run_plm.py 23.1 KB
Newer Older
1
#!/usr/bin/env python
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# coding=utf-8
# Copyright 2020 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for permutation language modeling.
"""
# You can also adapt this script on your own permutation language modeling task. Pointers for this are left as comments.

import logging
import math
import os
import sys
from dataclasses import dataclass, field
26
from itertools import chain
27
28
from typing import Optional

29
import datasets
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from datasets import load_dataset

import transformers
from transformers import (
    AutoConfig,
    AutoTokenizer,
    DataCollatorForPermutationLanguageModeling,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
    XLNetConfig,
    XLNetLMHeadModel,
    set_seed,
)
44
from transformers.trainer_utils import get_last_checkpoint
45
from transformers.utils import check_min_version, send_example_telemetry
46
from transformers.utils.versions import require_version
47
48


49
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Sylvain Gugger's avatar
Sylvain Gugger committed
50
check_min_version("4.21.0.dev0")
Sylvain Gugger's avatar
Sylvain Gugger committed
51

52
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
53

54
55
56
57
58
59
60
61
62
63
64
65
logger = logging.getLogger(__name__)


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """

    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
66
67
68
            "help": (
                "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."
            )
69
70
71
72
73
        },
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
74
75
76
    config_overrides: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
77
78
79
80
            "help": (
                "Override some existing default config settings when a model is trained from scratch. Example: "
                "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
            )
81
82
        },
    )
83
84
85
86
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
87
88
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
89
90
91
92
93
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
94
95
96
97
98
99
100
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
101
102
103
104
            "help": (
                "Will use the token generated when running `transformers-cli login` (necessary to use this script "
                "with private models)."
            )
105
106
        },
    )
107

108
109
110
111
112
113
    def __post_init__(self):
        if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
            raise ValueError(
                "--config_overrides can't be used in combination with --config_name or --model_name_or_path"
            )

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
135
136
137
138
139
140
    validation_split_percentage: Optional[int] = field(
        default=5,
        metadata={
            "help": "The percentage of the train set used as validation set in case there's no validation split"
        },
    )
141
142
    max_seq_length: int = field(
        default=512,
143
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
144
145
146
147
            "help": (
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated."
            )
148
149
150
151
152
153
154
155
156
        },
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    plm_probability: float = field(
        default=1 / 6,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
157
158
159
160
            "help": (
                "Ratio of length of a span of masked tokens to surrounding context length for "
                "permutation language modeling."
            )
161
162
163
164
165
        },
    )
    max_span_length: int = field(
        default=5, metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."}
    )
166
167
168
169
170
171
172
    line_by_line: bool = field(
        default=False,
        metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
    )
    pad_to_max_length: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
173
174
175
176
            "help": (
                "Whether to pad all samples to `max_seq_length`. "
                "If False, will pad the samples dynamically when batching to the maximum length in the batch."
            )
177
178
        },
    )
179
180
181
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
182
183
184
185
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
186
187
        },
    )
188
    max_eval_samples: Optional[int] = field(
189
190
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
191
192
193
194
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
195
196
        },
    )
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

223
224
225
226
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_plm", model_args, data_args)

227
228
    # Setup logging
    logging.basicConfig(
229
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
230
        datefmt="%m/%d/%Y %H:%M:%S",
231
        handlers=[logging.StreamHandler(sys.stdout)],
232
    )
233
234
235
236
237
238
239

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
240
241
242
243
244
245

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
246
    logger.info(f"Training/evaluation parameters {training_args}")
247

248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

263
264
265
266
267
    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
Sylvain Gugger's avatar
Sylvain Gugger committed
268
    # (the dataset will be downloaded automatically from the datasets Hub).
269
    #
Sylvain Gugger's avatar
Sylvain Gugger committed
270
271
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
272
273
274
275
276
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
277
        raw_datasets = load_dataset(
278
279
280
281
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
282
283
284
        )
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
285
286
287
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[:{data_args.validation_split_percentage}%]",
288
                cache_dir=model_args.cache_dir,
289
                use_auth_token=True if model_args.use_auth_token else None,
290
            )
291
            raw_datasets["train"] = load_dataset(
292
293
294
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[{data_args.validation_split_percentage}%:]",
295
                cache_dir=model_args.cache_dir,
296
                use_auth_token=True if model_args.use_auth_token else None,
297
            )
298
299
300
301
302
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
303
            data_files["validation"] = data_args.validation_file
304
305
306
        extension = data_args.train_file.split(".")[-1]
        if extension == "txt":
            extension = "text"
307
        raw_datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
308
309
310
311
312
313
314
        # If no validation data is there, validation_split_percentage will be used to divide the dataset.
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
315
                use_auth_token=True if model_args.use_auth_token else None,
316
317
318
319
320
321
            )
            raw_datasets["train"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
322
                use_auth_token=True if model_args.use_auth_token else None,
323
324
            )

325
326
327
328
329
330
331
332
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
333
334
335
336
337
    config_kwargs = {
        "cache_dir": model_args.cache_dir,
        "revision": model_args.model_revision,
        "use_auth_token": True if model_args.use_auth_token else None,
    }
338
    if model_args.config_name:
339
        config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
340
    elif model_args.model_name_or_path:
341
        config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
342
343
344
    else:
        config = XLNetConfig()
        logger.warning("You are instantiating a new config instance from scratch.")
345
346
347
        if model_args.config_overrides is not None:
            logger.info(f"Overriding config: {model_args.config_overrides}")
            config.update_from_string(model_args.config_overrides)
348
            logger.info(f"New config: {config}")
349

350
351
352
353
354
355
    tokenizer_kwargs = {
        "cache_dir": model_args.cache_dir,
        "use_fast": model_args.use_fast_tokenizer,
        "revision": model_args.model_revision,
        "use_auth_token": True if model_args.use_auth_token else None,
    }
356
    if model_args.tokenizer_name:
357
        tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
358
    elif model_args.model_name_or_path:
359
        tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
360
361
362
363
364
365
366
367
368
369
370
371
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if model_args.model_name_or_path:
        model = XLNetLMHeadModel.from_pretrained(
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
            config=config,
            cache_dir=model_args.cache_dir,
372
373
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
374
375
376
        )
    else:
        logger.info("Training new model from scratch")
377
        model = XLNetLMHeadModel(config)
378
379
380
381
382
383

    model.resize_token_embeddings(len(tokenizer))

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    if training_args.do_train:
384
        column_names = raw_datasets["train"].column_names
385
    else:
386
        column_names = raw_datasets["validation"].column_names
387
388
    text_column_name = "text" if "text" in column_names else column_names[0]

389
    if data_args.max_seq_length > tokenizer.model_max_length:
390
        logger.warning(
391
392
393
394
395
            f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
            f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
        )
    max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

396
397
398
399
400
401
402
    if data_args.line_by_line:
        # When using line_by_line, we just tokenize each nonempty line.
        padding = "max_length" if data_args.pad_to_max_length else False

        def tokenize_function(examples):
            # Remove empty lines
            examples["text"] = [line for line in examples["text"] if len(line) > 0 and not line.isspace()]
403
            return tokenizer(examples["text"], padding=padding, truncation=True, max_length=max_seq_length)
404

405
406
407
408
409
410
411
412
413
        with training_args.main_process_first(desc="dataset map tokenization"):
            tokenized_datasets = raw_datasets.map(
                tokenize_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=[text_column_name],
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on dataset line_by_line",
            )
414
415
416
417
418
    else:
        # Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
        def tokenize_function(examples):
            return tokenizer(examples[text_column_name])

419
420
421
422
423
424
425
426
427
        with training_args.main_process_first(desc="dataset map tokenization"):
            tokenized_datasets = raw_datasets.map(
                tokenize_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on every text in dataset",
            )
428
429
430
431
432

        # Main data processing function that will concatenate all texts from our dataset and generate chunks of
        # max_seq_length.
        def group_texts(examples):
            # Concatenate all texts.
433
            concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
434
435
436
            total_length = len(concatenated_examples[list(examples.keys())[0]])
            # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
            # customize this part to your needs.
437
438
            if total_length >= max_seq_length:
                total_length = (total_length // max_seq_length) * max_seq_length
439
440
441
442
443
444
445
446
447
448
449
450
451
            # Split by chunks of max_len.
            result = {
                k: [t[i : i + max_seq_length] for i in range(0, total_length, max_seq_length)]
                for k, t in concatenated_examples.items()
            }
            return result

        # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a
        # remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value
        # might be slower to preprocess.
        #
        # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
        # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
452

453
454
455
456
457
458
459
460
        with training_args.main_process_first(desc="grouping texts together"):
            tokenized_datasets = tokenized_datasets.map(
                group_texts,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc=f"Grouping texts in chunks of {max_seq_length}",
            )
461

462
463
464
465
466
    if training_args.do_train:
        if "train" not in tokenized_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = tokenized_datasets["train"]
        if data_args.max_train_samples is not None:
467
468
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
469
470
471
472
473

    if training_args.do_eval:
        if "validation" not in tokenized_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = tokenized_datasets["validation"]
474
        if data_args.max_eval_samples is not None:
475
476
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
477

478
479
480
481
482
483
484
485
486
487
488
    # Data collator
    data_collator = DataCollatorForPermutationLanguageModeling(
        tokenizer=tokenizer,
        plm_probability=data_args.plm_probability,
        max_span_length=data_args.max_span_length,
    )

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
489
490
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
491
492
493
494
495
496
        tokenizer=tokenizer,
        data_collator=data_collator,
    )

    # Training
    if training_args.do_train:
497
498
499
500
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
501
502
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
503
        trainer.save_model()  # Saves the tokenizer too for easy upload
504
        metrics = train_result.metrics
505

506
507
508
509
510
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

511
512
513
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
514

515
516
517
518
    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

519
        metrics = trainer.evaluate()
520

521
522
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
523
524
525
526
        try:
            perplexity = math.exp(metrics["eval_loss"])
        except OverflowError:
            perplexity = float("inf")
527
        metrics["perplexity"] = perplexity
528

529
530
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
531

532
533
534
535
536
537
538
539
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "language-modeling"}
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name
Sylvain Gugger's avatar
Sylvain Gugger committed
540

541
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
542
        trainer.push_to_hub(**kwargs)
543
544
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
545

546
547
548
549
550
551
552
553

def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()