test_modeling_tf_common.py 73.1 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16
17

import copy
18
import inspect
19
import json
Aymeric Augustin's avatar
Aymeric Augustin committed
20
import os
thomwolf's avatar
thomwolf committed
21
import random
Aymeric Augustin's avatar
Aymeric Augustin committed
22
import tempfile
23
import unittest
24
from importlib import import_module
25
from typing import List, Tuple
thomwolf's avatar
thomwolf committed
26

27
from huggingface_hub import delete_repo, login
Sylvain Gugger's avatar
Sylvain Gugger committed
28
from requests.exceptions import HTTPError
29
from transformers import is_tf_available
30
from transformers.models.auto import get_values
31
from transformers.testing_utils import tooslow  # noqa: F401
Lysandre Debut's avatar
Lysandre Debut committed
32
from transformers.testing_utils import (
Sylvain Gugger's avatar
Sylvain Gugger committed
33
34
    PASS,
    USER,
35
    CaptureLogger,
Lysandre Debut's avatar
Lysandre Debut committed
36
37
    _tf_gpu_memory_limit,
    is_pt_tf_cross_test,
Sylvain Gugger's avatar
Sylvain Gugger committed
38
    is_staging_test,
Lysandre Debut's avatar
Lysandre Debut committed
39
    require_tf,
40
    require_tf2onnx,
Lysandre Debut's avatar
Lysandre Debut committed
41
    slow,
42
    torch_device,
Lysandre Debut's avatar
Lysandre Debut committed
43
)
44
from transformers.utils import logging
45

Aymeric Augustin's avatar
Aymeric Augustin committed
46

47
48
49
logger = logging.get_logger(__name__)


50
if is_tf_available():
thomwolf's avatar
thomwolf committed
51
    import numpy as np
52
    import tensorflow as tf
53

54
    from transformers import (
55
        TF_MODEL_FOR_CAUSAL_LM_MAPPING,
Yih-Dar's avatar
Yih-Dar committed
56
        TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
57
        TF_MODEL_FOR_MASKED_LM_MAPPING,
58
        TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
59
        TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
60
        TF_MODEL_FOR_PRETRAINING_MAPPING,
61
        TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
62
        TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
63
        TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
Joao Gante's avatar
Joao Gante committed
64
        TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING,
65
        TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
Sylvain Gugger's avatar
Sylvain Gugger committed
66
        BertConfig,
67
        TFAutoModel,
68
        TFAutoModelForSequenceClassification,
Sylvain Gugger's avatar
Sylvain Gugger committed
69
        TFBertModel,
70
71
        TFSharedEmbeddings,
        tf_top_k_top_p_filtering,
72
    )
73
74
75
76
77
78
79
80
81
82
    from transformers.generation_tf_utils import (
        TFBeamSampleDecoderOnlyOutput,
        TFBeamSampleEncoderDecoderOutput,
        TFBeamSearchDecoderOnlyOutput,
        TFBeamSearchEncoderDecoderOutput,
        TFGreedySearchDecoderOnlyOutput,
        TFGreedySearchEncoderDecoderOutput,
        TFSampleDecoderOnlyOutput,
        TFSampleEncoderDecoderOutput,
    )
83

Julien Chaumond's avatar
Julien Chaumond committed
84
85
86
87
88
    if _tf_gpu_memory_limit is not None:
        gpus = tf.config.list_physical_devices("GPU")
        for gpu in gpus:
            # Restrict TensorFlow to only allocate x GB of memory on the GPUs
            try:
Julien Plu's avatar
Julien Plu committed
89
90
                tf.config.set_logical_device_configuration(
                    gpu, [tf.config.LogicalDeviceConfiguration(memory_limit=_tf_gpu_memory_limit)]
Julien Chaumond's avatar
Julien Chaumond committed
91
                )
Julien Plu's avatar
Julien Plu committed
92
                logical_gpus = tf.config.list_logical_devices("GPU")
Julien Chaumond's avatar
Julien Chaumond committed
93
94
95
96
                print("Logical GPUs", logical_gpus)
            except RuntimeError as e:
                # Virtual devices must be set before GPUs have been initialized
                print(e)
thomwolf's avatar
thomwolf committed
97

98

thomwolf's avatar
thomwolf committed
99
100
101
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
102
        if "_range" in key or "_std" in key:
thomwolf's avatar
thomwolf committed
103
104
105
106
            setattr(configs_no_init, key, 0.0)
    return configs_no_init


107
108
@require_tf
class TFModelTesterMixin:
109

110
111
    model_tester = None
    all_model_classes = ()
112
    all_generative_model_classes = ()
113
    test_mismatched_shapes = True
114
    test_resize_embeddings = True
115
    test_head_masking = True
116
    is_encoder_decoder = False
117

Lysandre Debut's avatar
Lysandre Debut committed
118
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False) -> dict:
119
120
        inputs_dict = copy.deepcopy(inputs_dict)

121
        if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
122
            inputs_dict = {
123
124
                k: tf.tile(tf.expand_dims(v, 1), (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1))
                if isinstance(v, tf.Tensor) and v.ndim > 0
125
126
127
                else v
                for k, v in inputs_dict.items()
            }
128
129

        if return_labels:
130
            if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
131
                inputs_dict["labels"] = tf.ones(self.model_tester.batch_size, dtype=tf.int32)
132
            elif model_class in get_values(TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING):
133
134
                inputs_dict["start_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
                inputs_dict["end_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
Yih-Dar's avatar
Yih-Dar committed
135
136
137
138
            elif model_class in [
                *get_values(TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
                *get_values(TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
            ]:
139
                inputs_dict["labels"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
140
            elif model_class in get_values(TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING):
141
                inputs_dict["next_sentence_label"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
142
            elif model_class in [
143
144
145
146
147
                *get_values(TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING),
                *get_values(TF_MODEL_FOR_CAUSAL_LM_MAPPING),
                *get_values(TF_MODEL_FOR_MASKED_LM_MAPPING),
                *get_values(TF_MODEL_FOR_PRETRAINING_MAPPING),
                *get_values(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING),
Joao Gante's avatar
Joao Gante committed
148
                *get_values(TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING),
149
150
151
152
            ]:
                inputs_dict["labels"] = tf.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=tf.int32
                )
153
154
        return inputs_dict

155
156
    def test_initialization(self):
        pass
157

158
159
    def test_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
160

161
162
        for model_class in self.all_model_classes:
            model = model_class(config)
163
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
164

165
            with tempfile.TemporaryDirectory() as tmpdirname:
Julien Plu's avatar
Julien Plu committed
166
                model.save_pretrained(tmpdirname, saved_model=False)
167
                model = model_class.from_pretrained(tmpdirname)
168
                after_outputs = model(self._prepare_for_class(inputs_dict, model_class))
169

170
                self.assert_outputs_same(after_outputs, outputs)
171

172
173
174
175
176
177
    def test_save_load_config(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
178
179
180
            model_config = model.get_config()
            # make sure that returned config is jsonifiable, which is required by keras
            json.dumps(model_config)
181
            new_model = model_class.from_config(model.get_config())
182
183
            # make sure it also accepts a normal config
            _ = model_class.from_config(model.config)
184
185
186
187
188
189
            _ = new_model(self._prepare_for_class(inputs_dict, model_class))  # Build model
            new_model.set_weights(model.get_weights())
            after_outputs = new_model(self._prepare_for_class(inputs_dict, model_class))

            self.assert_outputs_same(after_outputs, outputs)

190
191
192
193
194
195
196
197
198
199
200
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.call)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
Julien Plu's avatar
Julien Plu committed
201
                    "input_ids",
202
203
204
205
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                ]
206
                expected_arg_names.extend(
207
208
209
210
211
212
                    ["head_mask", "decoder_head_mask"] if "head_mask" and "decoder_head_mask" in arg_names else []
                )
                # Necessary to handle BART with newly added cross_attn_head_mask
                expected_arg_names.extend(
                    ["cross_attn_head_mask", "encoder_outputs"]
                    if "cross_attn_head_mask" in arg_names
213
214
215
                    else ["encoder_outputs"]
                )
                self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
216
217

            else:
Julien Plu's avatar
Julien Plu committed
218
                expected_arg_names = ["input_ids"]
219
220
                self.assertListEqual(arg_names[:1], expected_arg_names)

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
    def test_onnx_compliancy(self):
        if not self.test_onnx:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        INTERNAL_OPS = [
            "Assert",
            "AssignVariableOp",
            "EmptyTensorList",
            "ReadVariableOp",
            "ResourceGather",
            "TruncatedNormal",
            "VarHandleOp",
            "VarIsInitializedOp",
        ]
        onnx_ops = []

        with open(os.path.join(".", "utils", "tf_ops", "onnx.json")) as f:
            onnx_opsets = json.load(f)["opsets"]

        for i in range(1, self.onnx_min_opset + 1):
            onnx_ops.extend(onnx_opsets[str(i)])

        for model_class in self.all_model_classes:
            model_op_names = set()

            with tf.Graph().as_default() as g:
                model = model_class(config)
                model(model.dummy_inputs)

                for op in g.get_operations():
                    model_op_names.add(op.node_def.op)

            model_op_names = sorted(model_op_names)
            incompatible_ops = []

            for op in model_op_names:
                if op not in onnx_ops and op not in INTERNAL_OPS:
                    incompatible_ops.append(op)

            self.assertEqual(len(incompatible_ops), 0, incompatible_ops)

263
    @require_tf2onnx
264
265
266
267
268
269
    @slow
    def test_onnx_runtime_optimize(self):
        if not self.test_onnx:
            return

        import onnxruntime
270
        import tf2onnx
271
272
273
274
275
276
277

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model(model.dummy_inputs)

278
            onnx_model_proto, _ = tf2onnx.convert.from_keras(model, opset=self.onnx_min_opset)
279

280
            onnxruntime.InferenceSession(onnx_model_proto.SerializeToString())
281

282
283
284
285
286
287
288
289
    def test_keras_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        tf_main_layer_classes = set(
            module_member
            for model_class in self.all_model_classes
            for module in (import_module(model_class.__module__),)
            for module_member_name in dir(module)
290
            if module_member_name.endswith("MainLayer")
Yih-Dar's avatar
Yih-Dar committed
291
292
            # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`.
            and module_member_name[: -len("MainLayer")] == model_class.__name__[: -len("Model")]
293
            for module_member in (getattr(module, module_member_name),)
294
295
296
            if isinstance(module_member, type)
            and tf.keras.layers.Layer in module_member.__bases__
            and getattr(module_member, "_keras_serializable", False)
297
298
        )
        for main_layer_class in tf_main_layer_classes:
Julien Plu's avatar
Julien Plu committed
299
300
301
302
            # T5MainLayer needs an embed_tokens parameter when called without the inputs_embeds parameter
            if "T5" in main_layer_class.__name__:
                # Take the same values than in TFT5ModelTester for this shared layer
                shared = TFSharedEmbeddings(99, 32, name="shared")
Julien Plu's avatar
Julien Plu committed
303
                config.use_cache = inputs_dict.pop("use_cache", None)
Julien Plu's avatar
Julien Plu committed
304
305
306
                main_layer = main_layer_class(config, embed_tokens=shared)
            else:
                main_layer = main_layer_class(config)
Julien Plu's avatar
Julien Plu committed
307

308
309
310
            symbolic_inputs = {
                name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype) for name, tensor in inputs_dict.items()
            }
Julien Plu's avatar
Julien Plu committed
311

312
313
314
315
316
317
            model = tf.keras.Model(symbolic_inputs, outputs=main_layer(symbolic_inputs))
            outputs = model(inputs_dict)

            with tempfile.TemporaryDirectory() as tmpdirname:
                filepath = os.path.join(tmpdirname, "keras_model.h5")
                model.save(filepath)
Julien Plu's avatar
Julien Plu committed
318
319
320
321
322
323
324
325
326
327
328
329
                if "T5" in main_layer_class.__name__:
                    model = tf.keras.models.load_model(
                        filepath,
                        custom_objects={
                            main_layer_class.__name__: main_layer_class,
                            "TFSharedEmbeddings": TFSharedEmbeddings,
                        },
                    )
                else:
                    model = tf.keras.models.load_model(
                        filepath, custom_objects={main_layer_class.__name__: main_layer_class}
                    )
330
331
332
333
334
335
                assert isinstance(model, tf.keras.Model)
                after_outputs = model(inputs_dict)
                self.assert_outputs_same(after_outputs, outputs)

    def assert_outputs_same(self, after_outputs, outputs):
        # Make sure we don't have nans
Julien Plu's avatar
Julien Plu committed
336
337
        if isinstance(after_outputs, tf.Tensor):
            out_1 = after_outputs.numpy()
Sylvain Gugger's avatar
Sylvain Gugger committed
338
        elif isinstance(after_outputs, dict):
339
            out_1 = after_outputs[list(after_outputs.keys())[0]].numpy()
Julien Plu's avatar
Julien Plu committed
340
341
        else:
            out_1 = after_outputs[0].numpy()
342
        out_2 = outputs[0].numpy()
343
        self.assertEqual(out_1.shape, out_2.shape)
344
345
346
347
        out_1 = out_1[~np.isnan(out_1)]
        out_2 = out_2[~np.isnan(out_2)]
        max_diff = np.amax(np.abs(out_1 - out_2))
        self.assertLessEqual(max_diff, 1e-5)
348

349
    @is_pt_tf_cross_test
350
351
    def test_pt_tf_model_equivalence(self):
        import torch
352

353
        import transformers
thomwolf's avatar
thomwolf committed
354

355
        def prepare_pt_inputs_from_tf_inputs(tf_inputs_dict):
356

Julien Plu's avatar
Julien Plu committed
357
            pt_inputs_dict = {}
358
            for name, key in tf_inputs_dict.items():
Julien Plu's avatar
Julien Plu committed
359
360
                if type(key) == bool:
                    pt_inputs_dict[name] = key
Will Rice's avatar
Will Rice committed
361
362
                elif name == "input_values":
                    pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
Yih-Dar's avatar
Yih-Dar committed
363
364
                elif name == "pixel_values":
                    pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
Joao Gante's avatar
Joao Gante committed
365
366
                elif name == "input_features":
                    pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
Julien Plu's avatar
Julien Plu committed
367
368
369
                else:
                    pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.long)

370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
            return pt_inputs_dict

        def check_outputs(tf_outputs, pt_outputs, model_class, names):
            """
            Args:
                model_class: The class of the model that is currently testing. For example, `TFBertModel`,
                    TFBertForMaskedLM`, `TFBertForSequenceClassification`, etc. Currently unused, but it could make
                    debugging easier and faster.

                names: A string, or a tuple of strings. These specify what tf_outputs/pt_outputs represent in the model outputs.
                    Currently unused, but in the future, we could use this information to make the error message clearer
                    by giving the name(s) of the output tensor(s) with large difference(s) between PT and TF.
            """

            # Some issue (`about past_key_values`) to solve (e.g. `TFPegasusForConditionalGeneration`) in a separate PR.
            if names == "past_key_values":
                return

            # Allow `list` because `(TF)TransfoXLModelOutput.mems` is a list of tensors.
            if type(tf_outputs) in [tuple, list]:
                self.assertEqual(type(tf_outputs), type(pt_outputs))
                self.assertEqual(len(tf_outputs), len(pt_outputs))
                if type(names) == tuple:
                    for tf_output, pt_output, name in zip(tf_outputs, pt_outputs, names):
                        check_outputs(tf_output, pt_output, model_class, names=name)
                elif type(names) == str:
                    for idx, (tf_output, pt_output) in enumerate(zip(tf_outputs, pt_outputs)):
                        check_outputs(tf_output, pt_output, model_class, names=f"{names}_{idx}")
                else:
                    raise ValueError(f"`names` should be a `tuple` or a string. Got {type(names)} instead.")
            elif isinstance(tf_outputs, tf.Tensor):
                self.assertTrue(isinstance(pt_outputs, torch.Tensor))

                tf_outputs = tf_outputs.numpy()
                pt_outputs = pt_outputs.detach().to("cpu").numpy()

                tf_nans = np.isnan(tf_outputs)
                pt_nans = np.isnan(pt_outputs)

                pt_outputs[tf_nans] = 0
                tf_outputs[tf_nans] = 0
                pt_outputs[pt_nans] = 0
                tf_outputs[pt_nans] = 0

                max_diff = np.amax(np.abs(tf_outputs - pt_outputs))
                self.assertLessEqual(max_diff, 1e-5)
            else:
                raise ValueError(
                    f"`tf_outputs` should be a `tuple` or an instance of `tf.Tensor`. Got {type(tf_outputs)} instead."
                )

        def check_pt_tf_models(tf_model, pt_model):

            # send pytorch model to the correct device
            pt_model.to(torch_device)

            # Check predictions on first output (logits/hidden-states) are close enough given low-level computational differences
            pt_model.eval()

            pt_inputs_dict = prepare_pt_inputs_from_tf_inputs(tf_inputs_dict)
            pt_inputs_dict_maybe_with_labels = prepare_pt_inputs_from_tf_inputs(tf_inputs_dict_maybe_with_labels)

            # send pytorch inputs to the correct device
            pt_inputs_dict = {
                k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs_dict.items()
            }
            pt_inputs_dict_maybe_with_labels = {
                k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v
                for k, v in pt_inputs_dict_maybe_with_labels.items()
            }

            # Original test: check without `labels`
442
            with torch.no_grad():
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
                pt_outputs = pt_model(**pt_inputs_dict)
            tf_outputs = tf_model(tf_inputs_dict)

            tf_keys = tuple([k for k, v in tf_outputs.items() if v is not None])
            pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

            self.assertEqual(tf_keys, pt_keys)
            check_outputs(tf_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, names=tf_keys)

            # check the case where `labels` is passed
            has_labels = any(
                x in tf_inputs_dict_maybe_with_labels for x in ["labels", "next_sentence_label", "start_positions"]
            )
            if has_labels:

                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs_dict_maybe_with_labels)
                tf_outputs = tf_model(tf_inputs_dict_maybe_with_labels)

                # Some models' output class don't have `loss` attribute despite `labels` is used.
                # TODO: identify which models
                tf_loss = getattr(tf_outputs, "loss", None)
                pt_loss = getattr(pt_outputs, "loss", None)

                # Some PT models return loss while the corresponding TF models don't (i.e. `None` for `loss`).
                #   - TFFlaubertWithLMHeadModel
                #   - TFFunnelForPreTraining
                #   - TFElectraForPreTraining
                #   - TFXLMWithLMHeadModel
                # TODO: Fix PT/TF diff -> remove this condition to fail the test if a diff occurs
                if not ((tf_loss is None and pt_loss is None) or (tf_loss is not None and pt_loss is not None)):
                    if model_class.__name__ not in [
                        "TFFlaubertWithLMHeadModel",
                        "TFFunnelForPreTraining",
                        "TFElectraForPreTraining",
                        "TFXLMWithLMHeadModel",
                    ]:
                        self.assertEqual(tf_loss is None, pt_loss is None)

                tf_keys = tuple([k for k, v in tf_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                # TODO: remove these 2 conditions once the above TODOs (above loss) are implemented
                # (Also, `TFTransfoXLLMHeadModel` has no `loss` while `TransfoXLLMHeadModel` return `losses`)
                if tf_keys != pt_keys:
                    if model_class.__name__ not in [
                        "TFFlaubertWithLMHeadModel",
                        "TFFunnelForPreTraining",
                        "TFElectraForPreTraining",
                        "TFXLMWithLMHeadModel",
                    ] + ["TFTransfoXLLMHeadModel"]:
                        self.assertEqual(tf_keys, pt_keys)

                # Since we deliberately make some tests pass above (regarding the `loss`), let's still try to test
                # some remaining attributes in the outputs.
                # TODO: remove this block of `index` computing once the above TODOs (above loss) are implemented
                # compute the 1st `index` where `tf_keys` and `pt_keys` is different
                index = 0
                for _ in range(min(len(tf_keys), len(pt_keys))):
                    if tf_keys[index] == pt_keys[index]:
                        index += 1
                    else:
                        break
                if tf_keys[:index] != pt_keys[:index]:
                    self.assertEqual(tf_keys, pt_keys)

                # Some models require extra condition to return loss. For example, `(TF)BertForPreTraining` requires
                # both`labels` and `next_sentence_label`.
                if tf_loss is not None and pt_loss is not None:

                    # check anything else than `loss`
                    keys = tuple([k for k in tf_keys])
                    check_outputs(tf_outputs[1:index], pt_outputs[1:index], model_class, names=keys[1:index])

                    # check `loss`

                    # tf models returned loss is usually a tensor rather than a scalar.
                    # (see `hf_compute_loss`: it uses `tf.keras.losses.Reduction.NONE`)
                    # Change it here to a scalar to match PyTorch models' loss
                    tf_loss = tf.math.reduce_mean(tf_loss).numpy()
                    pt_loss = pt_loss.detach().to("cpu").numpy()

                    tf_nans = np.isnan(tf_loss)
                    pt_nans = np.isnan(pt_loss)
                    # the 2 losses need to be both nan or both not nan
                    self.assertEqual(tf_nans, pt_nans)

                    if not tf_nans:
                        max_diff = np.amax(np.abs(tf_loss - pt_loss))
                        self.assertLessEqual(max_diff, 1e-5)

        for model_class in self.all_model_classes:

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Will Rice's avatar
Will Rice committed
537

538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
            # Output all for aggressive testing
            config.output_hidden_states = True
            # Pure convolutional models have no attention
            # TODO: use a better and general criteria
            if "TFConvNext" not in model_class.__name__:
                config.output_attentions = True

            for k in ["attention_mask", "encoder_attention_mask", "decoder_attention_mask"]:
                if k in inputs_dict:
                    attention_mask = inputs_dict[k]
                    # make sure no all 0s attention masks - to avoid failure at this moment.
                    # TODO: remove this line once the TODO below is implemented.
                    attention_mask = tf.ones_like(attention_mask, dtype=tf.int32)
                    # Here we make the first sequence with all 0s as attention mask.
                    # Currently, this will fail for `TFWav2Vec2Model`. This is caused by the different large negative
                    # values, like `1e-4`, `1e-9`, `1e-30` and `-inf` for attention mask across models/frameworks.
                    # TODO: enable this block once the large negative values thing is cleaned up.
                    # (see https://github.com/huggingface/transformers/issues/14859)
                    # attention_mask = tf.concat(
                    #     [
                    #         tf.zeros_like(attention_mask[:1], dtype=tf.int32),
                    #         tf.cast(attention_mask[1:], dtype=tf.int32)
                    #     ],
                    #     axis=0
                    # )
                    inputs_dict[k] = attention_mask

            pt_model_class_name = model_class.__name__[2:]  # Skip the "TF" at the beginning
            pt_model_class = getattr(transformers, pt_model_class_name)

            config.output_hidden_states = True

            tf_model = model_class(config)
            pt_model = pt_model_class(config)
Lysandre's avatar
Lysandre committed
572

573
574
            tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            tf_inputs_dict_maybe_with_labels = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
575

576
577
578
            # Check we can load pt model in tf and vice-versa with model => model functions
            tf_model = transformers.load_pytorch_model_in_tf2_model(tf_model, pt_model, tf_inputs=tf_inputs_dict)
            pt_model = transformers.load_tf2_model_in_pytorch_model(pt_model, tf_model)
Lysandre's avatar
Lysandre committed
579

580
            check_pt_tf_models(tf_model, pt_model)
581
582

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
583
            with tempfile.TemporaryDirectory() as tmpdirname:
584
585
586
587
588
589
590
591
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(tf_model, pt_checkpoint_path)

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path)

592
            check_pt_tf_models(tf_model, pt_model)
593
594
595

    def test_compile_tf_model(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Julien Plu's avatar
Julien Plu committed
596
        max_input = getattr(self.model_tester, "max_position_embeddings", 512)
597
598
599
600
601
        optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0)
        loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
        metric = tf.keras.metrics.SparseCategoricalAccuracy("accuracy")

        for model_class in self.all_model_classes:
Joao Gante's avatar
Joao Gante committed
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
            if model_class.__name__ in ["TFSpeech2TextModel", "TFSpeech2TextForConditionalGeneration"]:
                inputs = {
                    "decoder_input_ids": tf.keras.Input(
                        batch_shape=(2, max_input),
                        name="decoder_input_ids",
                        dtype="int32",
                    ),
                    "input_features": tf.keras.Input(
                        batch_shape=(
                            2,
                            max_input,
                            self.model_tester.input_feat_per_channel * self.model_tester.input_channels,
                        ),
                        name="input_features",
                        dtype="float32",
                    ),
                }
            elif self.is_encoder_decoder:
Yih-Dar's avatar
Yih-Dar committed
620
                inputs = {
621
                    "decoder_input_ids": tf.keras.Input(
Julien Plu's avatar
Julien Plu committed
622
623
624
                        batch_shape=(2, max_input),
                        name="decoder_input_ids",
                        dtype="int32",
625
                    ),
Julien Plu's avatar
Julien Plu committed
626
                    "input_ids": tf.keras.Input(batch_shape=(2, max_input), name="input_ids", dtype="int32"),
627
                }
Sayak Paul's avatar
Sayak Paul committed
628
629
            # `pixel_values` implies that the input is an image
            elif model_class.main_input_name == "pixel_values":
Yih-Dar's avatar
Yih-Dar committed
630
631
632
633
634
635
636
637
638
639
                inputs = tf.keras.Input(
                    batch_shape=(
                        3,
                        self.model_tester.num_channels,
                        self.model_tester.image_size,
                        self.model_tester.image_size,
                    ),
                    name="pixel_values",
                    dtype="float32",
                )
Yih-Dar's avatar
Yih-Dar committed
640
641
642
643
644
645
646
647
648
649
650
651
652
653
            elif model_class.__name__ in ["TFCLIPModel"]:
                inputs = {
                    "input_ids": tf.keras.Input(batch_shape=(3, max_input), name="input_ids", dtype="int32"),
                    "pixel_values": tf.keras.Input(
                        batch_shape=(
                            3,
                            self.model_tester.vision_model_tester.num_channels,
                            self.model_tester.vision_model_tester.image_size,
                            self.model_tester.vision_model_tester.image_size,
                        ),
                        name="pixel_values",
                        dtype="float32",
                    ),
                }
654
            elif model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
Yih-Dar's avatar
Yih-Dar committed
655
                inputs = tf.keras.Input(batch_shape=(4, 2, max_input), name="input_ids", dtype="int32")
656
            else:
Yih-Dar's avatar
Yih-Dar committed
657
                inputs = tf.keras.Input(batch_shape=(2, max_input), name="input_ids", dtype="int32")
658

659
660
            # Prepare our model
            model = model_class(config)
661
            model(self._prepare_for_class(inputs_dict, model_class))  # Model must be called before saving.
662
            # Let's load it from the disk to be sure we can use pretrained weights
663
            with tempfile.TemporaryDirectory() as tmpdirname:
Julien Plu's avatar
Julien Plu committed
664
                model.save_pretrained(tmpdirname, saved_model=False)
665
666
                model = model_class.from_pretrained(tmpdirname)

Yih-Dar's avatar
Yih-Dar committed
667
            outputs_dict = model(inputs)
668
669
            hidden_states = outputs_dict[0]

670
            # Add a dense layer on top to test integration with other keras modules
671
672
673
            outputs = tf.keras.layers.Dense(2, activation="softmax", name="outputs")(hidden_states)

            # Compile extended model
Yih-Dar's avatar
Yih-Dar committed
674
            extended_model = tf.keras.Model(inputs=[inputs], outputs=[outputs])
675
676
677
678
679
680
681
            extended_model.compile(optimizer=optimizer, loss=loss, metrics=[metric])

    def test_keyword_and_dict_args(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
682
683
684
            inputs = self._prepare_for_class(inputs_dict, model_class)

            outputs_dict = model(inputs)
685

686
            inputs_keywords = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
Joao Gante's avatar
Joao Gante committed
687
            outputs_keywords = model(**inputs_keywords)
688
689
690
691
692
693
694
            output_dict = outputs_dict[0].numpy()
            output_keywords = outputs_keywords[0].numpy()

            self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6)

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
695
        config.return_dict = True
696
697
698
699
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", self.model_tester.seq_length)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length)
        decoder_key_length = getattr(self.model_tester, "key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
700

Julien Plu's avatar
Julien Plu committed
701
702
        def check_decoder_attentions_output(outputs):
            out_len = len(outputs)
703
            self.assertEqual(min(out_len % 2, out_len % 5), 0)  # differentiation due to newly added cross_attentions
Julien Plu's avatar
Julien Plu committed
704
705
706
707
708
709
710
711
            decoder_attentions = outputs.decoder_attentions
            self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(decoder_attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
            )

        def check_encoder_attentions_output(outputs):
712
713
714
            attentions = [
                t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
            ]
715
716
717
718
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
719
            )
Julien Plu's avatar
Julien Plu committed
720
721
722
723
724
725
726

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["use_cache"] = False
            config.output_hidden_states = False
            model = model_class(config)
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
727
            out_len = len(outputs)
Julien Plu's avatar
Julien Plu committed
728
729
            self.assertEqual(config.output_hidden_states, False)
            check_encoder_attentions_output(outputs)
thomwolf's avatar
thomwolf committed
730

731
            if self.is_encoder_decoder:
Julien Plu's avatar
Julien Plu committed
732
733
734
735
                model = model_class(config)
                outputs = model(self._prepare_for_class(inputs_dict, model_class))
                self.assertEqual(config.output_hidden_states, False)
                check_decoder_attentions_output(outputs)
thomwolf's avatar
thomwolf committed
736

737
738
            # Check that output attentions can also be changed via the config
            del inputs_dict["output_attentions"]
739
            config.output_attentions = True
740
            model = model_class(config)
741
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
Julien Plu's avatar
Julien Plu committed
742
743
            self.assertEqual(config.output_hidden_states, False)
            check_encoder_attentions_output(outputs)
744
745
746

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
747
748
            config.output_hidden_states = True
            model = model_class(config)
749
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
Julien Plu's avatar
Julien Plu committed
750

751
752
            self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs))
            self.assertEqual(model.config.output_hidden_states, True)
Julien Plu's avatar
Julien Plu committed
753
            check_encoder_attentions_output(outputs)
754

755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
    def test_headmasking(self):
        if not self.test_head_masking:
            return

        random.Random().seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        random.Random().seed()

        inputs_dict["output_attentions"] = True
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)

            # Prepare head_mask
            def prepare_layer_head_mask(i, attention_heads, num_hidden_layers):
                if i == 0:
                    return tf.concat(
                        (tf.zeros(1, dtype=tf.float32), tf.ones(attention_heads - 1, dtype=tf.float32)), 0
                    )
                elif i == num_hidden_layers - 1:
                    return tf.concat(
                        (tf.zeros(attention_heads - 1, dtype=tf.float32), tf.ones(1, dtype=tf.float32)), 0
                    )
                else:
                    return tf.ones(attention_heads, dtype=tf.float32)

            head_mask = tf.stack(
                [
                    prepare_layer_head_mask(i, config.num_attention_heads, config.num_hidden_layers)
                    for i in range(config.num_hidden_layers)
                ],
                0,
            )

            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
            inputs["head_mask"] = head_mask
            if model.config.is_encoder_decoder:
                signature = inspect.signature(model.call)
                arg_names = [*signature.parameters.keys()]
                if "decoder_head_mask" in arg_names:  # necessary diferentiation because of T5 model
                    inputs["decoder_head_mask"] = head_mask
797
798
                if "cross_attn_head_mask" in arg_names:
                    inputs["cross_attn_head_mask"] = head_mask
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822

            outputs = model(**inputs, return_dict=True)

            def check_attentions_validity(attentions):
                # Remove Nan
                for t in attentions:
                    self.assertLess(
                        (tf.math.reduce_sum(tf.cast(tf.math.is_nan(t), tf.float32))).numpy(), (tf.size(t) / 4).numpy()
                    )  # Check we don't have more than 25% nans (arbitrary)

                attentions = [
                    tf.where(tf.math.is_nan(t), 0.0, t) for t in attentions
                ]  # remove them (the test is less complete)

                self.assertAlmostEqual(tf.math.reduce_sum(attentions[0][..., 0, :, :]).numpy(), 0.0)
                self.assertNotEqual(tf.math.reduce_sum(attentions[0][..., -1, :, :]).numpy(), 0.0)
                if len(attentions) > 2:  # encoder-decodere models have only 2 layers in each modules
                    self.assertNotEqual(tf.math.reduce_sum(attentions[1][..., 0, :, :]).numpy(), 0.0)
                self.assertAlmostEqual(tf.math.reduce_sum(attentions[-1][..., -2, :, :]).numpy(), 0.0)
                self.assertNotEqual(tf.math.reduce_sum(attentions[-1][..., -1, :, :]).numpy(), 0.0)

            if model.config.is_encoder_decoder:
                check_attentions_validity(outputs.encoder_attentions)
                check_attentions_validity(outputs.decoder_attentions)
823
824
                if "cross_attn_head_mask" in arg_names:
                    check_attentions_validity(outputs.cross_attentions)
825
826
827
            else:
                check_attentions_validity(outputs.attentions)

828
829
830
    def test_hidden_states_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Joseph Liu's avatar
Joseph Liu committed
831
        def check_hidden_states_output(config, inputs_dict, model_class):
832
            model = model_class(config)
833
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
834
835
836
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
Julien Plu's avatar
Julien Plu committed
837

Julien Plu's avatar
Julien Plu committed
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
            if model.config.is_encoder_decoder:
                encoder_hidden_states = outputs.encoder_hidden_states
                decoder_hidden_states = outputs.decoder_hidden_states

                self.assertEqual(config.output_attentions, False)
                self.assertEqual(len(encoder_hidden_states), expected_num_layers)
                self.assertListEqual(
                    list(encoder_hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
                )
                self.assertEqual(len(decoder_hidden_states), expected_num_layers)
                self.assertListEqual(
                    list(decoder_hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
                )
            else:
                hidden_states = outputs.hidden_states
                self.assertEqual(config.output_attentions, False)
                self.assertEqual(len(hidden_states), expected_num_layers)
                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
                )
861

Joseph Liu's avatar
Joseph Liu committed
862
863
864
865
866
867
868
869
        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(config, inputs_dict, model_class)

            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True
            check_hidden_states_output(config, inputs_dict, model_class)

870
871
    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Joao Gante's avatar
Joao Gante committed
872
        text_in_text_out_models = (
873
874
875
            get_values(TF_MODEL_FOR_CAUSAL_LM_MAPPING)
            + get_values(TF_MODEL_FOR_MASKED_LM_MAPPING)
            + get_values(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING)
876
        )
Joao Gante's avatar
Joao Gante committed
877
        speech_in_text_out_models = get_values(TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING)
878
879
880

        for model_class in self.all_model_classes:
            model = model_class(config)
881
            assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
Joao Gante's avatar
Joao Gante committed
882
            if model_class in text_in_text_out_models:
883
                x = model.get_output_embeddings()
884
                assert isinstance(x, tf.keras.layers.Layer)
885
886
887
888
                name = model.get_bias()
                assert isinstance(name, dict)
                for k, v in name.items():
                    assert isinstance(v, tf.Variable)
Joao Gante's avatar
Joao Gante committed
889
890
891
892
893
            elif model_class in speech_in_text_out_models:
                x = model.get_output_embeddings()
                assert isinstance(x, tf.keras.layers.Layer)
                name = model.get_bias()
                assert name is None
894
            else:
895
                x = model.get_output_embeddings()
896
                assert x is None
897
898
                name = model.get_bias()
                assert name is None
899
900
901
902
903
904

    def test_determinism(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
905
            first, second = (
906
907
                model(self._prepare_for_class(inputs_dict, model_class), training=False)[0],
                model(self._prepare_for_class(inputs_dict, model_class), training=False)[0],
908
            )
909
910
911
912
913
914
915
            out_1 = first.numpy()
            out_2 = second.numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
    def test_model_outputs_equivalence(self):

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            tuple_output = model(tuple_inputs, return_dict=False, **additional_kwargs)
            dict_output = model(dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

            def recursive_check(tuple_object, dict_object):
                if isinstance(tuple_object, (List, Tuple)):
                    for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                        recursive_check(tuple_iterable_value, dict_iterable_value)
                elif tuple_object is None:
                    return
                else:
                    self.assertTrue(
                        all(tf.equal(tuple_object, dict_object)),
                        msg=f"Tuple and dict output are not equal. Difference: {tf.math.reduce_max(tf.abs(tuple_object - dict_object))}",
                    )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(
                model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
            )

971
972
973
974
975
976
    def test_inputs_embeds(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)

977
978
            inputs = copy.deepcopy(inputs_dict)

979
980
981
982
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
983
                encoder_input_ids = inputs["input_ids"]
984
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
985
                del inputs["input_ids"]
986
987
                inputs.pop("decoder_input_ids", None)

thomwolf's avatar
thomwolf committed
988
            if not self.is_encoder_decoder:
989
                inputs["inputs_embeds"] = model.get_input_embeddings()(input_ids)
thomwolf's avatar
thomwolf committed
990
            else:
991
992
                inputs["inputs_embeds"] = model.get_input_embeddings()(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = model.get_input_embeddings()(decoder_input_ids)
993

994
995
            inputs = self._prepare_for_class(inputs, model_class)

996
            model(inputs)
997

998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
    def test_numpy_arrays_inputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def prepare_numpy_arrays(inputs_dict):
            inputs_np_dict = {}
            for k, v in inputs_dict.items():
                if tf.is_tensor(v):
                    inputs_np_dict[k] = v.numpy()
                else:
                    inputs_np_dict[k] = np.array(k)

            return inputs_np_dict

        for model_class in self.all_model_classes:
            model = model_class(config)

            inputs = self._prepare_for_class(inputs_dict, model_class)
            inputs_np = prepare_numpy_arrays(inputs)

1017
1018
1019
            output_for_dict_input = model(inputs_np)
            output_for_kw_input = model(**inputs_np)
            self.assert_outputs_same(output_for_dict_input, output_for_kw_input)
1020

1021
1022
1023
1024
    def test_resize_token_embeddings(self):
        if not self.test_resize_embeddings:
            return
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
1025
1026

        def _get_word_embedding_weight(model, embedding_layer):
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
            embeds = getattr(embedding_layer, "weight", None)
            if embeds is not None:
                return embeds

            embeds = getattr(embedding_layer, "decoder", None)
            if embeds is not None:
                return embeds

            model(model.dummy_inputs)

            embeds = getattr(embedding_layer, "weight", None)
            if embeds is not None:
                return embeds

            embeds = getattr(embedding_layer, "decoder", None)
            if embeds is not None:
                return embeds

            return None
1046

1047
1048
1049
1050
        for model_class in self.all_model_classes:
            for size in [config.vocab_size - 10, config.vocab_size + 10, None]:
                # build the embeddings
                model = model_class(config=config)
1051
1052
1053
                old_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings())
                old_bias = model.get_bias()
                old_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings())
1054
                # reshape the embeddings
1055
1056
1057
1058
1059
1060
                model.resize_token_embeddings(size)
                new_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings())
                new_bias = model.get_bias()
                new_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings())

                # check that the resized embeddings size matches the desired size.
1061
                assert_size = size if size is not None else config.vocab_size
1062
1063
                self.assertEqual(new_input_embeddings.shape[0], assert_size)

1064
1065
                # check that weights remain the same after resizing
                models_equal = True
1066
1067
                for p1, p2 in zip(old_input_embeddings.value(), new_input_embeddings.value()):
                    if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
1068
1069
1070
                        models_equal = False
                self.assertTrue(models_equal)

1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
                if old_bias is not None and new_bias is not None:
                    for old_weight, new_weight in zip(old_bias.values(), new_bias.values()):
                        self.assertEqual(new_weight.shape[0], assert_size)

                        models_equal = True
                        for p1, p2 in zip(old_weight.value(), new_weight.value()):
                            if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                                models_equal = False
                        self.assertTrue(models_equal)

                if old_output_embeddings is not None and new_output_embeddings is not None:
                    self.assertEqual(new_output_embeddings.shape[0], assert_size)
                    self.assertEqual(new_output_embeddings.shape[1], old_output_embeddings.shape[1])

                    models_equal = True
                    for p1, p2 in zip(old_output_embeddings.value(), new_output_embeddings.value()):
                        if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                            models_equal = False
                    self.assertTrue(models_equal)

1091
    def test_lm_head_model_random_no_beam_search_generate(self):
1092
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Will Rice's avatar
Will Rice committed
1093
        input_ids = inputs_dict.get("input_ids", None)
1094

1095
        # iterate over all generative models
1096
1097
1098
1099
        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            if config.bos_token_id is None:
Joao Gante's avatar
Joao Gante committed
1100
                # if bos token id is not defined model needs input_ids
1101
                with self.assertRaises(ValueError):
1102
                    model.generate(do_sample=True, max_length=5)
1103
                # num_return_sequences = 1
1104
                self._check_generated_ids(model.generate(input_ids, do_sample=True))
Joao Gante's avatar
Joao Gante committed
1105
1106
            elif model_class.__name__ not in ["TFSpeech2TextForConditionalGeneration"]:
                # Models with non-text inputs won't work here; num_return_sequences = 1
1107
                self._check_generated_ids(model.generate(do_sample=True, max_length=5))
1108

1109
            with self.assertRaises(ValueError):
1110
                # generating multiple sequences when no beam search generation
1111
1112
1113
                # is not allowed as it would always generate the same sequences
                model.generate(input_ids, do_sample=False, num_return_sequences=2)

1114
1115
            # num_return_sequences > 1, sample
            self._check_generated_ids(model.generate(input_ids, do_sample=True, num_return_sequences=2))
1116
1117

            # check bad words tokens language generation
1118
1119
            # create list of 1-seq bad token and list of 2-seq of bad tokens
            bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)]
1120
            output_tokens = model.generate(
1121
                input_ids, do_sample=True, bad_words_ids=bad_words_ids, num_return_sequences=2
1122
            )
1123
            # only count generated tokens
1124
1125
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids))
1126

1127
1128
1129
    def test_lm_head_model_no_beam_search_generate_dict_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        input_ids = inputs_dict.get("input_ids", None)
Joao Gante's avatar
Joao Gante committed
1130
1131
        if input_ids is None:
            input_ids = inputs_dict.get("input_features", None)
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159

        # iterate over all generative models
        for model_class in self.all_generative_model_classes:
            model = model_class(config)
            output_greedy = model.generate(
                input_ids,
                do_sample=False,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )
            output_sample = model.generate(
                input_ids,
                do_sample=True,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            if model.config.is_encoder_decoder:
                self.assertIsInstance(output_greedy, TFGreedySearchEncoderDecoderOutput)
                self.assertIsInstance(output_sample, TFSampleEncoderDecoderOutput)
            else:
                self.assertIsInstance(output_greedy, TFGreedySearchDecoderOnlyOutput)
                self.assertIsInstance(output_sample, TFSampleDecoderOnlyOutput)

1160
1161
    def test_lm_head_model_random_beam_search_generate(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Will Rice's avatar
Will Rice committed
1162
        input_ids = inputs_dict.get("input_ids", None)
1163
1164
1165
1166
1167

        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            if config.bos_token_id is None:
Joao Gante's avatar
Joao Gante committed
1168
                # if bos token id is not defined model needs input_ids, num_return_sequences = 1
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
                self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=2))
            else:
                # num_return_sequences = 1
                self._check_generated_ids(model.generate(do_sample=True, max_length=5, num_beams=2))

            with self.assertRaises(AssertionError):
                # generating more sequences than having beams leads is not possible
                model.generate(input_ids, do_sample=False, num_return_sequences=3, num_beams=2)

            # num_return_sequences > 1, sample
Lysandre's avatar
Lysandre committed
1179
1180
1181
1182
1183
1184
1185
1186
            self._check_generated_ids(
                model.generate(
                    input_ids,
                    do_sample=True,
                    num_beams=2,
                    num_return_sequences=2,
                )
            )
1187
1188
1189
1190
1191
1192
            # num_return_sequences > 1, greedy
            self._check_generated_ids(model.generate(input_ids, do_sample=False, num_beams=2, num_return_sequences=2))

            # check bad words tokens language generation
            # create list of 1-seq bad token and list of 2-seq of bad tokens
            bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)]
1193
            output_tokens = model.generate(
1194
                input_ids, do_sample=False, bad_words_ids=bad_words_ids, num_beams=2, num_return_sequences=2
1195
            )
1196
            # only count generated tokens
1197
1198
1199
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids))

1200
1201
1202
    def test_lm_head_model_beam_search_generate_dict_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        input_ids = inputs_dict.get("input_ids", None)
Joao Gante's avatar
Joao Gante committed
1203
1204
        if input_ids is None:
            input_ids = inputs_dict.get("input_features", None)
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234

        # iterate over all generative models
        for model_class in self.all_generative_model_classes:
            model = model_class(config)
            output_beam_search = model.generate(
                input_ids,
                num_beams=2,
                do_sample=False,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )
            output_beam_sample = model.generate(
                input_ids,
                num_beams=2,
                do_sample=True,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            if model.config.is_encoder_decoder:
                self.assertIsInstance(output_beam_search, TFBeamSearchEncoderDecoderOutput)
                self.assertIsInstance(output_beam_sample, TFBeamSampleEncoderDecoderOutput)
            else:
                self.assertIsInstance(output_beam_search, TFBeamSearchDecoderOnlyOutput)
                self.assertIsInstance(output_beam_sample, TFBeamSampleDecoderOnlyOutput)

1235
1236
1237
1238
    def test_loss_computation(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
1239
            if getattr(model, "hf_compute_loss", None):
1240
1241
                # The number of elements in the loss should be the same as the number of elements in the label
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
1242
1243
1244
                added_label = prepared_for_class[
                    sorted(list(prepared_for_class.keys() - inputs_dict.keys()), reverse=True)[0]
                ]
1245
1246
                loss_size = tf.size(added_label)

1247
                if model.__class__ in get_values(TF_MODEL_FOR_CAUSAL_LM_MAPPING):
1248
1249
1250
1251
                    # if loss is causal lm loss, labels are shift, so that one label per batch
                    # is cut
                    loss_size = loss_size - self.model_tester.batch_size

1252
1253
                # Test that model correctly compute the loss with kwargs
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
Joao Gante's avatar
Joao Gante committed
1254
1255
1256
                possible_input_names = {"input_ids", "pixel_values", "input_features"}
                input_name = possible_input_names.intersection(set(prepared_for_class)).pop()
                model_input = prepared_for_class.pop(input_name)
1257

Joao Gante's avatar
Joao Gante committed
1258
                loss = model(model_input, **prepared_for_class)[0]
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
                self.assertEqual(loss.shape, [loss_size])

                # Test that model correctly compute the loss with a dict
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
                loss = model(prepared_for_class)[0]
                self.assertEqual(loss.shape, [loss_size])

                # Test that model correctly compute the loss with a tuple
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)

                # Get keys that were added with the _prepare_for_class function
                label_keys = prepared_for_class.keys() - inputs_dict.keys()
1271
1272
                signature = inspect.signature(model.call).parameters
                signature_names = list(signature.keys())
1273
1274

                # Create a dictionary holding the location of the tensors in the tuple
Yih-Dar's avatar
Yih-Dar committed
1275
                tuple_index_mapping = {0: input_name}
1276
                for label_key in label_keys:
1277
                    label_key_index = signature_names.index(label_key)
1278
1279
                    tuple_index_mapping[label_key_index] = label_key
                sorted_tuple_index_mapping = sorted(tuple_index_mapping.items())
1280
1281
1282
1283
1284
1285
                # Initialize a list with their default values, update the values and convert to a tuple
                list_input = []

                for name in signature_names:
                    if name != "kwargs":
                        list_input.append(signature[name].default)
1286
1287

                for index, value in sorted_tuple_index_mapping:
1288
1289
                    list_input[index] = prepared_for_class[value]

1290
1291
1292
                tuple_input = tuple(list_input)

                # Send to model
1293
1294
                loss = model(tuple_input[:-1])[0]

1295
1296
                self.assertEqual(loss.shape, [loss_size])

1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
    def test_generate_with_headmasking(self):
        attention_names = ["encoder_attentions", "decoder_attentions", "cross_attentions"]
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            # We want to test only encoder-decoder models
            if not config.is_encoder_decoder:
                continue

            head_masking = {
                "head_mask": tf.zeros((config.encoder_layers, config.encoder_attention_heads)),
                "decoder_head_mask": tf.zeros((config.decoder_layers, config.decoder_attention_heads)),
                "cross_attn_head_mask": tf.zeros((config.decoder_layers, config.decoder_attention_heads)),
            }

            signature = inspect.signature(model.call)
            if set(head_masking.keys()) < set([*signature.parameters.keys()]):
                continue

            for attn_name, (name, mask) in zip(attention_names, head_masking.items()):
                out = model.generate(
                    inputs_dict["input_ids"],
                    num_beams=1,
                    max_length=inputs_dict["input_ids"] + 5,
                    output_attentions=True,
                    return_dict_in_generate=True,
                    **{name: mask},
                )
                # We check the state of decoder_attentions and cross_attentions just from the last step
                attn_weights = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
                self.assertEqual(sum([tf.reduce_sum(w).numpy() for w in attn_weights]), 0.0)

1331
    def test_load_with_mismatched_shapes(self):
1332
1333
        if not self.test_mismatched_shapes:
            return
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class not in get_values(TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING):
                continue

            with self.subTest(msg=f"Testing {model_class}"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    model = model_class(config)
                    inputs = self._prepare_for_class(inputs_dict, model_class)
                    _ = model(**inputs)
                    model.save_pretrained(tmp_dir)

                    # Fails when we don't set ignore_mismatched_sizes=True
                    with self.assertRaises(ValueError):
                        new_model = TFAutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)
1350
1351
                    with self.assertRaises(ValueError):
                        new_model_without_prefix = TFAutoModel.from_pretrained(tmp_dir, vocab_size=10)
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362

                    logger = logging.get_logger("transformers.modeling_tf_utils")
                    with CaptureLogger(logger) as cl:
                        new_model = TFAutoModelForSequenceClassification.from_pretrained(
                            tmp_dir, num_labels=42, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)

                    logits = new_model(**inputs).logits
                    self.assertEqual(logits.shape[1], 42)

1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
                    with CaptureLogger(logger) as cl:
                        new_model_without_prefix = TFAutoModel.from_pretrained(
                            tmp_dir, vocab_size=10, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)

                    # Although Tf models always have a prefix pointing to `MainLayer`,
                    # we still add this "without prefix" test to keep a consistency between tf and pt tests.
                    input_ids = ids_tensor((2, 8), 10)
                    if self.is_encoder_decoder:
                        new_model_without_prefix(input_ids, decoder_input_ids=input_ids)
                    else:
                        new_model_without_prefix(input_ids)

1377
1378
1379
1380
1381
1382
1383
    def test_model_main_input_name(self):
        for model_class in self.all_model_classes:
            model_signature = inspect.signature(getattr(model_class, "call"))
            # The main input is the name of the argument after `self`
            observed_main_input_name = list(model_signature.parameters.keys())[1]
            self.assertEqual(model_class.main_input_name, observed_main_input_name)

1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
    def _generate_random_bad_tokens(self, num_bad_tokens, model):
        # special tokens cannot be bad tokens
        special_tokens = []
        if model.config.bos_token_id is not None:
            special_tokens.append(model.config.bos_token_id)
        if model.config.pad_token_id is not None:
            special_tokens.append(model.config.pad_token_id)
        if model.config.eos_token_id is not None:
            special_tokens.append(model.config.eos_token_id)

        # create random bad tokens that are not special tokens
        bad_tokens = []
        while len(bad_tokens) < num_bad_tokens:
            token = tf.squeeze(ids_tensor((1, 1), self.model_tester.vocab_size), 0).numpy()[0]
            if token not in special_tokens:
                bad_tokens.append(token)
        return bad_tokens

1402
    def _check_generated_ids(self, output_ids):
1403
1404
1405
1406
        for token_id in output_ids[0].numpy().tolist():
            self.assertGreaterEqual(token_id, 0)
            self.assertLess(token_id, self.model_tester.vocab_size)

1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
    def _check_match_tokens(self, generated_ids, bad_words_ids):
        # for all bad word tokens
        for bad_word_ids in bad_words_ids:
            # for all slices in batch
            for generated_ids_slice in generated_ids:
                # for all word idx
                for i in range(len(bad_word_ids), len(generated_ids_slice)):
                    # if tokens match
                    if generated_ids_slice[i - len(bad_word_ids) : i] == bad_word_ids:
                        return True
        return False

thomwolf's avatar
thomwolf committed
1419

thomwolf's avatar
thomwolf committed
1420
def ids_tensor(shape, vocab_size, rng=None, name=None, dtype=None):
thomwolf's avatar
thomwolf committed
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
    """Creates a random int32 tensor of the shape within the vocab size."""
    if rng is None:
        rng = random.Random()

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))

1433
    output = tf.constant(values, shape=shape, dtype=dtype if dtype is not None else tf.int32)
thomwolf's avatar
thomwolf committed
1434
1435

    return output
1436
1437


Yih-Dar's avatar
Yih-Dar committed
1438
1439
1440
1441
1442
1443
1444
def random_attention_mask(shape, rng=None, name=None, dtype=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None, dtype=dtype)
    # make sure that at least one token is attended to for each batch
    attn_mask = tf.concat([tf.constant(value=1, shape=(shape[0], 1), dtype=dtype), attn_mask[:, 1:]], axis=1)
    return attn_mask


1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
def floats_tensor(shape, scale=1.0, rng=None, name=None, dtype=None):
    """Creates a random float32 tensor"""
    if rng is None:
        rng = random.Random()

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

    return tf.reshape(tf.constant(values, dtype=dtype if dtype is not None else tf.float32), shape=shape)


1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
@require_tf
class UtilsFunctionsTest(unittest.TestCase):

    # tests whether the top_k_top_p_filtering function behaves as expected
    def test_top_k_top_p_filtering(self):
        logits = tf.convert_to_tensor(
            [
                [
                    8.2220991,  # 3rd highest value; idx. 0
                    -0.5620044,
                    5.23229752,
                    4.0386393,
                    -6.8798378,
                    -0.54785802,
                    -3.2012153,
                    2.92777176,
                    1.88171953,
                    7.35341276,  # 5th highest value; idx. 9
                    8.43207833,  # 2nd highest value; idx. 10
                    -9.85711836,
                    -5.96209236,
                    -1.13039161,
                    -7.1115294,
                    -0.8369633,
                    -5.3186408,
                    7.06427407,
                    0.81369344,
                    -0.82023817,
                    -5.9179796,
                    0.58813443,
                    -6.99778438,
                    4.71551189,
                    -0.18771637,
                    7.44020759,  # 4th highest value; idx. 25
                    9.38450987,  # 1st highest value; idx. 26
                    2.12662941,
                    -9.32562038,
                    2.35652522,
                ],  # cummulative prob of 5 highest values <= 0.6
                [
                    0.58425518,
                    4.53139238,
                    -5.57510464,
                    -6.28030699,
                    -7.19529503,
                    -4.02122551,
                    1.39337037,
                    -6.06707057,
                    1.59480517,
                    -9.643119,
                    0.03907799,
                    0.67231762,
                    -8.88206726,
                    6.27115922,  # 4th highest value; idx. 13
                    2.28520723,
                    4.82767506,
                    4.30421368,
                    8.8275313,  # 2nd highest value; idx. 17
                    5.44029958,  # 5th highest value; idx. 18
                    -4.4735794,
                    7.38579536,  # 3rd highest value; idx. 20
                    -2.91051663,
                    2.61946077,
                    -2.5674762,
                    -9.48959302,
                    -4.02922645,
                    -1.35416918,
                    9.67702323,  # 1st highest value; idx. 27
                    -5.89478553,
                    1.85370467,
                ],  # cummulative prob of 5 highest values <= 0.6
            ],
            dtype=tf.float32,
        )

        non_inf_expected_idx = tf.convert_to_tensor(
Lysandre's avatar
Lysandre committed
1537
1538
            [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]],
            dtype=tf.int32,
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
        )  # expected non filtered idx as noted above

        non_inf_expected_output = tf.convert_to_tensor(
            [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023],
            dtype=tf.float32,
        )  # expected non filtered values as noted above

        output = tf_top_k_top_p_filtering(logits, top_k=10, top_p=0.6, min_tokens_to_keep=4)

        non_inf_output = output[output != -float("inf")]
        non_inf_idx = tf.cast(
Lysandre's avatar
Lysandre committed
1550
1551
            tf.where(tf.not_equal(output, tf.constant(-float("inf"), dtype=tf.float32))),
            dtype=tf.int32,
1552
1553
1554
1555
        )

        tf.debugging.assert_near(non_inf_output, non_inf_expected_output, rtol=1e-12)
        tf.debugging.assert_equal(non_inf_idx, non_inf_expected_idx)
Sylvain Gugger's avatar
Sylvain Gugger committed
1556
1557
1558
1559
1560
1561
1562


@require_tf
@is_staging_test
class TFModelPushToHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
1563
        cls._token = login(username=USER, password=PASS)
Sylvain Gugger's avatar
Sylvain Gugger committed
1564
1565
1566
1567

    @classmethod
    def tearDownClass(cls):
        try:
1568
            delete_repo(token=cls._token, name="test-model-tf")
Sylvain Gugger's avatar
Sylvain Gugger committed
1569
1570
1571
1572
        except HTTPError:
            pass

        try:
1573
            delete_repo(token=cls._token, name="test-model-tf-org", organization="valid_org")
Sylvain Gugger's avatar
Sylvain Gugger committed
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
        except HTTPError:
            pass

    def test_push_to_hub(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = TFBertModel(config)
        # Make sure model is properly initialized
        _ = model(model.dummy_inputs)
        with tempfile.TemporaryDirectory() as tmp_dir:
1585
            model.save_pretrained(os.path.join(tmp_dir, "test-model-tf"), push_to_hub=True, use_auth_token=self._token)
Sylvain Gugger's avatar
Sylvain Gugger committed
1586

1587
            new_model = TFBertModel.from_pretrained(f"{USER}/test-model-tf")
Sylvain Gugger's avatar
Sylvain Gugger committed
1588
1589
1590
1591
1592
1593
            models_equal = True
            for p1, p2 in zip(model.weights, new_model.weights):
                if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                    models_equal = False
            self.assertTrue(models_equal)

Matt's avatar
Matt committed
1594
1595
1596
1597
1598
1599
1600
1601
1602
    def test_push_to_hub_with_model_card(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = TFBertModel(config)
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.push_to_hub(os.path.join(tmp_dir, "test-model-tf"))
            self.assertTrue(os.path.isfile(os.path.join(tmp_dir, "test-model-card-tf", "README.md")))

Sylvain Gugger's avatar
Sylvain Gugger committed
1603
1604
1605
1606
1607
1608
1609
    def test_push_to_hub_in_organization(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = TFBertModel(config)
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(
1610
                os.path.join(tmp_dir, "test-model-tf-org"),
Sylvain Gugger's avatar
Sylvain Gugger committed
1611
1612
1613
1614
1615
                push_to_hub=True,
                use_auth_token=self._token,
                organization="valid_org",
            )

1616
            new_model = TFBertModel.from_pretrained("valid_org/test-model-tf-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
1617
1618
1619
1620
1621
            models_equal = True
            for p1, p2 in zip(model.weights, new_model.weights):
                if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                    models_equal = False
            self.assertTrue(models_equal)