoder and not is_torchdynamo_compiling():
1547
1548
            # If `input_ids` was given, check if the last id in any sequence is `pad_token_id`
            # Note: If using, `inputs_embeds` this check does not work, because we want to be more hands-off.
1549
1550
            if (
                generation_config.pad_token_id is not None
1551
                and batch_size > 1
1552
                and len(inputs_tensor.shape) == 2
1553
1554
                and torch.sum(inputs_tensor[:, -1] == generation_config.pad_token_id) > 0
            ):
1555
1556
1557
1558
1559
                logger.warning(
                    "A decoder-only architecture is being used, but right-padding was detected! For correct "
                    "generation results, please set `padding_side='left'` when initializing the tokenizer."
                )

1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
        # 4. Define other model kwargs
        # decoder-only models with inputs_embeds forwarding must use caching (otherwise we can't detect whether we are
        # generating the first new token or not, and we only want to use the embeddings for the first new token)
        if not self.config.is_encoder_decoder and model_input_name == "inputs_embeds":
            model_kwargs["use_cache"] = True
        else:
            model_kwargs["use_cache"] = generation_config.use_cache

        if not kwargs_has_attention_mask and requires_attention_mask and accepts_attention_mask:
            model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation(
                inputs_tensor, generation_config.pad_token_id, generation_config.eos_token_id
            )

1573
        if self.config.is_encoder_decoder and "encoder_outputs" not in model_kwargs:
1574
            # if model is encoder decoder encoder_outputs are created and added to `model_kwargs`
1575
            model_kwargs = self._prepare_encoder_decoder_kwargs_for_generation(
1576
                inputs_tensor, model_kwargs, model_input_name, generation_config
1577
1578
            )

1579
        # 5. Prepare `input_ids` which will be used for auto-regressive generation
1580
        if self.config.is_encoder_decoder:
1581
1582
1583
1584
            input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation(
                batch_size=batch_size,
                model_input_name=model_input_name,
                model_kwargs=model_kwargs,
1585
                decoder_start_token_id=generation_config.decoder_start_token_id,
1586
1587
1588
                device=inputs_tensor.device,
            )
        else:
1589
            input_ids = inputs_tensor if model_input_name == "input_ids" else model_kwargs.pop("input_ids")
1590

1591
1592
1593
        if streamer is not None:
            streamer.put(input_ids.cpu())

1594
        # 6. Prepare `max_length` depending on other stopping criteria.
1595
        input_ids_length = input_ids.shape[-1]
1596
        has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
1597
1598
1599
1600
1601
1602
1603
1604
1605
        has_default_min_length = kwargs.get("min_length") is None and generation_config.min_length is not None
        generation_config = self._prepare_generated_length(
            generation_config=generation_config,
            has_default_max_length=has_default_max_length,
            has_default_min_length=has_default_min_length,
            model_input_name=model_input_name,
            inputs_tensor=inputs_tensor,
            input_ids_length=input_ids_length,
        )
1606

1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
        if generation_config.cache_implementation is not None and model_kwargs.get("past_key_values") is not None:
            raise ValueError(
                "Passing both `cache_implementation` (used to initialize certain caches) and `past_key_values` (a "
                "Cache object) is unsupported. Please use only one of the two."
            )
        elif generation_config.cache_implementation in NEED_SETUP_CACHE_CLASSES_MAPPING:
            if not self._supports_cache_class:
                raise ValueError(
                    "This model does not support the `cache_implementation` argument. Please check the following "
                    "issue: https://github.com/huggingface/transformers/issues/28981."
                )
1618
            if generation_config.cache_implementation == "static":
1619
                model_kwargs["past_key_values"] = self._get_static_cache(batch_size, generation_config.max_length)
1620

1621
        self._validate_generated_length(generation_config, input_ids_length, has_default_max_length)
1622

1623
        # 7. determine generation mode
1624
        generation_mode = generation_config.get_generation_mode(assistant_model)
1625

1626
1627
1628
1629
1630
        if streamer is not None and (generation_config.num_beams > 1):
            raise ValueError(
                "`streamer` cannot be used with beam search (yet!). Make sure that `num_beams` is set to 1."
            )

1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
        if self.device.type != input_ids.device.type:
            warnings.warn(
                "You are calling .generate() with the `input_ids` being on a device type different"
                f" than your model's device. `input_ids` is on {input_ids.device.type}, whereas the model"
                f" is on {self.device.type}. You may experience unexpected behaviors or slower generation."
                " Please make sure that you have put `input_ids` to the"
                f" correct device by calling for example input_ids = input_ids.to('{self.device.type}') before"
                " running `.generate()`.",
                UserWarning,
            )

1642
        # 8. prepare distribution pre_processing samplers
1643
        prepared_logits_processor = self._get_logits_processor(
1644
            generation_config=generation_config,
1645
            input_ids_seq_length=input_ids_length,
1646
1647
1648
            encoder_input_ids=inputs_tensor,
            prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
            logits_processor=logits_processor,
1649
            device=inputs_tensor.device,
1650
1651
1652
            model_kwargs=model_kwargs,
            negative_prompt_ids=negative_prompt_ids,
            negative_prompt_attention_mask=negative_prompt_attention_mask,
1653
1654
        )

1655
        # 9. prepare stopping criteria
1656
        prepared_stopping_criteria = self._get_stopping_criteria(
1657
            generation_config=generation_config, stopping_criteria=stopping_criteria, tokenizer=tokenizer, **kwargs
1658
        )
1659

1660
        # 10. go into different generation modes
1661
        if generation_mode == GenerationMode.ASSISTED_GENERATION:
1662
1663
            if generation_config.num_return_sequences > 1:
                raise ValueError(
1664
                    "num_return_sequences has to be 1 when doing assisted generate, "
1665
1666
1667
                    f"but is {generation_config.num_return_sequences}."
                )
            if batch_size > 1:
1668
                raise ValueError("assisted generate is only supported for batch_size = 1")
1669
            if not model_kwargs["use_cache"]:
1670
                raise ValueError("assisted generate requires `use_cache=True`")
1671
1672
            if generation_config.cache_implementation == "static":
                raise ValueError("assisted generate is not supported with `static_cache`")
1673

1674
1675
1676
1677
1678
1679
1680
1681
            # 11. Get the candidate generator, given the parameterization
            candidate_generator = self._get_candidate_generator(
                generation_config=generation_config,
                input_ids=input_ids,
                inputs_tensor=inputs_tensor,
                assistant_model=assistant_model,
                logits_processor=logits_processor,
                model_kwargs=model_kwargs,
1682
1683
            )

1684
1685
1686
1687
1688
1689
            # 12. prepare logits warper (if `do_sample` is `True`)
            prepared_logits_warper = (
                self._get_logits_warper(generation_config) if generation_config.do_sample else None
            )

            # 13. run assisted generate
1690
            result = self._assisted_decoding(
1691
                input_ids,
1692
                candidate_generator=candidate_generator,
1693
                logits_processor=prepared_logits_processor,
1694
                logits_warper=prepared_logits_warper,
1695
                stopping_criteria=prepared_stopping_criteria,
1696
                generation_config=generation_config,
1697
1698
1699
1700
                synced_gpus=synced_gpus,
                streamer=streamer,
                **model_kwargs,
            )
1701

1702
        elif generation_mode == GenerationMode.CONTRASTIVE_SEARCH:
1703
1704
            if not model_kwargs["use_cache"]:
                raise ValueError("Contrastive search requires `use_cache=True`")
1705

1706
            result = self._contrastive_search(
1707
                input_ids,
1708
1709
                logits_processor=prepared_logits_processor,
                stopping_criteria=prepared_stopping_criteria,
1710
                generation_config=generation_config,
1711
                synced_gpus=synced_gpus,
1712
                streamer=streamer,
1713
1714
1715
                **model_kwargs,
            )

1716
        elif generation_mode in (GenerationMode.SAMPLE, GenerationMode.GREEDY_SEARCH):
1717
            # 11. prepare logits warper
1718
1719
1720
            prepared_logits_warper = (
                self._get_logits_warper(generation_config) if generation_config.do_sample else None
            )
1721

1722
            # 12. expand input_ids with `num_return_sequences` additional sequences per batch
1723
1724
            input_ids, model_kwargs = self._expand_inputs_for_generation(
                input_ids=input_ids,
1725
                expand_size=generation_config.num_return_sequences,
1726
1727
1728
1729
                is_encoder_decoder=self.config.is_encoder_decoder,
                **model_kwargs,
            )

1730
            # 13. run sample (it degenerates to greedy search when `generation_config.do_sample=False`)
1731
            result = self._sample(
1732
                input_ids,
1733
                logits_processor=prepared_logits_processor,
1734
                logits_warper=prepared_logits_warper,
1735
                stopping_criteria=prepared_stopping_criteria,
1736
                generation_config=generation_config,
1737
                synced_gpus=synced_gpus,
1738
                streamer=streamer,
1739
1740
1741
                **model_kwargs,
            )

1742
        elif generation_mode in (GenerationMode.BEAM_SAMPLE, GenerationMode.BEAM_SEARCH):
1743
            # 11. prepare logits warper
1744
1745
1746
            prepared_logits_warper = (
                self._get_logits_warper(generation_config) if generation_config.do_sample else None
            )
1747

1748
            # 12. prepare beam search scorer
1749
            beam_scorer = BeamSearchScorer(
1750
                batch_size=batch_size,
1751
                num_beams=generation_config.num_beams,
1752
                device=inputs_tensor.device,
1753
1754
                length_penalty=generation_config.length_penalty,
                do_early_stopping=generation_config.early_stopping,
1755
                num_beam_hyps_to_keep=generation_config.num_return_sequences,
1756
                max_length=generation_config.max_length,
1757
1758
            )

1759
            # 13. interleave input_ids with `num_beams` additional sequences per batch
1760
1761
            input_ids, model_kwargs = self._expand_inputs_for_generation(
                input_ids=input_ids,
1762
                expand_size=generation_config.num_beams,
1763
1764
1765
1766
                is_encoder_decoder=self.config.is_encoder_decoder,
                **model_kwargs,
            )

1767
            # 14. run beam sample
1768
            result = self._beam_search(
1769
1770
                input_ids,
                beam_scorer,
1771
                logits_processor=prepared_logits_processor,
1772
                logits_warper=prepared_logits_warper,
1773
                stopping_criteria=prepared_stopping_criteria,
1774
                generation_config=generation_config,
1775
1776
1777
1778
                synced_gpus=synced_gpus,
                **model_kwargs,
            )

1779
        elif generation_mode == GenerationMode.GROUP_BEAM_SEARCH:
1780
            # 11. prepare beam search scorer
1781
1782
            beam_scorer = BeamSearchScorer(
                batch_size=batch_size,
1783
                num_beams=generation_config.num_beams,
1784
                device=inputs_tensor.device,
1785
1786
1787
1788
                length_penalty=generation_config.length_penalty,
                do_early_stopping=generation_config.early_stopping,
                num_beam_hyps_to_keep=generation_config.num_return_sequences,
                num_beam_groups=generation_config.num_beam_groups,
1789
                max_length=generation_config.max_length,
1790
            )
1791
            # 12. interleave input_ids with `num_beams` additional sequences per batch
1792
1793
            input_ids, model_kwargs = self._expand_inputs_for_generation(
                input_ids=input_ids,
1794
                expand_size=generation_config.num_beams,
1795
1796
1797
                is_encoder_decoder=self.config.is_encoder_decoder,
                **model_kwargs,
            )
1798
            # 13. run beam search
1799
            result = self._group_beam_search(
1800
1801
                input_ids,
                beam_scorer,
1802
1803
                logits_processor=prepared_logits_processor,
                stopping_criteria=prepared_stopping_criteria,
1804
                generation_config=generation_config,
1805
1806
1807
1808
                synced_gpus=synced_gpus,
                **model_kwargs,
            )

1809
        elif generation_mode == GenerationMode.CONSTRAINED_BEAM_SEARCH:
1810
            final_constraints = []
1811
1812
            if generation_config.constraints is not None:
                final_constraints = generation_config.constraints
1813

1814
            if generation_config.force_words_ids is not None:
1815
1816
1817

                def typeerror():
                    raise ValueError(
1818
                        "`force_words_ids` has to either be a `List[List[List[int]]]` or `List[List[int]]` "
1819
                        f"of positive integers, but is {generation_config.force_words_ids}."
1820
1821
                    )

1822
1823
1824
1825
                if (
                    not isinstance(generation_config.force_words_ids, list)
                    or len(generation_config.force_words_ids) == 0
                ):
1826
1827
                    typeerror()

1828
                for word_ids in generation_config.force_words_ids:
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
                    if isinstance(word_ids[0], list):
                        if not isinstance(word_ids, list) or len(word_ids) == 0:
                            typeerror()
                        if any(not isinstance(token_ids, list) for token_ids in word_ids):
                            typeerror()
                        if any(
                            any((not isinstance(token_id, int) or token_id < 0) for token_id in token_ids)
                            for token_ids in word_ids
                        ):
                            typeerror()

                        constraint = DisjunctiveConstraint(word_ids)
                    else:
                        if not isinstance(word_ids, list) or len(word_ids) == 0:
                            typeerror()
                        if any((not isinstance(token_id, int) or token_id < 0) for token_id in word_ids):
                            typeerror()

                        constraint = PhrasalConstraint(word_ids)
                    final_constraints.append(constraint)

1850
            # 11. prepare beam search scorer
1851
1852
1853
            constrained_beam_scorer = ConstrainedBeamSearchScorer(
                constraints=final_constraints,
                batch_size=batch_size,
1854
                num_beams=generation_config.num_beams,
1855
                device=inputs_tensor.device,
1856
1857
1858
                length_penalty=generation_config.length_penalty,
                do_early_stopping=generation_config.early_stopping,
                num_beam_hyps_to_keep=generation_config.num_return_sequences,
1859
                max_length=generation_config.max_length,
1860
            )
1861
            # 12. interleave input_ids with `num_beams` additional sequences per batch
1862
1863
            input_ids, model_kwargs = self._expand_inputs_for_generation(
                input_ids=input_ids,
1864
                expand_size=generation_config.num_beams,
1865
1866
1867
                is_encoder_decoder=self.config.is_encoder_decoder,
                **model_kwargs,
            )
1868
            # 13. run beam search
1869
            result = self._constrained_beam_search(
1870
1871
                input_ids,
                constrained_beam_scorer=constrained_beam_scorer,
1872
1873
                logits_processor=prepared_logits_processor,
                stopping_criteria=prepared_stopping_criteria,
1874
                generation_config=generation_config,
1875
1876
1877
1878
                synced_gpus=synced_gpus,
                **model_kwargs,
            )

1879
1880
        return result

1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
    def _has_unfinished_sequences(self, this_peer_finished: bool, synced_gpus: bool, device: torch.device) -> bool:
        """
        Returns whether there are still unfinished sequences in the device. The existence of unfinished sequences is
        fed through `this_peer_finished`. ZeRO stage 3-friendly.
        """
        if synced_gpus:
            # Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
            # The following logic allows an early break if all peers finished generating their sequence
            this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(device)
            # send 0.0 if we finished, 1.0 otherwise
            dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
            # did all peers finish? the reduced sum will be 0.0 then
            if this_peer_finished_flag.item() == 0.0:
                return False
        elif this_peer_finished:
            return False
        return True

1899
    @torch.no_grad()
1900
    def _contrastive_search(
1901
1902
        self,
        input_ids: torch.LongTensor,
1903
1904
1905
1906
1907
        logits_processor: LogitsProcessorList,
        stopping_criteria: StoppingCriteriaList,
        generation_config: GenerationConfig,
        synced_gpus: bool,
        streamer: Optional["BaseStreamer"],
1908
        **model_kwargs,
1909
    ) -> Union[GenerateNonBeamOutput, torch.LongTensor]:
1910
1911
1912
1913
1914
1915
1916
        r"""
        Generates sequences of token ids for models with a language modeling head using **contrastive search** and can
        be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.

        Parameters:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
1917
            logits_processor (`LogitsProcessorList`):
1918
1919
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
1920
            stopping_criteria (`StoppingCriteriaList`):
1921
1922
                An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
                used to tell if the generation loop should stop.
1923
1924
1925
            generation_config ([`~generation.GenerationConfig`]):
                The generation configuration to be used as parametrization of the decoding method.
            synced_gpus (`bool`):
1926
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
1927
1928
1929
            streamer (`BaseStreamer`, *optional*):
                Streamer object that will be used to stream the generated sequences. Generated tokens are passed
                through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
1930
1931
1932
1933
1934
            model_kwargs:
                Additional model specific keyword arguments will be forwarded to the `forward` function of the model.
                If model is an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
1935
            [`~generation.GenerateDecoderOnlyOutput`], [`~generation.GenerateEncoderDecoderOutput`]
1936
            or `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
1937
1938
            [`~generation.GenerateDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.GenerateEncoderDecoderOutput`] if
1939
            `model.config.is_encoder_decoder=True`.
1940
        """
1941
        # init values
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
        has_eos_stopping_criteria = any(hasattr(criteria, "eos_token_id") for criteria in stopping_criteria)
        top_k = generation_config.top_k
        penalty_alpha = generation_config.penalty_alpha
        pad_token_id = generation_config.pad_token_id
        output_attentions = generation_config.output_attentions
        output_hidden_states = generation_config.output_hidden_states
        output_scores = generation_config.output_scores
        output_logits = generation_config.output_logits
        return_dict_in_generate = generation_config.return_dict_in_generate
        sequential = generation_config.low_memory
1952
1953

        # init attention / hidden states / scores tuples
1954
        raw_logits = () if (return_dict_in_generate and output_logits) else None
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
        scores = () if (return_dict_in_generate and output_scores) else None
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        # keep track of which sequences are already finished
1968
        batch_size = input_ids.shape[0]
1969
        unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
1970
        model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs)
1971

1972
        this_peer_finished = False
1973

1974
        while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
1975
1976
            # if the first step in the loop, encode all the prefix and obtain: (1) past_key_values;
            # (2) last_hidden_states; (3) logit_for_next_step; (4) update model kwargs for the next step
1977
            if model_kwargs.get("past_key_values") is None:
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
                # prepare inputs
                model_kwargs["use_cache"] = True
                model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)

                # encode the given prefix and prepare model inputs; encoder-decoder model process the prefix and save
                # the `encoder_outputs`
                outputs = self(
                    **model_inputs, return_dict=True, output_hidden_states=True, output_attentions=output_attentions
                )

                # last decoder hidden states will be used to compute the degeneration penalty (cosine similarity with
                # previous tokens)
                if self.config.is_encoder_decoder:
                    last_hidden_states = outputs.decoder_hidden_states[-1]
                else:
                    last_hidden_states = outputs.hidden_states[-1]
1994

1995
1996
1997
1998
                # next logit for contrastive search to select top-k candidate tokens
                logit_for_next_step = outputs.logits[:, -1, :]

                model_kwargs = self._update_model_kwargs_for_generation(
1999
2000
2001
2002
                    outputs,
                    model_kwargs,
                    is_encoder_decoder=self.config.is_encoder_decoder,
                    standardize_cache_format=True,
2003
                )
2004
2005
2006
2007
2008
                if not sequential:
                    # Expands model inputs top_k times, for batched forward passes (akin to beam search).
                    _, model_kwargs = self._expand_inputs_for_generation(
                        expand_size=top_k, is_encoder_decoder=self.config.is_encoder_decoder, **model_kwargs
                    )
2009

2010
2011
                past_key_values = model_kwargs.get("past_key_values")
                if past_key_values is None:
2012
2013
2014
2015
                    raise ValueError(
                        f"{self.__class__.__name__} does not support caching and therefore **can't** be used "
                        "for contrastive search."
                    )
2016
2017
2018
2019
                elif (
                    not isinstance(past_key_values[0], (tuple, torch.Tensor))
                    or past_key_values[0][0].shape[0] != batch_size
                ):
2020
2021
2022
2023
2024
2025
2026
2027
                    raise ValueError(
                        f"{self.__class__.__name__} does not have a standard cache format and therefore **can't** be "
                        "used for contrastive search without further modifications."
                    )

            # contrastive_search main logic start:
            # contrastive search decoding consists of two steps: (1) candidate tokens recall; (2) candidate re-rank by
            # degeneration penalty
2028
2029
2030
            processed_logit_for_next_step = logits_processor(input_ids, logit_for_next_step)
            next_probs = nn.functional.softmax(processed_logit_for_next_step, dim=-1)

2031
2032
2033
2034
            top_k_probs, top_k_ids = torch.topk(next_probs, dim=-1, k=top_k)

            # Store scores, attentions and hidden_states when required
            if return_dict_in_generate:
2035
2036
                if output_logits:
                    raw_logits += (logit_for_next_step,)
2037
                if output_scores:
2038
                    scores += (processed_logit_for_next_step,)
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
                if output_attentions:
                    decoder_attentions += (
                        (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
                    )
                    if self.config.is_encoder_decoder:
                        cross_attentions += (outputs.cross_attentions,)

                if output_hidden_states:
                    decoder_hidden_states += (
                        (outputs.decoder_hidden_states,)
                        if self.config.is_encoder_decoder
                        else (outputs.hidden_states,)
                    )

            # Replicates the new past_key_values to match the `top_k` candidates
            new_key_values = []
tomeras91's avatar
tomeras91 committed
2055
2056
            past = model_kwargs["past_key_values"]
            for layer in past:
2057
2058
2059
                items = []
                # item is either the key or the value matrix
                for item in layer:
2060
2061
2062
2063
                    if sequential:
                        items.append(item.repeat_interleave(1, dim=0))
                    else:
                        items.append(item.repeat_interleave(top_k, dim=0))
2064
                new_key_values.append(tuple(items))
tomeras91's avatar
tomeras91 committed
2065
2066
2067
2068
2069
2070
2071
            if not isinstance(past, DynamicCache):
                past = tuple(new_key_values)
            else:
                for layer_idx in range(len(new_key_values)):
                    past.key_cache[layer_idx] = new_key_values[layer_idx][0]
                    past.value_cache[layer_idx] = new_key_values[layer_idx][1]
            model_kwargs["past_key_values"] = past
2072

2073
            if sequential:
2074
                all_outputs = []
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
                for i in range(top_k):
                    # compute the candidate tokens by the language model and collect their hidden_states
                    next_model_inputs = self.prepare_inputs_for_generation(top_k_ids[:, i].view(-1, 1), **model_kwargs)

                    outputs = self(
                        **next_model_inputs,
                        return_dict=True,
                        output_hidden_states=True,
                        output_attentions=output_attentions,
                    )
2085
2086
                    all_outputs.append(outputs)
                outputs = stack_model_outputs(all_outputs)
2087
2088

            else:
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
                # compute the candidate tokens by the language model and collect their hidden_states
                # assembles top_k_ids into batch of size k
                next_model_inputs = self.prepare_inputs_for_generation(top_k_ids.view(-1, 1), **model_kwargs)

                outputs = self(
                    **next_model_inputs,
                    return_dict=True,
                    output_hidden_states=True,
                    output_attentions=output_attentions,
                )
2099
2100
2101
2102
2103
2104
2105
            # name is different for encoder-decoder and decoder-only models
            if self.config.is_encoder_decoder:
                next_hidden = outputs.decoder_hidden_states[-1]
                full_hidden_states = outputs.decoder_hidden_states
            else:
                next_hidden = outputs.hidden_states[-1]
                full_hidden_states = outputs.hidden_states
2106

2107
            logits = outputs.logits[:, -1, :]
2108

2109
2110
2111
            context_hidden = last_hidden_states.repeat_interleave(top_k, dim=0)

            # compute the degeneration penalty and re-rank the candidates based on the degeneration penalty and the
2112
2113
            # model confidence. Keeping `selected_idx` on CPU enables multi-device contrastive search and doesn't
            # introduce (noticeable) slowdowns on single-device runs.
2114
            selected_idx = _ranking_fast(context_hidden, next_hidden, top_k_probs, penalty_alpha, top_k)
2115
            selected_idx = selected_idx.to("cpu")
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129

            # prepare for the next step: (1) next token_id; (2) past_key_values; (3) last_hidden_states for computing
            # the degeneration penalty; (4) logits for selecting next top-k candidates; (5) selected tokens scores
            # (model confidence minus degeneration penalty); (6) decoder hidden_states
            next_tokens = top_k_ids[range(len(top_k_ids)), selected_idx]
            next_hidden = torch.stack(torch.split(next_hidden.squeeze(dim=1), top_k))
            next_hidden = next_hidden[range(batch_size), selected_idx, :]
            last_hidden_states = torch.cat([last_hidden_states, next_hidden.unsqueeze(1)], dim=1)

            next_decoder_hidden_states = ()
            for layer in full_hidden_states:
                layer = torch.stack(torch.split(layer, top_k))[range(batch_size), selected_idx, :]
                next_decoder_hidden_states += (layer,)

2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
            # generate past_key_values cache of only the selected token
            if sequential:
                next_model_input = self.prepare_inputs_for_generation(
                    top_k_ids[:, selected_idx].view(-1, 1), **model_kwargs
                )

                selected_outputs = self(
                    **next_model_input,
                    return_dict=True,
                    output_hidden_states=False,
                    output_attentions=False,
                )
                next_past_key_values = selected_outputs["past_key_values"]

            else:
                next_past_key_values = self._extract_past_from_model_output(outputs, standardize_cache_format=True)
tomeras91's avatar
tomeras91 committed
2146
                new_key_values = []
2147
                for layer in next_past_key_values:
tomeras91's avatar
tomeras91 committed
2148
                    items = []
2149
2150
2151
2152
                    # item is either the key or the value matrix
                    for item in layer:
                        item = torch.stack(torch.split(item, top_k, dim=0))  # [B, K, num_head, seq_len, esz]
                        item = item[range(batch_size), selected_idx, ...]  # [B, num_head, seq_len, esz]
tomeras91's avatar
tomeras91 committed
2153
2154
2155
2156
2157
2158
2159
2160
2161
                        items += [item]
                    new_key_values += [items]

                if not isinstance(next_past_key_values, DynamicCache):
                    next_past_key_values = tuple(new_key_values)
                else:
                    for layer_idx in range(len(new_key_values)):
                        next_past_key_values.key_cache[layer_idx] = new_key_values[layer_idx][0]
                        next_past_key_values.value_cache[layer_idx] = new_key_values[layer_idx][1]
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198

            logit_for_next_step = torch.stack(torch.split(logits, top_k))[range(batch_size), selected_idx, :]

            # Rebuilds the relevant parts of the model output for the selected token, for use in the next iteration
            if self.config.is_encoder_decoder:
                next_step_cross_attentions = ()
                next_step_decoder_attentions = ()
                if output_attentions:
                    for layer in outputs.cross_attentions:
                        layer = torch.stack(torch.split(layer, top_k, dim=0))[range(batch_size), selected_idx, ...]
                        next_step_cross_attentions += (layer,)
                    for layer in outputs.decoder_attentions:
                        layer = torch.stack(torch.split(layer, top_k, dim=0))[range(batch_size), selected_idx, ...]
                        next_step_decoder_attentions += (layer,)
                outputs = Seq2SeqLMOutput(
                    past_key_values=next_past_key_values,
                    decoder_hidden_states=next_decoder_hidden_states,
                    decoder_attentions=next_step_decoder_attentions or None,
                    cross_attentions=next_step_cross_attentions or None,
                )
            else:
                next_step_attentions = ()
                if output_attentions:
                    for layer in outputs.attentions:
                        layer = torch.stack(torch.split(layer, top_k, dim=0))[range(batch_size), selected_idx, ...]
                        next_step_attentions += (layer,)
                outputs = CausalLMOutputWithPast(
                    past_key_values=next_past_key_values,
                    hidden_states=next_decoder_hidden_states,
                    attentions=next_step_attentions or None,
                )
            # contrastive_search main logic end

            if synced_gpus and this_peer_finished:
                continue  # don't waste resources running the code we don't need

            # finished sentences should have their next token be a padding token
2199
            if has_eos_stopping_criteria:
2200
2201
2202
2203
                next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)

            # update generated ids, model inputs, and length for next step
            input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
2204
2205
            if streamer is not None:
                streamer.put(next_tokens.cpu())
2206
            model_kwargs = self._update_model_kwargs_for_generation(
2207
2208
2209
                outputs,
                model_kwargs,
                is_encoder_decoder=self.config.is_encoder_decoder,
2210
2211
            )

2212
2213
            # stop when each sentence is finished
            unfinished_sequences = unfinished_sequences & ~stopping_criteria(input_ids, scores)
2214
            this_peer_finished = unfinished_sequences.max() == 0
2215

2216
2217
2218
        if streamer is not None:
            streamer.end()

2219
        if return_dict_in_generate:
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
            # Contrastive search works by forward looking at the next token, so we need to exclude it from
            # `past_key_values` to be consistent with the other decoding methods
            if model_kwargs.get("past_key_values") is not None:
                past_key_values = []
                for layer in model_kwargs["past_key_values"]:
                    layer_past_key_values = []
                    for item in layer:
                        layer_past_key_values.append(item[..., :-1, :])
                    past_key_values.append(tuple(layer_past_key_values))
                model_kwargs["past_key_values"] = tuple(past_key_values)

2231
            if self.config.is_encoder_decoder:
2232
                return GenerateEncoderDecoderOutput(
2233
2234
                    sequences=input_ids,
                    scores=scores,
2235
                    logits=raw_logits,
2236
2237
2238
2239
2240
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
2241
                    past_key_values=model_kwargs.get("past_key_values"),
2242
2243
                )
            else:
2244
                return GenerateDecoderOnlyOutput(
2245
2246
                    sequences=input_ids,
                    scores=scores,
2247
                    logits=raw_logits,
2248
2249
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
2250
                    past_key_values=model_kwargs.get("past_key_values"),
2251
2252
2253
2254
                )
        else:
            return input_ids

2255
    def _greedy_search(
2256
2257
        self,
        input_ids: torch.LongTensor,
2258
2259
2260
2261
2262
        logits_processor: LogitsProcessorList,
        stopping_criteria: StoppingCriteriaList,
        generation_config: GenerationConfig,
        synced_gpus: bool,
        streamer: Optional["BaseStreamer"],
2263
        **model_kwargs,
2264
    ) -> Union[GenerateNonBeamOutput, torch.LongTensor]:
2265
        r"""
2266
        Deprecated. Use `._sample()` instead, passing the same arguments.
2267
        """
2268

2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
        logger.warning_once(
            "Calling `._greedy_search()` directly is deprecated and will be removed in v4.42. Use `._sample()` "
            "instead, passing the same arguments."
        )
        return self._sample(
            input_ids=input_ids,
            logits_processor=logits_processor,
            stopping_criteria=stopping_criteria,
            generation_config=generation_config,
            synced_gpus=synced_gpus,
            streamer=streamer,
            **model_kwargs,
        )
2282

2283
    def _sample(
2284
2285
        self,
        input_ids: torch.LongTensor,
2286
2287
2288
2289
2290
        logits_processor: LogitsProcessorList,
        stopping_criteria: StoppingCriteriaList,
        generation_config: GenerationConfig,
        synced_gpus: bool,
        streamer: Optional["BaseStreamer"],
2291
        logits_warper: Optional[LogitsProcessorList] = None,
2292
        **model_kwargs,
2293
    ) -> Union[GenerateNonBeamOutput, torch.LongTensor]:
2294
2295
2296
2297
2298
2299
2300
        r"""
        Generates sequences of token ids for models with a language modeling head using **multinomial sampling** and
        can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.

        Parameters:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
2301
            logits_processor (`LogitsProcessorList`):
2302
2303
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
2304
            stopping_criteria (`StoppingCriteriaList`):
2305
2306
                An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
                used to tell if the generation loop should stop.
2307
2308
2309
            generation_config ([`~generation.GenerationConfig`]):
                The generation configuration to be used as parametrization of the decoding method.
            synced_gpus (`bool`):
2310
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
2311
2312
2313
            streamer (`BaseStreamer`, *optional*):
                Streamer object that will be used to stream the generated sequences. Generated tokens are passed
                through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
2314
2315
2316
2317
2318
            logits_warper (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsWarper`] used
                to warp the prediction score distribution of the language modeling head applied before multinomial
                sampling at each generation step. Only required with sampling strategies (i.e. `do_sample` is set in
                `generation_config`)
2319
2320
2321
2322
2323
            model_kwargs:
                Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is
                an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
2324
            [`~generation.GenerateDecoderOnlyOutput`], [`~generation.GenerateEncoderDecoderOutput`] or `torch.LongTensor`:
2325
            A `torch.LongTensor` containing the generated tokens (default behaviour) or a
2326
2327
            [`~generation.GenerateDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.GenerateEncoderDecoderOutput`] if
2328
            `model.config.is_encoder_decoder=True`.
2329
        """
2330
        # init values
2331
2332
2333
2334
2335
2336
2337
        pad_token_id = generation_config.pad_token_id
        output_attentions = generation_config.output_attentions
        output_hidden_states = generation_config.output_hidden_states
        output_scores = generation_config.output_scores
        output_logits = generation_config.output_logits
        return_dict_in_generate = generation_config.return_dict_in_generate
        has_eos_stopping_criteria = any(hasattr(criteria, "eos_token_id") for criteria in stopping_criteria)
2338
2339
2340
2341
2342
2343
        do_sample = generation_config.do_sample
        if do_sample is True and not isinstance(logits_warper, LogitsProcessorList):
            raise ValueError(
                "`do_sample` is set to `True`, `logits_warper` must be a `LogitsProcessorList` instance (it is "
                f"{logits_warper})."
            )
2344
2345
2346

        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and output_scores) else None
2347
        raw_logits = () if (return_dict_in_generate and output_logits) else None
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        # keep track of which sequences are already finished
2360
        batch_size = input_ids.shape[0]
2361
        this_peer_finished = False
2362
        unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
2363
        model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs)
2364

2365
        while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
            # prepare model inputs
            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)

            # forward pass to get next token
            outputs = self(
                **model_inputs,
                return_dict=True,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )

            if synced_gpus and this_peer_finished:
                continue  # don't waste resources running the code we don't need

            next_token_logits = outputs.logits[:, -1, :]

            # pre-process distribution
            next_token_scores = logits_processor(input_ids, next_token_logits)
2384
2385
            if do_sample:
                next_token_scores = logits_warper(input_ids, next_token_scores)
2386
2387
2388
2389
2390

            # Store scores, attentions and hidden_states when required
            if return_dict_in_generate:
                if output_scores:
                    scores += (next_token_scores,)
2391
2392
                if output_logits:
                    raw_logits += (next_token_logits,)
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
                if output_attentions:
                    decoder_attentions += (
                        (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
                    )
                    if self.config.is_encoder_decoder:
                        cross_attentions += (outputs.cross_attentions,)

                if output_hidden_states:
                    decoder_hidden_states += (
                        (outputs.decoder_hidden_states,)
                        if self.config.is_encoder_decoder
                        else (outputs.hidden_states,)
                    )

2407
2408
2409
2410
2411
2412
            # token selection
            if do_sample:
                probs = nn.functional.softmax(next_token_scores, dim=-1)
                next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
            else:
                next_tokens = torch.argmax(next_token_scores, dim=-1)
2413
2414

            # finished sentences should have their next token be a padding token
2415
            if has_eos_stopping_criteria:
2416
2417
2418
2419
                next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)

            # update generated ids, model inputs, and length for next step
            input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
2420
2421
            if streamer is not None:
                streamer.put(next_tokens.cpu())
2422
            model_kwargs = self._update_model_kwargs_for_generation(
2423
2424
2425
                outputs,
                model_kwargs,
                is_encoder_decoder=self.config.is_encoder_decoder,
2426
2427
            )

2428
            unfinished_sequences = unfinished_sequences & ~stopping_criteria(input_ids, scores)
2429
            this_peer_finished = unfinished_sequences.max() == 0
2430

2431
2432
2433
        if streamer is not None:
            streamer.end()

2434
2435
        if return_dict_in_generate:
            if self.config.is_encoder_decoder:
2436
                return GenerateEncoderDecoderOutput(
2437
2438
                    sequences=input_ids,
                    scores=scores,
2439
                    logits=raw_logits,
2440
2441
2442
2443
2444
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
2445
                    past_key_values=model_kwargs.get("past_key_values"),
2446
2447
                )
            else:
2448
                return GenerateDecoderOnlyOutput(
2449
2450
                    sequences=input_ids,
                    scores=scores,
2451
                    logits=raw_logits,
2452
2453
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
2454
                    past_key_values=model_kwargs.get("past_key_values"),
2455
2456
2457
2458
                )
        else:
            return input_ids

2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
    def _temporary_reorder_cache(self, past_key_values, beam_idx):
        """
        Temporary function to handle the different types of cache reordering processes while we roll out `Cache`.

        TODO: standardize cache formats and make all models compatible with `Cache`. It would remove the need
        for this function, with `Cache.reorder_cache` being the sole remaining code path
        """
        model_class = self.__class__.__name__.lower()
        # Exception 1: code path for models using the legacy cache format
        if isinstance(past_key_values, (tuple, list)):
            past_key_values = self._reorder_cache(past_key_values, beam_idx)
        # Exception 2: models with different cache formats. These are limited to `DynamicCache` until their
        # cache format is standardized, to avoid adding complexity to the codebase.
        elif "bloom" in model_class or "gptbigcode" in model_class:
            if not isinstance(past_key_values, DynamicCache):
                raise ValueError(
                    f"Using an unsupported cache format with {model_class}. Currently, it only supports the "
                    "legacy tuple format or `DynamicCache`"
                )
            past_key_values = self._reorder_cache(past_key_values, beam_idx)
            past_key_values = DynamicCache.from_legacy_cache(past_key_values)
        # Standard code path: use the `Cache.reorder_cache`
        else:
            past_key_values.reorder_cache(beam_idx)
        return past_key_values

2485
    # TODO (joao, v4.42): remove default for `logits_warper`
2486
    def _beam_search(
2487
2488
2489
        self,
        input_ids: torch.LongTensor,
        beam_scorer: BeamScorer,
2490
2491
2492
2493
        logits_processor: LogitsProcessorList,
        stopping_criteria: StoppingCriteriaList,
        generation_config: GenerationConfig,
        synced_gpus: bool,
2494
        logits_warper: Optional[LogitsProcessorList] = None,
2495
        **model_kwargs,
2496
    ) -> Union[GenerateBeamOutput, torch.LongTensor]:
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
        r"""
        Generates sequences of token ids for models with a language modeling head using **beam search decoding** and
        can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.

        Parameters:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
            beam_scorer (`BeamScorer`):
                An derived instance of [`BeamScorer`] that defines how beam hypotheses are constructed, stored and
                sorted during generation. For more information, the documentation of [`BeamScorer`] should be read.
2507
            logits_processor (`LogitsProcessorList`):
2508
2509
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
2510
            stopping_criteria (`StoppingCriteriaList`:
2511
2512
                An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
                used to tell if the generation loop should stop.
2513
2514
2515
            generation_config ([`~generation.GenerationConfig`]):
                The generation configuration to be used as parametrization of the decoding method.
            synced_gpus (`bool`):
2516
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
2517
2518
2519
2520
2521
            logits_warper (`LogitsProcessorList`, *optional*):
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsWarper`] used
                to warp the prediction score distribution of the language modeling head applied before multinomial
                sampling at each generation step. Only required with sampling strategies (i.e. `do_sample` is set in
                `generation_config`)
2522
2523
2524
2525
2526
            model_kwargs:
                Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is
                an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
2527
            [`generation.GenerateBeamDecoderOnlyOutput`], [`~generation.GenerateBeamEncoderDecoderOutput`] or
2528
            `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
2529
2530
            [`~generation.GenerateBeamDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.GenerateBeamEncoderDecoderOutput`] if
2531
            `model.config.is_encoder_decoder=True`.
2532
        """
2533
        # init values
2534
2535
2536
2537
2538
2539
2540
2541
        pad_token_id = generation_config.pad_token_id
        eos_token_id = generation_config.eos_token_id
        output_attentions = generation_config.output_attentions
        output_hidden_states = generation_config.output_hidden_states
        output_scores = generation_config.output_scores
        output_logits = generation_config.output_logits
        return_dict_in_generate = generation_config.return_dict_in_generate
        sequential = generation_config.low_memory
2542
2543
2544
2545
2546
2547
        do_sample = generation_config.do_sample
        if do_sample is True and not isinstance(logits_warper, LogitsProcessorList):
            raise ValueError(
                "`do_sample` is set to `True`, `logits_warper` must be a `LogitsProcessorList` instance (it is "
                f"{logits_warper})."
            )
2548

2549
2550
2551
2552
        batch_size = len(beam_scorer._beam_hyps)
        num_beams = beam_scorer.num_beams

        batch_beam_size, cur_len = input_ids.shape
2553
        model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs)
2554
2555
2556
2557
2558
2559
2560
2561

        if num_beams * batch_size != batch_beam_size:
            raise ValueError(
                f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}."
            )

        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and output_scores) else None
2562
        raw_logits = () if (return_dict_in_generate and output_logits) else None
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
        beam_indices = (
            tuple(() for _ in range(batch_beam_size)) if (return_dict_in_generate and output_scores) else None
        )
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        # initialise score of first beam with 0 and the rest with -1e9. This makes sure that only tokens
        # of the first beam are considered to avoid sampling the exact same tokens across all beams.
        beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device)
        beam_scores[:, 1:] = -1e9
        beam_scores = beam_scores.view((batch_size * num_beams,))

2583
        this_peer_finished = False
2584
2585

        decoder_prompt_len = input_ids.shape[-1]  # record the prompt length of decoder
2586

2587
        while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
2588
2589
            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)

2590
2591
2592
2593
            # if sequential is True, split the input to batches of batch_size and run sequentially
            if sequential:
                if any(
                    model_name in self.__class__.__name__.lower()
2594
2595
2596
2597
2598
2599
2600
2601
2602
                    for model_name in [
                        "fsmt",
                        "reformer",
                        "bloom",
                        "ctrl",
                        "gpt_bigcode",
                        "transo_xl",
                        "xlnet",
                        "cpm",
tomeras91's avatar
tomeras91 committed
2603
                        "jamba",
2604
                    ]
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
                ):
                    raise RuntimeError(
                        f"Currently generation for {self.__class__.__name__} is not supported "
                        f"for `low_memory beam_search`. Please open an issue on GitHub if you need this feature."
                    )

                inputs_per_sub_batches = _split_model_inputs(
                    model_inputs, split_size=batch_size, full_batch_size=batch_beam_size
                )
                outputs_per_sub_batch = [
                    self(
                        **inputs_per_sub_batch,
                        return_dict=True,
                        output_attentions=output_attentions,
                        output_hidden_states=output_hidden_states,
                    )
                    for inputs_per_sub_batch in inputs_per_sub_batches
                ]

                outputs = stack_model_outputs(outputs_per_sub_batch)

            else:  # Unchanged original behavior
                outputs = self(
                    **model_inputs,
                    return_dict=True,
                    output_attentions=output_attentions,
                    output_hidden_states=output_hidden_states,
                )
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643

            if synced_gpus and this_peer_finished:
                cur_len = cur_len + 1
                continue  # don't waste resources running the code we don't need

            next_token_logits = outputs.logits[:, -1, :]
            next_token_scores = nn.functional.log_softmax(
                next_token_logits, dim=-1
            )  # (batch_size * num_beams, vocab_size)

            next_token_scores_processed = logits_processor(input_ids, next_token_scores)
2644
2645
            if do_sample:
                next_token_scores_processed = logits_warper(input_ids, next_token_scores_processed)
2646
2647
2648
            next_token_scores = next_token_scores_processed + beam_scores[:, None].expand_as(
                next_token_scores_processed
            )
2649
2650
2651
2652
2653

            # Store scores, attentions and hidden_states when required
            if return_dict_in_generate:
                if output_scores:
                    scores += (next_token_scores_processed,)
2654
2655
                if output_logits:
                    raw_logits += (next_token_logits,)
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
                if output_attentions:
                    decoder_attentions += (
                        (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
                    )
                    if self.config.is_encoder_decoder:
                        cross_attentions += (outputs.cross_attentions,)
                if output_hidden_states:
                    decoder_hidden_states += (
                        (outputs.decoder_hidden_states,)
                        if self.config.is_encoder_decoder
                        else (outputs.hidden_states,)
                    )

            # reshape for beam search
            vocab_size = next_token_scores.shape[-1]
            next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size)

2673
2674
            # Beam token selection: pick 1 + eos_token_id.shape[0] next tokens for each beam so we have at least 1
            # non eos token per beam.
2675
            n_eos_tokens = eos_token_id.shape[0] if eos_token_id is not None else 0
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
            n_tokens_to_keep = max(2, 1 + n_eos_tokens) * num_beams
            if do_sample:
                probs = nn.functional.softmax(next_token_scores, dim=-1)
                next_tokens = torch.multinomial(probs, num_samples=n_tokens_to_keep)
                next_token_scores = torch.gather(next_token_scores, -1, next_tokens)
                next_token_scores, _indices = torch.sort(next_token_scores, descending=True, dim=1)
                next_tokens = torch.gather(next_tokens, -1, _indices)
            else:
                next_token_scores, next_tokens = torch.topk(
                    next_token_scores, n_tokens_to_keep, dim=1, largest=True, sorted=True
                )
2687

2688
            next_indices = torch.div(next_tokens, vocab_size, rounding_mode="floor")
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
            next_tokens = next_tokens % vocab_size

            # stateless
            beam_outputs = beam_scorer.process(
                input_ids,
                next_token_scores,
                next_tokens,
                next_indices,
                pad_token_id=pad_token_id,
                eos_token_id=eos_token_id,
                beam_indices=beam_indices,
2700
                decoder_prompt_len=decoder_prompt_len,
2701
2702
2703
2704
2705
2706
2707
2708
2709
            )

            beam_scores = beam_outputs["next_beam_scores"]
            beam_next_tokens = beam_outputs["next_beam_tokens"]
            beam_idx = beam_outputs["next_beam_indices"]

            input_ids = torch.cat([input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)

            model_kwargs = self._update_model_kwargs_for_generation(
2710
2711
2712
                outputs,
                model_kwargs,
                is_encoder_decoder=self.config.is_encoder_decoder,
2713
            )
2714
            if model_kwargs.get("past_key_values", None) is not None:
2715
2716
2717
                model_kwargs["past_key_values"] = self._temporary_reorder_cache(
                    model_kwargs["past_key_values"], beam_idx
                )
2718
2719
2720
2721
2722
2723
2724

            if return_dict_in_generate and output_scores:
                beam_indices = tuple((beam_indices[beam_idx[i]] + (beam_idx[i],) for i in range(len(beam_indices))))

            # increase cur_len
            cur_len = cur_len + 1

2725
            if beam_scorer.is_done or all(stopping_criteria(input_ids, scores)):
2726
                this_peer_finished = True
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736

        sequence_outputs = beam_scorer.finalize(
            input_ids,
            beam_scores,
            next_tokens,
            next_indices,
            pad_token_id=pad_token_id,
            eos_token_id=eos_token_id,
            max_length=stopping_criteria.max_length,
            beam_indices=beam_indices,
2737
            decoder_prompt_len=decoder_prompt_len,
2738
2739
2740
2741
2742
2743
2744
        )

        if return_dict_in_generate:
            if not output_scores:
                sequence_outputs["sequence_scores"] = None

            if self.config.is_encoder_decoder:
2745
                return GenerateBeamEncoderDecoderOutput(
2746
2747
2748
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
2749
                    logits=raw_logits,
2750
2751
2752
2753
2754
2755
                    beam_indices=sequence_outputs["beam_indices"],
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
2756
                    past_key_values=model_kwargs.get("past_key_values"),
2757
2758
                )
            else:
2759
                return GenerateBeamDecoderOnlyOutput(
2760
2761
2762
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
2763
                    logits=raw_logits,
2764
2765
2766
                    beam_indices=sequence_outputs["beam_indices"],
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
2767
                    past_key_values=model_kwargs.get("past_key_values"),
2768
2769
2770
2771
                )
        else:
            return sequence_outputs["sequences"]

2772
    def _beam_sample(
2773
2774
2775
        self,
        input_ids: torch.LongTensor,
        beam_scorer: BeamScorer,
2776
2777
2778
2779
2780
        logits_processor: LogitsProcessorList,
        stopping_criteria: StoppingCriteriaList,
        logits_warper: LogitsProcessorList,
        generation_config: GenerationConfig,
        synced_gpus: bool,
2781
        **model_kwargs,
2782
    ) -> Union[GenerateBeamOutput, torch.LongTensor]:
2783
        r"""
2784
        Deprecated. Use `._beam_search()` instead, passing the same arguments.
2785
        """
2786

2787
2788
2789
        logger.warning_once(
            "Calling `._beam_sample()` directly is deprecated and will be removed in v4.42. Use `._beam_search()` "
            "instead, passing the same arguments."
2790
        )
2791
2792
2793
2794
2795
2796
2797
2798
2799
        return self._beam_search(
            input_ids=input_ids,
            beam_scorer=beam_scorer,
            logits_processor=logits_processor,
            stopping_criteria=stopping_criteria,
            logits_warper=logits_warper,
            generation_config=generation_config,
            synced_gpus=synced_gpus,
            **model_kwargs,
2800
2801
        )

2802
    def _group_beam_search(
2803
2804
2805
        self,
        input_ids: torch.LongTensor,
        beam_scorer: BeamScorer,
2806
2807
2808
2809
        logits_processor: LogitsProcessorList,
        stopping_criteria: StoppingCriteriaList,
        generation_config: GenerationConfig,
        synced_gpus: bool,
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
        **model_kwargs,
    ):
        r"""
        Generates sequences of token ids for models with a language modeling head using **diverse beam search
        decoding** and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.

        Parameters:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
            beam_scorer (`BeamScorer`):
                An derived instance of [`BeamScorer`] that defines how beam hypotheses are constructed, stored and
                sorted during generation. For more information, the documentation of [`BeamScorer`] should be read.
2822
            logits_processor (`LogitsProcessorList`):
2823
2824
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
2825
            stopping_criteria (`StoppingCriteriaList`):
2826
2827
                An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
                used to tell if the generation loop should stop.
2828
2829
2830
            generation_config ([`~generation.GenerationConfig`]):
                The generation configuration to be used as parametrization of the decoding method.
            synced_gpus (`bool`):
2831
2832
2833
2834
2835
2836
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
            model_kwargs:
                Additional model specific kwargs that will be forwarded to the `forward` function of the model. If
                model is an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
2837
            [`~generation.GenerateBeamDecoderOnlyOutput`], [`~generation.GenerateBeamEncoderDecoderOutput`] or
2838
            `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
2839
2840
2841
            [`~generation.GenerateBeamDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.GenerateBeamEncoderDecoderOutput`] if
            `model.config.is_encoder_decoder=True`.
2842
        """
2843
        # init values
2844
2845
2846
2847
2848
2849
2850
        pad_token_id = generation_config.pad_token_id
        eos_token_id = generation_config.eos_token_id
        output_attentions = generation_config.output_attentions
        output_hidden_states = generation_config.output_hidden_states
        output_scores = generation_config.output_scores
        output_logits = generation_config.output_logits
        return_dict_in_generate = generation_config.return_dict_in_generate
2851

2852
2853
2854
        num_beams = beam_scorer.num_beams
        num_beam_groups = beam_scorer.num_beam_groups
        num_sub_beams = num_beams // num_beam_groups
2855
        batch_size = len(beam_scorer._beam_hyps) // num_beam_groups
2856
2857
2858
        device = input_ids.device

        batch_beam_size, cur_len = input_ids.shape
2859
        model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs)
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872

        if return_dict_in_generate and output_scores:
            beam_indices = [tuple(() for _ in range(num_sub_beams * batch_size)) for _ in range(num_beam_groups)]
        else:
            beam_indices = None

        if num_beams * batch_size != batch_beam_size:
            raise ValueError(
                f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}."
            )

        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and output_scores) else None
2873
        raw_logits = () if (return_dict_in_generate and output_logits) else None
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        # initialise score of first beam of each group with 0 and the rest with -1e9. This ensures that the beams in
        # the same group don't produce same tokens everytime.
        beam_scores = torch.full((batch_size, num_beams), -1e9, dtype=torch.float, device=device)
        beam_scores[:, ::num_sub_beams] = 0
        beam_scores = beam_scores.view((batch_size * num_beams,))

2891
        this_peer_finished = False
2892
2893

        decoder_prompt_len = input_ids.shape[-1]  # record the prompt length of decoder
2894
        while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
            # predicted tokens in cur_len step
            current_tokens = torch.zeros(batch_size * num_beams, dtype=input_ids.dtype, device=device)

            # indices which will form the beams in the next time step
            reordering_indices = torch.zeros(batch_size * num_beams, dtype=torch.long, device=device)

            # do one decoder step on all beams of all sentences in batch
            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
            outputs = self(
                **model_inputs,
                return_dict=True,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )

            if synced_gpus and this_peer_finished:
                cur_len = cur_len + 1
                continue  # don't waste resources running the code we don't need

            if output_scores:
                processed_score = torch.zeros_like(outputs.logits[:, -1, :])
2916
2917
            if output_logits:
                raw_logit_score = outputs.logits[:, -1, :]
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952

            for beam_group_idx in range(num_beam_groups):
                group_start_idx = beam_group_idx * num_sub_beams
                group_end_idx = min(group_start_idx + num_sub_beams, num_beams)
                group_size = group_end_idx - group_start_idx

                # indices of beams of current group among all sentences in batch
                batch_group_indices = []

                for batch_idx in range(batch_size):
                    batch_group_indices.extend(
                        [batch_idx * num_beams + idx for idx in range(group_start_idx, group_end_idx)]
                    )
                group_input_ids = input_ids[batch_group_indices]

                # select outputs of beams of current group only
                next_token_logits = outputs.logits[batch_group_indices, -1, :]

                next_token_scores = nn.functional.log_softmax(
                    next_token_logits, dim=-1
                )  # (batch_size * group_size, vocab_size)
                vocab_size = next_token_scores.shape[-1]

                next_token_scores_processed = logits_processor(
                    group_input_ids, next_token_scores, current_tokens=current_tokens, beam_group_idx=beam_group_idx
                )
                next_token_scores = next_token_scores_processed + beam_scores[batch_group_indices].unsqueeze(-1)
                next_token_scores = next_token_scores.expand_as(next_token_scores_processed)

                if output_scores:
                    processed_score[batch_group_indices] = next_token_scores_processed

                # reshape for beam search
                next_token_scores = next_token_scores.view(batch_size, group_size * vocab_size)

2953
                # Sample 1 + len(eos_token_id) next tokens for each beam so we have at least 1 non eos token per beam.
2954
                n_eos_tokens = eos_token_id.shape[0] if eos_token_id is not None else 0
2955
                next_token_scores, next_tokens = torch.topk(
2956
                    next_token_scores, max(2, 1 + n_eos_tokens) * group_size, dim=1, largest=True, sorted=True
2957
2958
                )

2959
                next_indices = torch.div(next_tokens, vocab_size, rounding_mode="floor")
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
                next_tokens = next_tokens % vocab_size

                # stateless
                process_beam_indices = sum(beam_indices, ()) if beam_indices is not None else None
                beam_outputs = beam_scorer.process(
                    group_input_ids,
                    next_token_scores,
                    next_tokens,
                    next_indices,
                    pad_token_id=pad_token_id,
                    eos_token_id=eos_token_id,
                    beam_indices=process_beam_indices,
2972
                    group_index=beam_group_idx,
2973
                    decoder_prompt_len=decoder_prompt_len,
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
                )
                beam_scores[batch_group_indices] = beam_outputs["next_beam_scores"]
                beam_next_tokens = beam_outputs["next_beam_tokens"]
                beam_idx = beam_outputs["next_beam_indices"]

                if return_dict_in_generate and output_scores:
                    beam_indices[beam_group_idx] = tuple(
                        beam_indices[beam_group_idx][beam_idx[i]] + (beam_idx[i],) for i in range(len(beam_indices[0]))
                    )

                input_ids[batch_group_indices] = group_input_ids[beam_idx]
                group_input_ids = torch.cat([group_input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)
                current_tokens[batch_group_indices] = group_input_ids[:, -1]

                # (beam_idx // group_size) -> batch_idx
                # (beam_idx % group_size) -> offset of idx inside the group
                reordering_indices[batch_group_indices] = (
2991
2992
2993
                    num_beams * torch.div(beam_idx, group_size, rounding_mode="floor")
                    + group_start_idx
                    + (beam_idx % group_size)
2994
2995
2996
2997
2998
2999
                )

            # Store scores, attentions and hidden_states when required
            if return_dict_in_generate:
                if output_scores:
                    scores += (processed_score,)
3000
3001
                if output_logits:
                    raw_logits += (raw_logit_score,)
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
                if output_attentions:
                    decoder_attentions += (
                        (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
                    )
                    if self.config.is_encoder_decoder:
                        cross_attentions += (outputs.cross_attentions,)

                if output_hidden_states:
                    decoder_hidden_states += (
                        (outputs.decoder_hidden_states,)
                        if self.config.is_encoder_decoder
                        else (outputs.hidden_states,)
                    )

            input_ids = torch.cat([input_ids, current_tokens.unsqueeze(-1)], dim=-1)

            model_kwargs = self._update_model_kwargs_for_generation(
3019
3020
3021
                outputs,
                model_kwargs,
                is_encoder_decoder=self.config.is_encoder_decoder,
3022
            )
3023
            if model_kwargs.get("past_key_values", None) is not None:
3024
                model_kwargs["past_key_values"] = self._temporary_reorder_cache(
3025
3026
                    model_kwargs["past_key_values"], reordering_indices
                )
3027
3028
3029
3030

            # increase cur_len
            cur_len = cur_len + 1

3031
            if beam_scorer.is_done or all(stopping_criteria(input_ids, scores)):
3032
                this_peer_finished = True
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043

        final_beam_indices = sum(beam_indices, ()) if beam_indices is not None else None
        sequence_outputs = beam_scorer.finalize(
            input_ids,
            beam_scores,
            next_tokens,
            next_indices,
            pad_token_id=pad_token_id,
            eos_token_id=eos_token_id,
            max_length=stopping_criteria.max_length,
            beam_indices=final_beam_indices,
3044
            decoder_prompt_len=decoder_prompt_len,
3045
3046
3047
3048
3049
3050
3051
        )

        if return_dict_in_generate:
            if not output_scores:
                sequence_outputs["sequence_scores"] = None

            if self.config.is_encoder_decoder:
3052
                return GenerateBeamEncoderDecoderOutput(
3053
3054
3055
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
3056
                    logits=raw_logits,
3057
3058
3059
3060
3061
3062
                    beam_indices=sequence_outputs["beam_indices"],
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
3063
                    past_key_values=model_kwargs.get("past_key_values"),
3064
3065
                )
            else:
3066
                return GenerateBeamDecoderOnlyOutput(
3067
3068
3069
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
3070
                    logits=raw_logits,
3071
3072
3073
                    beam_indices=sequence_outputs["beam_indices"],
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
3074
                    past_key_values=model_kwargs.get("past_key_values"),
3075
3076
3077
3078
                )
        else:
            return sequence_outputs["sequences"]

3079
    def _constrained_beam_search(
3080
3081
3082
        self,
        input_ids: torch.LongTensor,
        constrained_beam_scorer: ConstrainedBeamSearchScorer,
3083
3084
3085
3086
        logits_processor: LogitsProcessorList,
        stopping_criteria: StoppingCriteriaList,
        generation_config: GenerationConfig,
        synced_gpus: bool,
3087
        **model_kwargs,
3088
    ) -> Union[GenerateBeamOutput, torch.LongTensor]:
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
        r"""
        Generates sequences of token ids for models with a language modeling head using **constrained beam search
        decoding** and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.

        Parameters:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
            constrained_beam_scorer (`ConstrainedBeamSearchScorer`):
                A derived instance of [`BeamScorer`] that defines how beam hypotheses are constructed, stored and
                sorted during generation, while satisfying a list of positive constraints. For more information, the
                documentation of [`ConstrainedBeamSearchScorer`] should be read.
3100
            logits_processor (`LogitsProcessorList`):
3101
3102
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
3103
            stopping_criteria (`StoppingCriteriaList`):
3104
3105
                An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
                used to tell if the generation loop should stop.
3106
            logits_warper (`LogitsProcessorList`):
3107
3108
3109
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsWarper`] used
                to warp the prediction score distribution of the language modeling head applied before multinomial
                sampling at each generation step.
3110
3111
3112
            generation_config ([`~generation.GenerationConfig`]):
                The generation configuration to be used as parametrization of the decoding method.
            synced_gpus (`bool`):
3113
3114
3115
3116
3117
3118
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
            model_kwargs:
                Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is
                an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
3119
            [`~generation.GenerateBeamDecoderOnlyOutput`], [`~generation.GenerateBeamEncoderDecoderOutput`] or
3120
            `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
3121
3122
            [`~generation.GenerateBeamDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.GenerateBeamEncoderDecoderOutput`] if
3123
            `model.config.is_encoder_decoder=True`.
3124
        """
3125
        # init values
3126
3127
3128
3129
3130
3131
3132
        pad_token_id = generation_config.pad_token_id
        eos_token_id = generation_config.eos_token_id
        output_attentions = generation_config.output_attentions
        output_hidden_states = generation_config.output_hidden_states
        output_scores = generation_config.output_scores
        output_logits = generation_config.output_logits
        return_dict_in_generate = generation_config.return_dict_in_generate
3133

3134
3135
3136
3137
        batch_size = len(constrained_beam_scorer._beam_hyps)
        num_beams = constrained_beam_scorer.num_beams

        batch_beam_size, cur_len = input_ids.shape
3138
        model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs)
3139
3140
3141
3142
3143
3144

        if num_beams * batch_size != batch_beam_size:
            raise ValueError(
                f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}."
            )

3145
3146
        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and output_scores) else None
3147
        raw_logits = () if (return_dict_in_generate and output_logits) else None
3148
3149
3150
        beam_indices = (
            tuple(() for _ in range(batch_beam_size)) if (return_dict_in_generate and output_scores) else None
        )
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        # initialise score of first beam with 0 and the rest with -1e9. This makes sure that only tokens
        # of the first beam are considered to avoid sampling the exact same tokens across all beams.
        beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device)
        beam_scores[:, 1:] = -1e9
        beam_scores = beam_scores.view((batch_size * num_beams,))

3168
        this_peer_finished = False
3169
3170

        decoder_prompt_len = input_ids.shape[-1]  # record the prompt length of decoder
3171
        while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)

            outputs = self(
                **model_inputs,
                return_dict=True,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )

            if synced_gpus and this_peer_finished:
                cur_len = cur_len + 1
                continue  # don't waste resources running the code we don't need

            next_token_logits = outputs.logits[:, -1, :]
            next_token_scores = nn.functional.log_softmax(
                next_token_logits, dim=-1
            )  # (batch_size * num_beams, vocab_size)

            next_token_scores_processed = logits_processor(input_ids, next_token_scores)

3192
3193
3194
            next_token_scores = next_token_scores_processed + beam_scores[:, None].expand_as(
                next_token_scores_processed
            )
3195
3196
3197
3198
3199
3200
3201

            scores_for_all_vocab = next_token_scores.clone()

            # Store scores, attentions and hidden_states when required
            if return_dict_in_generate:
                if output_scores:
                    scores += (next_token_scores,)
3202
3203
                if output_logits:
                    raw_logits += (next_token_logits,)
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
                if output_attentions:
                    decoder_attentions += (
                        (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
                    )
                    if self.config.is_encoder_decoder:
                        cross_attentions += (outputs.cross_attentions,)

                if output_hidden_states:
                    decoder_hidden_states += (
                        (outputs.decoder_hidden_states,)
                        if self.config.is_encoder_decoder
                        else (outputs.hidden_states,)
                    )

            # reshape for beam search
            vocab_size = next_token_scores.shape[-1]
            next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size)

3222
            # Sample 1 + len(eos_token_id) next tokens for each beam so we have at least 1 non eos token per beam.
3223
            n_eos_tokens = eos_token_id.shape[0] if eos_token_id is not None else 0
3224
            next_token_scores, next_tokens = torch.topk(
3225
                next_token_scores, max(2, 1 + n_eos_tokens) * num_beams, dim=1, largest=True, sorted=True
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
            )

            next_indices = (next_tokens / vocab_size).long()
            next_tokens = next_tokens % vocab_size

            # stateless
            beam_outputs = constrained_beam_scorer.process(
                input_ids,
                next_token_scores,
                next_tokens,
                next_indices,
                scores_for_all_vocab,
                pad_token_id=pad_token_id,
                eos_token_id=eos_token_id,
3240
                beam_indices=beam_indices,
3241
                decoder_prompt_len=decoder_prompt_len,
3242
3243
3244
3245
3246
3247
3248
            )
            beam_scores = beam_outputs["next_beam_scores"]
            beam_next_tokens = beam_outputs["next_beam_tokens"]
            beam_idx = beam_outputs["next_beam_indices"]

            input_ids = torch.cat([input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)
            model_kwargs = self._update_model_kwargs_for_generation(
3249
3250
3251
                outputs,
                model_kwargs,
                is_encoder_decoder=self.config.is_encoder_decoder,
3252
            )
3253
            if model_kwargs.get("past_key_values", None) is not None:
3254
3255
3256
                model_kwargs["past_key_values"] = self._temporary_reorder_cache(
                    model_kwargs["past_key_values"], beam_idx
                )
3257

3258
3259
3260
            if return_dict_in_generate and output_scores:
                beam_indices = tuple((beam_indices[beam_idx[i]] + (beam_idx[i],) for i in range(len(beam_indices))))

3261
3262
3263
            # increase cur_len
            cur_len = cur_len + 1

3264
            if constrained_beam_scorer.is_done or all(stopping_criteria(input_ids, scores)):
3265
                this_peer_finished = True
3266
3267
3268
3269
3270
3271
3272
3273
3274

        sequence_outputs = constrained_beam_scorer.finalize(
            input_ids,
            beam_scores,
            next_tokens,
            next_indices,
            pad_token_id=pad_token_id,
            eos_token_id=eos_token_id,
            max_length=stopping_criteria.max_length,
3275
            beam_indices=beam_indices,
3276
            decoder_prompt_len=decoder_prompt_len,
3277
3278
3279
3280
3281
3282
        )

        if return_dict_in_generate:
            if not output_scores:
                sequence_outputs["sequence_scores"] = None
            if self.config.is_encoder_decoder:
3283
                return GenerateBeamEncoderDecoderOutput(
3284
3285
3286
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
3287
                    logits=raw_logits,
3288
                    beam_indices=sequence_outputs["beam_indices"],
3289
3290
3291
3292
3293
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
3294
                    past_key_values=model_kwargs.get("past_key_values"),
3295
3296
                )
            else:
3297
                return GenerateBeamDecoderOnlyOutput(
3298
3299
3300
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
3301
                    logits=raw_logits,
3302
                    beam_indices=sequence_outputs["beam_indices"],
3303
3304
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
3305
                    past_key_values=model_kwargs.get("past_key_values"),
3306
3307
3308
3309
                )
        else:
            return sequence_outputs["sequences"]

3310
    def _assisted_decoding(
3311
3312
        self,
        input_ids: torch.LongTensor,
3313
3314
3315
3316
3317
3318
3319
        candidate_generator: CandidateGenerator,
        logits_processor: LogitsProcessorList,
        logits_warper: LogitsProcessorList,
        stopping_criteria: StoppingCriteriaList,
        generation_config: GenerationConfig,
        synced_gpus: bool,
        streamer: Optional["BaseStreamer"],
3320
        **model_kwargs,
3321
    ) -> Union[GenerateNonBeamOutput, torch.LongTensor]:
3322
        r"""
3323
        Generates sequences of token ids for models with a language modeling head using **greedy decoding** or
3324
3325
3326
        **sample** (depending on `do_sample`), assisted by candidate sequences. Assisted generation is an example of a
        candidate decoding strategy. Can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text
        models.
3327
3328
3329
3330

        Parameters:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
3331
            candidate_generator (`CandidateGenerator`):
3332
                A derived instance of [`CandidateGenerator`] that defines how candidate sequences are generated. For
3333
                more information, the documentation of [`CandidateGenerator`] should be read.
3334
            logits_processor (`LogitsProcessorList`):
3335
3336
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
3337
            logits_warper (`LogitsProcessorList`):
3338
3339
                An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsWarper`] used
                to warp the prediction score distribution of the language modeling head applied before multinomial
3340
3341
                sampling at each generation step. Only used if sampling is active.
            stopping_criteria (`StoppingCriteriaList`):
3342
3343
                An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
                used to tell if the generation loop should stop.
3344
3345
3346
            generation_config ([`~generation.GenerationConfig`]):
                The generation configuration to be used as parametrization of the decoding method.
            synced_gpus (`bool`):
3347
3348
3349
3350
3351
3352
3353
3354
3355
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
            streamer (`BaseStreamer`, *optional*):
                Streamer object that will be used to stream the generated sequences. Generated tokens are passed
                through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
            model_kwargs:
                Additional model specific keyword arguments will be forwarded to the `forward` function of the model.
                If model is an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
3356
            [`~generation.GenerateDecoderOnlyOutput`], [`~generation.GenerateEncoderDecoderOutput`] or
3357
            `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
3358
3359
            [`~generation.GenerateDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.GenerateEncoderDecoderOutput`] if
3360
            `model.config.is_encoder_decoder=True`.
3361
        """
3362
        # init values
3363
3364
3365
3366
3367
3368
        do_sample = logits_warper is not None
        output_attentions = generation_config.output_attentions
        output_hidden_states = generation_config.output_hidden_states
        output_scores = generation_config.output_scores
        output_logits = generation_config.output_logits
        return_dict_in_generate = generation_config.return_dict_in_generate
3369
3370
3371

        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and output_scores) else None
3372
        raw_logits = () if (return_dict_in_generate and output_logits) else None
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        # keep track of which sequences are already finished
3385
        batch_size = input_ids.shape[0]
3386
        unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
3387
        model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs)
3388

3389
3390
        this_peer_finished = False
        while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
3391
3392
            cur_len = input_ids.shape[-1]

3393
            #  1. Fetch candidate sequences from a `CandidateGenerator`
3394
            candidate_input_ids, candidate_logits = candidate_generator.get_candidates(input_ids)
3395
            candidate_input_ids = candidate_input_ids.to(self.device)
3396
3397
            if candidate_logits is not None:
                candidate_logits = candidate_logits.to(self.device)
3398

3399
            candidate_length = candidate_input_ids.shape[1] - input_ids.shape[1]
3400
            is_done_candidate = stopping_criteria(candidate_input_ids, None)
3401
3402

            # 2. Use the original model to obtain the next token logits given the candidate sequence. We obtain
3403
3404
            # `candidate_length + 1` relevant logits from this process: in the event that all candidates are correct,
            # we use this forward pass to also pick the subsequent logits in the original model.
3405

3406
            # 2.1. Prepare the model inputs
3407
3408
3409
            candidate_kwargs = copy.copy(model_kwargs)
            candidate_kwargs = _prepare_attention_mask(
                candidate_kwargs, candidate_input_ids.shape[1], self.config.is_encoder_decoder
3410
            )
3411
3412
3413
            candidate_kwargs = _prepare_token_type_ids(candidate_kwargs, candidate_input_ids.shape[1])
            if "cache_position" in candidate_kwargs:
                candidate_kwargs["cache_position"] = torch.cat(
3414
                    (
3415
                        candidate_kwargs["cache_position"],
3416
3417
3418
3419
                        torch.arange(cur_len, cur_len + candidate_length, device=input_ids.device, dtype=torch.long),
                    ),
                    dim=0,
                )
3420

3421
            model_inputs = self.prepare_inputs_for_generation(candidate_input_ids, **candidate_kwargs)
tomeras91's avatar
tomeras91 committed
3422
3423
            if "num_logits_to_keep" in model_inputs:
                model_inputs["num_logits_to_keep"] = candidate_length + 1
3424
3425
3426
3427
3428
3429
3430

            # 2.2. Run a forward pass on the candidate sequence
            outputs = self(
                **model_inputs,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
3431

3432
            # 2.3. Process the new logits
3433
            new_logits = outputs.logits[:, -candidate_length - 1 :]  # excludes the input prompt if present
3434
            next_token_logits = new_logits.clone()
3435
            if len(logits_processor) > 0:
3436
                for i in range(candidate_length + 1):
3437
                    new_logits[:, i, :] = logits_processor(candidate_input_ids[:, : cur_len + i], new_logits[:, i, :])
3438
            if do_sample and len(logits_warper) > 0:
3439
                for i in range(candidate_length + 1):
3440
3441
                    new_logits[:, i, :] = logits_warper(candidate_input_ids[:, : cur_len + i], new_logits[:, i, :])

3442
3443
3444
3445
            # 3. Select the accepted tokens. There are two possible cases:
            # Case 1: `do_sample=True` and we have logits for the candidates (originally from speculative decoding)
            # 👉 Apply algorithm 1 from the speculative decoding paper (https://arxiv.org/pdf/2211.17192.pdf).
            if do_sample and candidate_logits is not None:
3446
                valid_tokens, n_matches = _speculative_sampling(
3447
3448
3449
3450
                    candidate_input_ids,
                    candidate_logits,
                    candidate_length,
                    new_logits,
3451
                    is_done_candidate,
3452
3453
3454
3455
3456
                )

            # Case 2: all other cases (originally from assisted generation) 👉 Compare the tokens selected from the
            # original model logits with the candidate tokens. We can keep the candidate tokens until the first
            # mismatch, or until the max length is reached.
3457
            else:
3458
3459
3460
3461
3462
                if do_sample:
                    probs = new_logits.softmax(dim=-1)
                    selected_tokens = torch.multinomial(probs[0, :, :], num_samples=1).squeeze(1)[None, :]
                else:
                    selected_tokens = new_logits.argmax(dim=-1)
3463

3464
                candidate_new_tokens = candidate_input_ids[:, cur_len:]
3465
                n_matches = ((~(candidate_new_tokens == selected_tokens[:, :-1])).cumsum(dim=-1) < 1).sum()
3466

3467
                # Ensure we don't generate beyond max_len or an EOS token
3468
                if is_done_candidate and n_matches == candidate_length:
3469
                    n_matches -= 1
3470
                valid_tokens = selected_tokens[:, : n_matches + 1]
3471
3472

            # 4. Update variables according to the number of matching assistant tokens. Remember: the token generated
3473
3474
3475
            # by the model after the last candidate match is also valid, as it is generated from a correct sequence.
            # Because of this last token, assisted generation search reduces to a normal greedy search/sample if there
            # is no match.
3476

3477
            # 4.1. Get the valid continuation, after the matching tokens
3478
            input_ids = torch.cat((input_ids, valid_tokens), dim=-1)
3479
            if streamer is not None:
3480
3481
                streamer.put(valid_tokens.cpu())
            new_cur_len = input_ids.shape[-1]
3482

3483
            # 4.2. Discard past key values relative to unused assistant tokens
3484
3485
            new_cache_size = new_cur_len - 1
            outputs.past_key_values = _crop_past_key_values(self, outputs.past_key_values, new_cache_size)
3486

3487
            # 5. Update the candidate generation strategy if needed
3488
3489
            candidate_generator.update_candidate_strategy(input_ids, new_logits, n_matches)

3490
3491
3492
3493
3494
3495
3496
3497
            if synced_gpus and this_peer_finished:
                continue  # don't waste resources running the code we don't need

            # Store scores, attentions and hidden_states when required
            # Assistant: modified to append one tuple element per token, as in the other generation methods.
            if return_dict_in_generate:
                if output_scores:
                    scores += tuple(new_logits[:, i, :] for i in range(n_matches + 1))
3498
3499
                if output_logits:
                    raw_logits += (next_token_logits,)
3500
3501

                if "past_key_values" not in model_kwargs:
3502
                    added_len = new_cur_len
3503
                else:
3504
                    added_len = n_matches + 1
3505
3506
3507
3508

                if output_attentions:
                    if self.config.is_encoder_decoder:
                        cross_attentions = _split_model_outputs(
3509
                            cross_attentions, outputs.cross_attentions, cur_len, added_len
3510
3511
3512
3513
                        )
                        decoder_attentions = _split_model_outputs(
                            decoder_attentions,
                            outputs.decoder_attentions,
3514
                            cur_len,
3515
                            added_len,
3516
3517
3518
3519
3520
3521
                            is_decoder_attention=True,
                        )
                    else:
                        decoder_attentions = _split_model_outputs(
                            decoder_attentions,
                            outputs.attentions,
3522
                            cur_len,
3523
                            added_len,
3524
3525
3526
3527
3528
                            is_decoder_attention=True,
                        )
                if output_hidden_states:
                    if self.config.is_encoder_decoder:
                        decoder_hidden_states = _split_model_outputs(
3529
                            decoder_hidden_states, outputs.decoder_hidden_states, cur_len, added_len
3530
3531
3532
                        )
                    else:
                        decoder_hidden_states = _split_model_outputs(
3533
                            decoder_hidden_states, outputs.hidden_states, cur_len, added_len
3534
3535
3536
                        )

            model_kwargs = self._update_model_kwargs_for_generation(
3537
3538
3539
                outputs,
                model_kwargs,
                is_encoder_decoder=self.config.is_encoder_decoder,
3540
                num_new_tokens=n_matches + 1,
3541
3542
            )

3543
            unfinished_sequences = unfinished_sequences & ~stopping_criteria(input_ids, scores)
3544
            this_peer_finished = unfinished_sequences.max() == 0
3545

3546
3547
3548
        if streamer is not None:
            streamer.end()

3549
3550
3551
3552
3553
3554
3555
        if (
            hasattr(candidate_generator, "assistant_model")
            and candidate_generator.assistant_model.generation_config.num_assistant_tokens_schedule == "heuristic"
        ):
            candidate_generator.assistant_model.generation_config.num_assistant_tokens = (
                candidate_generator.num_assistant_tokens
            )
3556
3557
        if return_dict_in_generate:
            if self.config.is_encoder_decoder:
3558
                return GenerateEncoderDecoderOutput(
3559
3560
                    sequences=input_ids,
                    scores=scores,
3561
                    logits=raw_logits,
3562
3563
3564
3565
3566
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
3567
                    past_key_values=model_kwargs.get("past_key_values"),
3568
3569
                )
            else:
3570
                return GenerateDecoderOnlyOutput(
3571
3572
                    sequences=input_ids,
                    scores=scores,
3573
                    logits=raw_logits,
3574
3575
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
3576
                    past_key_values=model_kwargs.get("past_key_values"),
3577
3578
3579
3580
3581
                )
        else:
            return input_ids


3582
3583
3584
3585
3586
def _speculative_sampling(
    candidate_input_ids,
    candidate_logits,
    candidate_length,
    new_logits,
3587
    is_done_candidate,
3588
3589
3590
):
    """
    Applies sampling as in the speculative decoding paper (https://arxiv.org/pdf/2211.17192.pdf, algorithm 1). Returns
3591
    the selected tokens, as well as the number of candidate matches.
3592
3593
3594

    NOTE: Unless otherwise stated, the variable names match those in the paper.
    """
3595
    new_candidate_input_ids = candidate_input_ids[:, -candidate_length:]
3596
3597
3598
    # Gets the probabilities from the logits. q_i and p_i denote the assistant and model probabilities of the tokens
    # selected by the assistant, respectively.
    q = candidate_logits.softmax(dim=-1)
3599
    q_i = q[:, torch.arange(candidate_length), new_candidate_input_ids].squeeze(0, 1)
3600
    p = new_logits.softmax(dim=-1)
3601
    p_i = p[:, torch.arange(candidate_length), new_candidate_input_ids].squeeze(0, 1)
3602
3603
3604
3605
3606
3607
3608
    probability_ratio = p_i / q_i

    # When probability_ratio > 1 (i.e. q_i(x) < p_i(x), or "assistant probability of the candidate token is smaller
    # than the model probability for the same token"), keep the token. Otherwise reject with p = 1 - probability_ratio
    # (= keep with p = probability_ratio). Keep all the tokens until the first rejection
    r_i = torch.rand_like(probability_ratio)
    is_accepted = r_i <= probability_ratio
3609
    n_matches = ((~is_accepted).cumsum(dim=-1) < 1).sum()  # this is `n` in algorithm 1
3610
3611

    # Ensure we don't generate beyond max_len or an EOS token (not in algorithm 1, but needed for correct behavior)
3612
    if is_done_candidate and n_matches == candidate_length:
3613
3614
        # Output length is assumed to be `n_matches + 1`. Since we won't generate another token with the target model
        # due to acceptance on EOS we fix `n_matches`
3615
        n_matches -= 1
3616
        valid_tokens = new_candidate_input_ids[:, : n_matches + 1]
3617
    else:
3618
        # Next token selection: if there is a rejection, adjust the distribution from the main model before sampling.
3619
        gamma = candidate_logits.shape[1]
3620
3621
3622
3623
3624
3625
3626
3627
        p_n_plus_1 = p[:, n_matches, :]
        if n_matches < gamma:
            q_n_plus_1 = q[:, n_matches, :]
            p_prime = torch.clamp((p_n_plus_1 - q_n_plus_1), min=0)
            p_prime.div_(p_prime.sum())
        else:
            p_prime = p_n_plus_1
        t = torch.multinomial(p_prime, num_samples=1).squeeze(1)[None, :]
3628

3629
3630
3631
3632
3633
        # The selected tokens include the matches (if any) plus the next sampled tokens
        if n_matches > 0:
            valid_tokens = torch.cat((new_candidate_input_ids[:, :n_matches], t), dim=-1)
        else:
            valid_tokens = t
3634
3635

    return valid_tokens, n_matches
3636
3637


3638
def _split_model_outputs(outputs, new_outputs, cur_len, added_len, is_decoder_attention=False):
3639
3640
3641
3642
3643
3644
    """
    Given the (decoder/cross attentions)/(decoder hidden states) for multiple generated tokens, splits it into a tuple
    where each member corresponds to a single generated token.
    """
    # Retrocompatibility: in our generation functions, the first iteration includes the attention/hidden states for the
    # prompt.
3645
    if len(outputs) == 0:
3646
3647
        new_tuple = ()
        for layer in new_outputs:
3648
3649
            last_dim_size = cur_len if is_decoder_attention else layer.shape[-1]
            new_tuple += (layer[..., :cur_len, :last_dim_size],)
3650
        outputs += (new_tuple,)
3651
3652
3653
        # The first iteration contains the prompt + 1 generated token, let's update the length variables accordingly
        cur_len += 1
        added_len -= cur_len
3654

3655
    for i in range(added_len):
3656
3657
        new_tuple = ()
        for layer in new_outputs:
3658
            last_dim_size = cur_len + i if is_decoder_attention else layer.shape[-1]
3659
3660
3661
3662
            new_tuple += (layer[..., i : i + 1, :last_dim_size],)
        outputs += (new_tuple,)
    return outputs

3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684

def _ranking_fast(
    context_hidden: torch.FloatTensor,
    next_hidden: torch.FloatTensor,
    next_top_k_probs: torch.FloatTensor,
    alpha: float,
    beam_width: int,
) -> torch.FloatTensor:
    """
    Reranks the top_k candidates based on a degeneration penalty (cosine similarity with previous tokens), as described
    in the paper "A Contrastive Framework for Neural Text Generation". Returns the index of the best candidate for each
    row in the batch.
    """
    norm_context_hidden = context_hidden / context_hidden.norm(dim=2, keepdim=True)
    norm_next_hidden = next_hidden / next_hidden.norm(dim=2, keepdim=True)
    cosine_matrix = torch.matmul(norm_context_hidden, norm_next_hidden.transpose(1, 2)).squeeze(-1)  # [B*K, S]
    degeneration_penalty, _ = torch.max(cosine_matrix, dim=-1)  # [B*K]
    next_top_k_probs = next_top_k_probs.view(-1)  # [B*K]
    contrastive_score = (1.0 - alpha) * next_top_k_probs - alpha * degeneration_penalty
    contrastive_score = torch.stack(torch.split(contrastive_score, beam_width))  # [B, K]
    _, selected_idx = contrastive_score.max(dim=-1)  # [B]
    return selected_idx
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748


def _split(data, full_batch_size: int, split_size: int = None):
    """
    Takes care of three cases:
    1. data is a tensor: e.g. last_hidden_state, pooler_output etc. split them on the batch_size dim
    2. data is a tuple: e.g. hidden_states, attentions etc. Keep the tuple as it is and split each tensor in it and
       return a list of tuples
    3. data is a tuple of tuples, e.g. past_key_values. Keep the tuple as it is and split each tuple in it and
       return a list of tuples of tuples
    (see documentation of ModelOutput)
    """
    if data is None:
        return [None] * (full_batch_size // split_size)
    if isinstance(data, torch.Tensor):
        return [data[i : i + split_size] for i in range(0, full_batch_size, split_size)]
    elif isinstance(data, tuple):
        # If the elements of the tuple are also tuples (e.g., past_key_values in our earlier example)
        if isinstance(data[0], tuple):
            return [
                tuple(tuple(tensor[i : i + split_size] for tensor in inner_tuple) for inner_tuple in data)
                for i in range(0, full_batch_size, split_size)
            ]

        else:
            return [
                tuple(sub_tensor[i : i + split_size] for sub_tensor in data)
                for i in range(0, full_batch_size, split_size)
            ]
    else:
        raise ValueError(f"Unexpected attribute type: {type(data)}")


def _split_model_inputs(
    model_input: Union[ModelOutput, Dict], split_size: int, full_batch_size: int
) -> List[Union[ModelOutput, Dict]]:
    """
    Split a ModelOutput object (or its subclasses) or Dict into a list of same-class objects based on a specified split
    size. The input object is dict when it was prepared for forward pass and ModelOutput when it was returned from
    previous forward pass.
    """
    # Edge case: if model_input is None, return a list of Nones
    # this happens with Whisper where encoder_outputs is None
    if model_input is None:
        return [model_input] * (full_batch_size // split_size)
    # Infer the class from the object
    model_output_cls = type(model_input)
    if (full_batch_size % split_size) != 0:
        raise ValueError("`full_batch_size` must be divisible by `split_size`")

    if split_size > full_batch_size:
        raise ValueError("`split_size` must be smaller or equal to `full_batch_size`")

    # Helper function to split tensors or tuples of tensors

    # Find all the dataclass fields (e.g., last_hidden_state, pooler_output etc.) and split them
    keys = (
        model_input.__dataclass_fields__.keys() if hasattr(model_input, "__dataclass_fields__") else model_input.keys()
    )
    # We only keep keys that are in the model_input
    keys = [k for k in keys if k in model_input]
    # Here we can have four types of values: tensors, tuples of tensors and booleans, and encoder_outputs which is a
    # ModelOutput object.
    # bool should not be split but replicated for each split
3749
    bool_keys = [k for k in keys if isinstance(model_input[k], bool) or k == "cache_position"]
tomeras91's avatar
tomeras91 committed
3750
    keys_to_ignore = ["cache_position", "encoder_outputs", "num_logits_to_keep"]
3751
    non_bool_keys = [k for k in keys if not isinstance(model_input[k], bool) and k not in keys_to_ignore]
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765

    # we split the tensors and tuples of tensors
    data_split_list = [
        {k: _split(model_input[k], full_batch_size, split_size)[i] for k in non_bool_keys}
        for i in range(full_batch_size // split_size)
    ]
    # bool values are the same and replicated for each split
    bool_data = {k: model_input[k] for k in bool_keys}
    # encoder_outputs is a ModelOutput object and should be split by its own
    if "encoder_outputs" in model_input:
        encoder_outputs_split = _split_model_inputs(model_input["encoder_outputs"], split_size, full_batch_size)
        data_split_list = [
            {**data_split, "encoder_outputs": encoder_outputs_split[i]} for i, data_split in enumerate(data_split_list)
        ]
tomeras91's avatar
tomeras91 committed
3766
3767
3768
3769
3770
    # num_logits_to_keep should be replicated for each split, similar to bool values
    if "num_logits_to_keep" in model_input:
        data_split_list = [
            {**data_split, "num_logits_to_keep": model_input["num_logits_to_keep"]} for data_split in data_split_list
        ]
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826

    # Convert each dictionary in the list to an object of the inferred class
    split_model_inputs: List[Union[ModelOutput, Dict]] = [
        model_output_cls(**data_split, **bool_data) for data_split in data_split_list
    ]

    return split_model_inputs


def stack_model_outputs(model_outputs: List[ModelOutput]) -> ModelOutput:
    """
    Stack a list of ModelOutput objects (or its subclasses) along the batch_size dimension. The function infers the
    specific ModelOutput subclass from the list provided.
    """
    if not model_outputs:
        raise ValueError("Input list is empty.")

    # Infer the class from the first object in the list
    model_output_cls = type(model_outputs[0])

    # Ensure all objects are of the same type
    if not all(isinstance(obj, model_output_cls) for obj in model_outputs):
        raise ValueError("All elements in the list should be of the same type.")

    # Helper function to concat tensors or tuples of tensors
    def _concat(data):
        """
        Reverse of `_split` function above.
        """
        if any(data is None for data in data):
            return None
        if isinstance(data[0], torch.Tensor):
            return torch.cat(data, dim=0)
        elif isinstance(data[0], tuple):
            # If the elements of the tuple are also tuples (e.g., past_key_values in our earlier example)
            if isinstance(data[0][0], tuple):
                return tuple(
                    tuple(torch.cat([attr[i][j] for attr in data], dim=0) for j in range(len(data[0][0])))
                    for i in range(len(data[0]))
                )
            else:
                return tuple(torch.cat([attr[i] for attr in data], dim=0) for i in range(len(data[0])))
        elif isinstance(data[0], (int, float)):
            # If the elements are integers or floats, return a tensor
            return torch.tensor(data)
        else:
            raise ValueError(f"Unexpected attribute type: {type(data[0])}")

    # Use a dictionary comprehension to gather attributes from all objects and concatenate them
    concatenated_data = {
        k: _concat([getattr(model_output, k) for model_output in model_outputs])
        for k in model_output_cls.__dataclass_fields__.keys()
    }

    # Return a new object of the inferred class with the concatenated attributes
    return model_output_cls(**concatenated_data)