test_modeling_xlm.py 15 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
18
import unittest

19
from transformers import is_torch_available
20
from transformers.testing_utils import require_torch, slow, torch_device
thomwolf's avatar
thomwolf committed
21

22
from .test_configuration_common import ConfigTester
23
from .test_generation_utils import GenerationTesterMixin
24
from .test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
Aymeric Augustin's avatar
Aymeric Augustin committed
25
26


27
if is_torch_available():
28
    import torch
29

30
31
    from transformers import (
        XLMConfig,
32
        XLMForMultipleChoice,
33
34
        XLMForQuestionAnswering,
        XLMForQuestionAnsweringSimple,
35
36
37
38
        XLMForSequenceClassification,
        XLMForTokenClassification,
        XLMModel,
        XLMWithLMHeadModel,
39
    )
40
    from transformers.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST
thomwolf's avatar
thomwolf committed
41
42


43
44
class XLMModelTester:
    def __init__(
Lysandre's avatar
Lysandre committed
45
46
        self,
        parent,
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_lengths = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.gelu_activation = True
        self.sinusoidal_embeddings = False
        self.causal = False
        self.asm = False
        self.n_langs = 2
        self.vocab_size = 99
        self.n_special = 0
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
70
        self.num_labels = 2
71
72
73
74
75
76
77
78
        self.num_choices = 4
        self.summary_type = "last"
        self.use_proj = True
        self.scope = None
        self.bos_token_id = 0

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
79
        input_mask = random_attention_mask([self.batch_size, self.seq_length])
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

        input_lengths = None
        if self.use_input_lengths:
            input_lengths = (
                ids_tensor([self.batch_size], vocab_size=2) + self.seq_length - 2
            )  # small variation of seq_length

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.n_langs)

        sequence_labels = None
        token_labels = None
        is_impossible_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            is_impossible_labels = ids_tensor([self.batch_size], 2).float()
98
            choice_labels = ids_tensor([self.batch_size], self.num_choices)
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

        config = XLMConfig(
            vocab_size=self.vocab_size,
            n_special=self.n_special,
            emb_dim=self.hidden_size,
            n_layers=self.num_hidden_layers,
            n_heads=self.num_attention_heads,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            gelu_activation=self.gelu_activation,
            sinusoidal_embeddings=self.sinusoidal_embeddings,
            asm=self.asm,
            causal=self.causal,
            n_langs=self.n_langs,
            max_position_embeddings=self.max_position_embeddings,
            initializer_range=self.initializer_range,
            summary_type=self.summary_type,
            use_proj=self.use_proj,
117
            num_labels=self.num_labels,
118
            bos_token_id=self.bos_token_id,
119
        )
thomwolf's avatar
thomwolf committed
120

121
        return (
122
123
124
125
126
127
128
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
129
            choice_labels,
130
            input_mask,
131
132
133
134
135
136
137
138
139
140
141
        )

    def create_and_check_xlm_model(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
142
        choice_labels,
143
144
145
146
147
        input_mask,
    ):
        model = XLMModel(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
148
149
150
        result = model(input_ids, lengths=input_lengths, langs=token_type_ids)
        result = model(input_ids, langs=token_type_ids)
        result = model(input_ids)
Stas Bekman's avatar
Stas Bekman committed
151
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
152
153
154
155
156
157
158
159
160
161

    def create_and_check_xlm_lm_head(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
162
        choice_labels,
163
164
165
166
167
168
        input_mask,
    ):
        model = XLMWithLMHeadModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
169
        result = model(input_ids, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
170
171
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
172
173
174
175
176
177
178
179
180
181

    def create_and_check_xlm_simple_qa(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
182
        choice_labels,
183
184
185
186
187
188
189
190
191
        input_mask,
    ):
        model = XLMForQuestionAnsweringSimple(config)
        model.to(torch_device)
        model.eval()

        outputs = model(input_ids)

        outputs = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels)
Sylvain Gugger's avatar
Sylvain Gugger committed
192
        result = outputs
Stas Bekman's avatar
Stas Bekman committed
193
194
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
195
196
197
198
199
200
201
202
203
204

    def create_and_check_xlm_qa(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
205
        choice_labels,
206
207
208
209
210
211
        input_mask,
    ):
        model = XLMForQuestionAnswering(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
212
        result = model(input_ids)
213

Sylvain Gugger's avatar
Sylvain Gugger committed
214
        result_with_labels = model(
215
            input_ids,
216
217
218
219
220
221
            start_positions=sequence_labels,
            end_positions=sequence_labels,
            cls_index=sequence_labels,
            is_impossible=is_impossible_labels,
            p_mask=input_mask,
        )
thomwolf's avatar
thomwolf committed
222

Sylvain Gugger's avatar
Sylvain Gugger committed
223
        result_with_labels = model(
224
225
226
227
228
229
            input_ids,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
            cls_index=sequence_labels,
            is_impossible=is_impossible_labels,
        )
thomwolf's avatar
thomwolf committed
230

Sylvain Gugger's avatar
Sylvain Gugger committed
231
        (total_loss,) = result_with_labels.to_tuple()
thomwolf's avatar
thomwolf committed
232

Sylvain Gugger's avatar
Sylvain Gugger committed
233
        result_with_labels = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels)
234

Sylvain Gugger's avatar
Sylvain Gugger committed
235
        (total_loss,) = result_with_labels.to_tuple()
236

Stas Bekman's avatar
Stas Bekman committed
237
238
239
240
241
        self.parent.assertEqual(result_with_labels.loss.shape, ())
        self.parent.assertEqual(result.start_top_log_probs.shape, (self.batch_size, model.config.start_n_top))
        self.parent.assertEqual(result.start_top_index.shape, (self.batch_size, model.config.start_n_top))
        self.parent.assertEqual(
            result.end_top_log_probs.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top)
242
        )
Stas Bekman's avatar
Stas Bekman committed
243
244
        self.parent.assertEqual(
            result.end_top_index.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top)
245
        )
Stas Bekman's avatar
Stas Bekman committed
246
        self.parent.assertEqual(result.cls_logits.shape, (self.batch_size,))
247
248
249
250
251
252
253
254
255
256

    def create_and_check_xlm_sequence_classif(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
257
        choice_labels,
258
259
260
261
262
263
        input_mask,
    ):
        model = XLMForSequenceClassification(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
264
265
        result = model(input_ids)
        result = model(input_ids, labels=sequence_labels)
Stas Bekman's avatar
Stas Bekman committed
266
267
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
268

269
    def create_and_check_xlm_token_classif(
270
271
272
273
274
275
276
277
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
278
        choice_labels,
279
280
281
282
283
284
285
        input_mask,
    ):
        config.num_labels = self.num_labels
        model = XLMForTokenClassification(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
286
        result = model(input_ids, attention_mask=input_mask, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
287
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
288

289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
    def create_and_check_xlm_for_multiple_choice(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
        choice_labels,
        input_mask,
    ):
        config.num_choices = self.num_choices
        model = XLMForMultipleChoice(config=config)
        model.to(torch_device)
        model.eval()
        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
Sylvain Gugger's avatar
Sylvain Gugger committed
308
        result = model(
309
310
311
312
313
            multiple_choice_inputs_ids,
            attention_mask=multiple_choice_input_mask,
            token_type_ids=multiple_choice_token_type_ids,
            labels=choice_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
314
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
315

316
317
318
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
319
320
321
322
323
324
325
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
326
            choice_labels,
327
            input_mask,
328
329
330
331
332
333
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths}
        return config, inputs_dict


@require_torch
334
class XLMModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
335
336
337
338
339
340
341
342

    all_model_classes = (
        (
            XLMModel,
            XLMWithLMHeadModel,
            XLMForQuestionAnswering,
            XLMForSequenceClassification,
            XLMForQuestionAnsweringSimple,
343
            XLMForTokenClassification,
344
            XLMForMultipleChoice,
345
346
347
348
349
350
351
        )
        if is_torch_available()
        else ()
    )
    all_generative_model_classes = (
        (XLMWithLMHeadModel,) if is_torch_available() else ()
    )  # TODO (PVP): Check other models whether language generation is also applicable
thomwolf's avatar
thomwolf committed
352

353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
    # XLM has 2 QA models -> need to manually set the correct labels for one of them here
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)

        if return_labels:
            if model_class.__name__ == "XLMForQuestionAnswering":
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )

        return inputs_dict

thomwolf's avatar
thomwolf committed
368
    def setUp(self):
369
        self.model_tester = XLMModelTester(self)
thomwolf's avatar
thomwolf committed
370
        self.config_tester = ConfigTester(self, config_class=XLMConfig, emb_dim=37)
thomwolf's avatar
thomwolf committed
371
372

    def test_config(self):
thomwolf's avatar
thomwolf committed
373
        self.config_tester.run_common_tests()
thomwolf's avatar
thomwolf committed
374

thomwolf's avatar
thomwolf committed
375
376
377
    def test_xlm_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_model(*config_and_inputs)
thomwolf's avatar
thomwolf committed
378

thomwolf's avatar
thomwolf committed
379
380
381
    def test_xlm_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_lm_head(*config_and_inputs)
thomwolf's avatar
thomwolf committed
382

383
384
385
386
    def test_xlm_simple_qa(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_simple_qa(*config_and_inputs)

thomwolf's avatar
thomwolf committed
387
388
389
    def test_xlm_qa(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_qa(*config_and_inputs)
thomwolf's avatar
thomwolf committed
390

thomwolf's avatar
thomwolf committed
391
392
393
    def test_xlm_sequence_classif(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_sequence_classif(*config_and_inputs)
thomwolf's avatar
thomwolf committed
394

395
    def test_xlm_token_classif(self):
396
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
397
        self.model_tester.create_and_check_xlm_token_classif(*config_and_inputs)
398

399
400
401
402
    def test_xlm_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_for_multiple_choice(*config_and_inputs)

403
    @slow
thomwolf's avatar
thomwolf committed
404
    def test_model_from_pretrained(self):
405
        for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
406
            model = XLMModel.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
407
            self.assertIsNotNone(model)
408
409


410
@require_torch
411
412
413
414
class XLMModelLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_xlm_mlm_en_2048(self):
        model = XLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048")
415
        model.to(torch_device)
416
        input_ids = torch.tensor([[14, 447]], dtype=torch.long, device=torch_device)  # the president
417
418
        expected_output_ids = [
            14,
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
        ]  # the president the president the president the president the president the president the president the president the president the president
        # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference
        output_ids = model.generate(input_ids, do_sample=False)
441
        self.assertListEqual(output_ids[0].cpu().numpy().tolist(), expected_output_ids)