test_modeling_wav2vec2.py 63 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Wav2Vec2 model. """

import math
import unittest

20
import numpy as np
21
from datasets import load_dataset
22

23
from tests.test_modeling_common import floats_tensor, ids_tensor, random_attention_mask
24
from transformers import Wav2Vec2Config, is_torch_available
25
26
from transformers.testing_utils import (
    is_pt_flax_cross_test,
27
28
29
    is_pyctcdecode_available,
    is_torchaudio_available,
    require_pyctcdecode,
30
31
    require_soundfile,
    require_torch,
32
    require_torchaudio,
33
34
35
    slow,
    torch_device,
)
Patrick von Platen's avatar
Patrick von Platen committed
36
37
38
39
40
41
42
43

from .test_configuration_common import ConfigTester
from .test_modeling_common import ModelTesterMixin, _config_zero_init


if is_torch_available():
    import torch

Anton Lozhkov's avatar
Anton Lozhkov committed
44
45
    from transformers import (
        Wav2Vec2FeatureExtractor,
46
        Wav2Vec2ForAudioFrameClassification,
Anton Lozhkov's avatar
Anton Lozhkov committed
47
48
49
        Wav2Vec2ForCTC,
        Wav2Vec2ForMaskedLM,
        Wav2Vec2ForPreTraining,
50
        Wav2Vec2ForSequenceClassification,
51
        Wav2Vec2ForXVector,
Anton Lozhkov's avatar
Anton Lozhkov committed
52
53
54
        Wav2Vec2Model,
        Wav2Vec2Processor,
    )
55
56
57
58
59
    from transformers.models.wav2vec2.modeling_wav2vec2 import (
        Wav2Vec2GumbelVectorQuantizer,
        _compute_mask_indices,
        _sample_negative_indices,
    )
Patrick von Platen's avatar
Patrick von Platen committed
60
61


62
63
64
65
66
67
68
69
if is_torchaudio_available():
    import torchaudio


if is_pyctcdecode_available():
    from transformers import Wav2Vec2ProcessorWithLM


Patrick von Platen's avatar
Patrick von Platen committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
class Wav2Vec2ModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=1024,  # speech is longer
        is_training=False,
        hidden_size=16,
        feat_extract_norm="group",
        feat_extract_dropout=0.0,
        feat_extract_activation="gelu",
        conv_dim=(32, 32, 32),
        conv_stride=(4, 4, 4),
        conv_kernel=(8, 8, 8),
        conv_bias=False,
        num_conv_pos_embeddings=16,
        num_conv_pos_embedding_groups=2,
        num_hidden_layers=4,
        num_attention_heads=2,
        hidden_dropout_prob=0.1,  # this is most likely not correctly set yet
        intermediate_size=20,
        layer_norm_eps=1e-5,
        hidden_act="gelu",
        initializer_range=0.02,
94
95
        mask_time_prob=0.5,
        mask_time_length=2,
Patrick von Platen's avatar
Patrick von Platen committed
96
97
        vocab_size=32,
        do_stable_layer_norm=False,
98
99
        num_adapter_layers=1,
        adapter_stride=2,
100
101
102
103
        tdnn_dim=(32, 32),
        tdnn_kernel=(5, 3),
        tdnn_dilation=(1, 2),
        xvector_output_dim=32,
Patrick von Platen's avatar
Patrick von Platen committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.hidden_size = hidden_size
        self.feat_extract_norm = feat_extract_norm
        self.feat_extract_dropout = feat_extract_dropout
        self.feat_extract_activation = feat_extract_activation
        self.conv_dim = conv_dim
        self.conv_stride = conv_stride
        self.conv_kernel = conv_kernel
        self.conv_bias = conv_bias
        self.num_conv_pos_embeddings = num_conv_pos_embeddings
        self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.hidden_dropout_prob = hidden_dropout_prob
        self.intermediate_size = intermediate_size
        self.layer_norm_eps = layer_norm_eps
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.vocab_size = vocab_size
        self.do_stable_layer_norm = do_stable_layer_norm
129
130
        self.num_adapter_layers = num_adapter_layers
        self.adapter_stride = adapter_stride
131
132
        self.mask_time_prob = mask_time_prob
        self.mask_time_length = mask_time_length
Patrick von Platen's avatar
Patrick von Platen committed
133
        self.scope = scope
134
135
136
137
        self.tdnn_dim = tdnn_dim
        self.tdnn_kernel = tdnn_kernel
        self.tdnn_dilation = tdnn_dilation
        self.xvector_output_dim = xvector_output_dim
Patrick von Platen's avatar
Patrick von Platen committed
138
139
140
141
142
143
144

        output_seq_length = self.seq_length
        for kernel, stride in zip(self.conv_kernel, self.conv_stride):
            output_seq_length = (output_seq_length - (kernel - 1)) / stride
        self.output_seq_length = int(math.ceil(output_seq_length))
        self.encoder_seq_length = self.output_seq_length

145
146
        self.adapter_output_seq_length = (self.output_seq_length - 1) // adapter_stride + 1

Patrick von Platen's avatar
Patrick von Platen committed
147
148
    def prepare_config_and_inputs(self):
        input_values = floats_tensor([self.batch_size, self.seq_length], self.vocab_size)
149
        attention_mask = random_attention_mask([self.batch_size, self.seq_length])
Patrick von Platen's avatar
Patrick von Platen committed
150

151
152
153
154
155
156
        config = self.get_config()

        return config, input_values, attention_mask

    def get_config(self):
        return Wav2Vec2Config(
Patrick von Platen's avatar
Patrick von Platen committed
157
158
159
160
161
162
163
164
            hidden_size=self.hidden_size,
            feat_extract_norm=self.feat_extract_norm,
            feat_extract_dropout=self.feat_extract_dropout,
            feat_extract_activation=self.feat_extract_activation,
            conv_dim=self.conv_dim,
            conv_stride=self.conv_stride,
            conv_kernel=self.conv_kernel,
            conv_bias=self.conv_bias,
165
166
            mask_time_prob=self.mask_time_prob,
            mask_time_length=self.mask_time_length,
Patrick von Platen's avatar
Patrick von Platen committed
167
168
169
170
171
172
173
            num_conv_pos_embeddings=self.num_conv_pos_embeddings,
            num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            hidden_dropout_prob=self.hidden_dropout_prob,
            intermediate_size=self.intermediate_size,
            layer_norm_eps=self.layer_norm_eps,
174
            do_stable_layer_norm=self.do_stable_layer_norm,
Patrick von Platen's avatar
Patrick von Platen committed
175
176
177
            hidden_act=self.hidden_act,
            initializer_range=self.initializer_range,
            vocab_size=self.vocab_size,
178
179
            num_adapter_layers=self.num_adapter_layers,
            adapter_stride=self.adapter_stride,
180
181
182
183
            tdnn_dim=self.tdnn_dim,
            tdnn_kernel=self.tdnn_kernel,
            tdnn_dilation=self.tdnn_dilation,
            xvector_output_dim=self.xvector_output_dim,
Patrick von Platen's avatar
Patrick von Platen committed
184
185
        )

186
    def create_and_check_model(self, config, input_values, attention_mask):
Patrick von Platen's avatar
Patrick von Platen committed
187
188
189
        model = Wav2Vec2Model(config=config)
        model.to(torch_device)
        model.eval()
190
        result = model(input_values, attention_mask=attention_mask)
Patrick von Platen's avatar
Patrick von Platen committed
191
192
193
194
        self.parent.assertEqual(
            result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size)
        )

195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
    def create_and_check_model_with_adapter(self, config, input_values, attention_mask):
        config.add_adapter = True
        model = Wav2Vec2Model(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_values, attention_mask=attention_mask)
        self.parent.assertEqual(
            result.last_hidden_state.shape, (self.batch_size, self.adapter_output_seq_length, self.hidden_size)
        )

    def create_and_check_model_with_adapter_proj_dim(self, config, input_values, attention_mask):
        config.add_adapter = True
        config.output_hidden_size = 8
        model = Wav2Vec2Model(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_values, attention_mask=attention_mask)
        self.parent.assertEqual(
            result.last_hidden_state.shape,
            (self.batch_size, self.adapter_output_seq_length, config.output_hidden_size),
        )

217
    def create_and_check_batch_inference(self, config, input_values, *args):
218
        # test does not pass for models making use of `group_norm`
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
        # check: https://github.com/pytorch/fairseq/issues/3227
        model = Wav2Vec2Model(config=config)
        model.to(torch_device)
        model.eval()

        input_values = input_values[:3]
        attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.bool)

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0
            attention_mask[i, input_lengths[i] :] = 0.0

        batch_outputs = model(input_values, attention_mask=attention_mask).last_hidden_state

        for i in range(input_values.shape[0]):
            input_slice = input_values[i : i + 1, : input_lengths[i]]
            output = model(input_slice).last_hidden_state

            batch_output = batch_outputs[i : i + 1, : output.shape[1]]
            self.parent.assertTrue(torch.allclose(output, batch_output, atol=1e-3))

243
244
245
246
247
248
249
250
    def check_ctc_loss(self, config, input_values, *args):
        model = Wav2Vec2ForCTC(config=config)
        model.to(torch_device)

        # make sure that dropout is disabled
        model.eval()

        input_values = input_values[:3]
251
        attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long)
252
253
254
255
256
257
258
259

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
        labels = ids_tensor((input_values.shape[0], min(max_length_labels) - 1), model.config.vocab_size)

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0
260
            attention_mask[i, input_lengths[i] :] = 0
261
262

        model.config.ctc_loss_reduction = "sum"
263
        sum_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()
264
265

        model.config.ctc_loss_reduction = "mean"
266
        mean_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()
267

268
269
        self.parent.assertTrue(isinstance(sum_loss, float))
        self.parent.assertTrue(isinstance(mean_loss, float))
270

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
    def check_seq_classifier_loss(self, config, input_values, *args):
        model = Wav2Vec2ForSequenceClassification(config=config)
        model.to(torch_device)

        # make sure that dropout is disabled
        model.eval()

        input_values = input_values[:3]
        attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long)

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label))

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0
            attention_mask[i, input_lengths[i] :] = 0

        masked_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()
        unmasked_loss = model(input_values, labels=labels).loss.item()

        self.parent.assertTrue(isinstance(masked_loss, float))
        self.parent.assertTrue(isinstance(unmasked_loss, float))
        self.parent.assertTrue(masked_loss != unmasked_loss)

    def check_ctc_training(self, config, input_values, *args):
297
298
299
300
301
302
        config.ctc_zero_infinity = True
        model = Wav2Vec2ForCTC(config=config)
        model.to(torch_device)
        model.train()

        # freeze feature encoder
303
        model.freeze_feature_encoder()
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324

        input_values = input_values[:3]

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
        labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size)

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0

            if max_length_labels[i] < labels.shape[-1]:
                # it's important that we make sure that target lenghts are at least
                # one shorter than logit lenghts to prevent -inf
                labels[i, max_length_labels[i] - 1 :] = -100

        loss = model(input_values, labels=labels).loss
        self.parent.assertFalse(torch.isinf(loss).item())

        loss.backward()

325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
    def check_seq_classifier_training(self, config, input_values, *args):
        config.ctc_zero_infinity = True
        model = Wav2Vec2ForSequenceClassification(config=config)
        model.to(torch_device)
        model.train()

        # freeze everything but the classification head
        model.freeze_base_model()

        input_values = input_values[:3]

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label))

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0

        loss = model(input_values, labels=labels).loss
        self.parent.assertFalse(torch.isinf(loss).item())

        loss.backward()

348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
    def check_xvector_training(self, config, input_values, *args):
        config.ctc_zero_infinity = True
        model = Wav2Vec2ForXVector(config=config)
        model.to(torch_device)
        model.train()

        # freeze everything but the classification head
        model.freeze_base_model()

        input_values = input_values[:3]

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label))

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0

        loss = model(input_values, labels=labels).loss
        self.parent.assertFalse(torch.isinf(loss).item())

        loss.backward()

371
372
373
374
375
376
377
378
379
380
381
    def check_labels_out_of_vocab(self, config, input_values, *args):
        model = Wav2Vec2ForCTC(config)
        model.to(torch_device)
        model.train()

        input_values = input_values[:3]

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
        labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size + 100)

382
        with self.parent.assertRaises(ValueError):
383
384
            model(input_values, labels=labels)

Patrick von Platen's avatar
Patrick von Platen committed
385
    def prepare_config_and_inputs_for_common(self):
386
387
        config, input_values, attention_mask = self.prepare_config_and_inputs()
        inputs_dict = {"input_values": input_values, "attention_mask": attention_mask}
Patrick von Platen's avatar
Patrick von Platen committed
388
389
390
391
392
393
        return config, inputs_dict


@require_torch
class Wav2Vec2ModelTest(ModelTesterMixin, unittest.TestCase):
    all_model_classes = (
394
395
396
        (Wav2Vec2ForCTC, Wav2Vec2Model, Wav2Vec2ForMaskedLM, Wav2Vec2ForSequenceClassification, Wav2Vec2ForPreTraining)
        if is_torch_available()
        else ()
Patrick von Platen's avatar
Patrick von Platen committed
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
    )
    test_pruning = False
    test_headmasking = False
    test_torchscript = False

    def setUp(self):
        self.model_tester = Wav2Vec2ModelTester(self)
        self.config_tester = ConfigTester(self, config_class=Wav2Vec2Config, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

413
414
415
416
417
418
419
420
    def test_model_with_adapter(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model_with_adapter(*config_and_inputs)

    def test_model_with_adapter_proj_dim(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model_with_adapter_proj_dim(*config_and_inputs)

421
422
423
424
    def test_ctc_loss_inference(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_ctc_loss(*config_and_inputs)

425
    def test_seq_classifier_loss_inference(self):
426
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
427
428
429
430
431
432
433
434
435
        self.model_tester.check_seq_classifier_loss(*config_and_inputs)

    def test_ctc_train(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_ctc_training(*config_and_inputs)

    def test_seq_classifier_train(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_seq_classifier_training(*config_and_inputs)
436

437
438
439
440
    def test_xvector_train(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_xvector_training(*config_and_inputs)

441
442
443
444
    def test_labels_out_of_vocab(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_labels_out_of_vocab(*config_and_inputs)

Patrick von Platen's avatar
Patrick von Platen committed
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
    # Wav2Vec2 has no inputs_embeds
    def test_inputs_embeds(self):
        pass

    # `input_ids` is renamed to `input_values`
    def test_forward_signature(self):
        pass

    # Wav2Vec2 cannot resize token embeddings
    # since it has no tokens embeddings
    def test_resize_tokens_embeddings(self):
        pass

    # Wav2Vec2 has no inputs_embeds
    # and thus the `get_input_embeddings` fn
    # is not implemented
    def test_model_common_attributes(self):
        pass

464
465
466
467
468
469
470
471
472
473
    @is_pt_flax_cross_test
    # non-robust architecture does not exist in Flax
    def test_equivalence_flax_to_pt(self):
        pass

    @is_pt_flax_cross_test
    # non-robust architecture does not exist in Flax
    def test_equivalence_pt_to_flax(self):
        pass

474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        config.output_attentions = True

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        # set layer drop to 0
        model.config.layerdrop = 0.0

        input_values = inputs_dict["input_values"]

        input_lengths = torch.tensor(
            [input_values.shape[1] for _ in range(input_values.shape[0])], dtype=torch.long, device=torch_device
        )
        output_lengths = model._get_feat_extract_output_lengths(input_lengths)

        labels = ids_tensor((input_values.shape[0], output_lengths[0] - 2), self.model_tester.vocab_size)
        inputs_dict["attention_mask"] = torch.ones_like(inputs_dict["attention_mask"])
        inputs_dict["labels"] = labels

        outputs = model(**inputs_dict)

        output = outputs[0]

        # Encoder-/Decoder-only models
        hidden_states = outputs.hidden_states[0]
        attentions = outputs.attentions[0]

        hidden_states.retain_grad()
        attentions.retain_grad()

        output.flatten()[0].backward(retain_graph=True)

        self.assertIsNotNone(hidden_states.grad)
        self.assertIsNotNone(attentions.grad)

Patrick von Platen's avatar
Patrick von Platen committed
514
515
516
517
518
519
520
    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
Anton Lozhkov's avatar
Anton Lozhkov committed
521
522
523
524
525
                uniform_init_parms = [
                    "conv.weight",
                    "masked_spec_embed",
                    "codevectors",
                    "quantizer.weight_proj.weight",
526
527
528
529
530
531
                    "project_hid.weight",
                    "project_hid.bias",
                    "project_q.weight",
                    "project_q.bias",
                    "feature_projection.projection.weight",
                    "feature_projection.projection.bias",
532
                    "objective.weight",
Anton Lozhkov's avatar
Anton Lozhkov committed
533
                ]
Patrick von Platen's avatar
Patrick von Platen committed
534
                if param.requires_grad:
Anton Lozhkov's avatar
Anton Lozhkov committed
535
                    if any([x in name for x in uniform_init_parms]):
Patrick von Platen's avatar
Patrick von Platen committed
536
537
                        self.assertTrue(
                            -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
538
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
Patrick von Platen's avatar
Patrick von Platen committed
539
540
541
542
543
                        )
                    else:
                        self.assertIn(
                            ((param.data.mean() * 1e9).round() / 1e9).item(),
                            [0.0, 1.0],
544
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
Patrick von Platen's avatar
Patrick von Platen committed
545
546
                        )

547
548
549
550
    # overwrite from test_modeling_common
    def _mock_init_weights(self, module):
        if hasattr(module, "weight") and module.weight is not None:
            module.weight.data.fill_(3)
Anton Lozhkov's avatar
Anton Lozhkov committed
551
        if hasattr(module, "weight_g") and module.weight_g is not None:
552
            module.weight_g.data.fill_(3)
Anton Lozhkov's avatar
Anton Lozhkov committed
553
554
        if hasattr(module, "weight_v") and module.weight_v is not None:
            module.weight_v.data.fill_(3)
555
556
        if hasattr(module, "bias") and module.bias is not None:
            module.bias.data.fill_(3)
Anton Lozhkov's avatar
Anton Lozhkov committed
557
558
        if hasattr(module, "codevectors") and module.codevectors is not None:
            module.codevectors.data.fill_(3)
559
560
        if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None:
            module.masked_spec_embed.data.fill_(3)
561

562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
    def test_mask_feature_prob_ctc(self):
        model = Wav2Vec2ForCTC.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2", mask_feature_prob=0.2, mask_feature_length=2
        )
        model.to(torch_device).train()
        processor = Wav2Vec2Processor.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2", return_attention_mask=True
        )

        batch_duration_in_seconds = [1, 3, 2, 6]
        input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds]

        batch = processor(
            input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt"
        )

        logits = model(
            input_values=batch["input_values"].to(torch_device),
            attention_mask=batch["attention_mask"].to(torch_device),
        ).logits

        self.assertEqual(logits.shape, (4, 1498, 32))

    def test_mask_time_prob_ctc(self):
        model = Wav2Vec2ForCTC.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2", mask_time_prob=0.2, mask_time_length=2
        )
        model.to(torch_device).train()
        processor = Wav2Vec2Processor.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2", return_attention_mask=True
        )

        batch_duration_in_seconds = [1, 3, 2, 6]
        input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds]

        batch = processor(
            input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt"
        )

        logits = model(
            input_values=batch["input_values"].to(torch_device),
            attention_mask=batch["attention_mask"].to(torch_device),
        ).logits

        self.assertEqual(logits.shape, (4, 1498, 32))

608
609
610
611
    @unittest.skip(reason="Feed forward chunking is not implemented")
    def test_feed_forward_chunking(self):
        pass

Patrick von Platen's avatar
Patrick von Platen committed
612
613
614
615
616
617
618
619
    @slow
    def test_model_from_pretrained(self):
        model = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")
        self.assertIsNotNone(model)


@require_torch
class Wav2Vec2RobustModelTest(ModelTesterMixin, unittest.TestCase):
Anton Lozhkov's avatar
Anton Lozhkov committed
620
    all_model_classes = (
621
622
623
624
625
626
627
628
629
        (
            Wav2Vec2ForCTC,
            Wav2Vec2Model,
            Wav2Vec2ForMaskedLM,
            Wav2Vec2ForSequenceClassification,
            Wav2Vec2ForPreTraining,
            Wav2Vec2ForAudioFrameClassification,
            Wav2Vec2ForXVector,
        )
630
631
        if is_torch_available()
        else ()
Anton Lozhkov's avatar
Anton Lozhkov committed
632
    )
Patrick von Platen's avatar
Patrick von Platen committed
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
    test_pruning = False
    test_headmasking = False
    test_torchscript = False

    def setUp(self):
        self.model_tester = Wav2Vec2ModelTester(
            self, conv_stride=(3, 3, 3), feat_extract_norm="layer", do_stable_layer_norm=True
        )
        self.config_tester = ConfigTester(self, config_class=Wav2Vec2Config, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)
649
650
651
652
653
654
655
656

    def test_model_with_adapter(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model_with_adapter(*config_and_inputs)

    def test_model_with_adapter_proj_dim(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model_with_adapter_proj_dim(*config_and_inputs)
Patrick von Platen's avatar
Patrick von Platen committed
657

658
659
660
661
    def test_batched_inference(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_batch_inference(*config_and_inputs)

662
663
664
665
    def test_ctc_loss_inference(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_ctc_loss(*config_and_inputs)

666
667
668
669
670
    def test_seq_classifier_loss_inference(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_seq_classifier_loss(*config_and_inputs)

    def test_ctc_train(self):
671
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
672
673
674
675
676
        self.model_tester.check_ctc_training(*config_and_inputs)

    def test_seq_classifier_train(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_seq_classifier_training(*config_and_inputs)
677

678
679
680
681
    def test_xvector_train(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_xvector_training(*config_and_inputs)

682
683
684
685
    def test_labels_out_of_vocab(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_labels_out_of_vocab(*config_and_inputs)

Patrick von Platen's avatar
Patrick von Platen committed
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
    # Wav2Vec2 has no inputs_embeds
    def test_inputs_embeds(self):
        pass

    # `input_ids` is renamed to `input_values`
    def test_forward_signature(self):
        pass

    # Wav2Vec2 cannot resize token embeddings
    # since it has no tokens embeddings
    def test_resize_tokens_embeddings(self):
        pass

    # Wav2Vec2 has no inputs_embeds
    # and thus the `get_input_embeddings` fn
    # is not implemented
    def test_model_common_attributes(self):
        pass

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        config.output_attentions = True

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        # set layer drop to 0
        model.config.layerdrop = 0.0

        input_values = inputs_dict["input_values"]

        input_lengths = torch.tensor(
            [input_values.shape[1] for _ in range(input_values.shape[0])], dtype=torch.long, device=torch_device
        )
        output_lengths = model._get_feat_extract_output_lengths(input_lengths)

        labels = ids_tensor((input_values.shape[0], output_lengths[0] - 2), self.model_tester.vocab_size)
        inputs_dict["attention_mask"] = torch.ones_like(inputs_dict["attention_mask"])
        inputs_dict["labels"] = labels

        outputs = model(**inputs_dict)

        output = outputs[0]

        # Encoder-/Decoder-only models
        hidden_states = outputs.hidden_states[0]
        attentions = outputs.attentions[0]

        hidden_states.retain_grad()
        attentions.retain_grad()

        output.flatten()[0].backward(retain_graph=True)

        self.assertIsNotNone(hidden_states.grad)
        self.assertIsNotNone(attentions.grad)

Patrick von Platen's avatar
Patrick von Platen committed
745
746
747
748
749
750
751
    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
Anton Lozhkov's avatar
Anton Lozhkov committed
752
753
754
755
756
                uniform_init_parms = [
                    "conv.weight",
                    "masked_spec_embed",
                    "codevectors",
                    "quantizer.weight_proj.weight",
757
758
759
760
761
762
                    "project_hid.weight",
                    "project_hid.bias",
                    "project_q.weight",
                    "project_q.bias",
                    "feature_projection.projection.weight",
                    "feature_projection.projection.bias",
763
                    "objective.weight",
Anton Lozhkov's avatar
Anton Lozhkov committed
764
                ]
Patrick von Platen's avatar
Patrick von Platen committed
765
                if param.requires_grad:
Anton Lozhkov's avatar
Anton Lozhkov committed
766
                    if any([x in name for x in uniform_init_parms]):
Patrick von Platen's avatar
Patrick von Platen committed
767
768
                        self.assertTrue(
                            -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
769
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
Patrick von Platen's avatar
Patrick von Platen committed
770
771
772
773
774
                        )
                    else:
                        self.assertIn(
                            ((param.data.mean() * 1e9).round() / 1e9).item(),
                            [0.0, 1.0],
775
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
Patrick von Platen's avatar
Patrick von Platen committed
776
777
                        )

778
779
780
781
    # overwrite from test_modeling_common
    def _mock_init_weights(self, module):
        if hasattr(module, "weight") and module.weight is not None:
            module.weight.data.fill_(3)
Anton Lozhkov's avatar
Anton Lozhkov committed
782
        if hasattr(module, "weight_g") and module.weight_g is not None:
783
            module.weight_g.data.fill_(3)
Anton Lozhkov's avatar
Anton Lozhkov committed
784
785
        if hasattr(module, "weight_v") and module.weight_v is not None:
            module.weight_v.data.fill_(3)
786
787
        if hasattr(module, "bias") and module.bias is not None:
            module.bias.data.fill_(3)
Anton Lozhkov's avatar
Anton Lozhkov committed
788
789
        if hasattr(module, "codevectors") and module.codevectors is not None:
            module.codevectors.data.fill_(3)
790
791
        if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None:
            module.masked_spec_embed.data.fill_(3)
Anton Lozhkov's avatar
Anton Lozhkov committed
792
793
794
795
796
797
798

    def test_model_for_pretraining(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        model = Wav2Vec2ForPreTraining(config).to(torch_device)

        features_shape = (
            inputs_dict["input_values"].shape[0],
799
            model._get_feat_extract_output_lengths(inputs_dict["input_values"].shape[1]),
Anton Lozhkov's avatar
Anton Lozhkov committed
800
801
802
803
804
805
806
        )

        mask_time_indices = _compute_mask_indices(
            features_shape,
            model.config.mask_time_prob,
            model.config.mask_time_length,
            min_masks=2,
807
808
809
810
811
        )
        sampled_negative_indices = _sample_negative_indices(features_shape, 10, mask_time_indices)

        mask_time_indices = torch.from_numpy(mask_time_indices).to(torch_device)
        sampled_negative_indices = torch.from_numpy(sampled_negative_indices).to(torch_device)
Anton Lozhkov's avatar
Anton Lozhkov committed
812
813
814
815
816

        loss = model(
            inputs_dict["input_values"],
            attention_mask=inputs_dict["attention_mask"],
            mask_time_indices=mask_time_indices,
817
            sampled_negative_indices=sampled_negative_indices,
Anton Lozhkov's avatar
Anton Lozhkov committed
818
819
        ).loss

820
        # more losses
Anton Lozhkov's avatar
Anton Lozhkov committed
821
        mask_time_indices[:, : mask_time_indices.shape[-1] // 2] = True
822
823
824

        sampled_negative_indices = _sample_negative_indices(features_shape, 10, mask_time_indices.cpu().numpy())
        sampled_negative_indices = torch.from_numpy(sampled_negative_indices).to(torch_device)
Anton Lozhkov's avatar
Anton Lozhkov committed
825
826
827
828
        loss_more_masked = model(
            inputs_dict["input_values"],
            attention_mask=inputs_dict["attention_mask"],
            mask_time_indices=mask_time_indices,
829
            sampled_negative_indices=sampled_negative_indices,
Anton Lozhkov's avatar
Anton Lozhkov committed
830
831
832
833
        ).loss

        # loss_more_masked has to be bigger or equal loss since more masked inputs have to be predicted
        self.assertTrue(loss.detach().item() <= loss_more_masked.detach().item())
834

835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
    def test_mask_feature_prob_ctc(self):
        model = Wav2Vec2ForCTC.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2", mask_feature_prob=0.2, mask_feature_length=2
        )
        model.to(torch_device).train()
        processor = Wav2Vec2Processor.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2", return_attention_mask=True
        )

        batch_duration_in_seconds = [1, 3, 2, 6]
        input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds]

        batch = processor(
            input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt"
        )

        logits = model(
            input_values=batch["input_values"].to(torch_device),
            attention_mask=batch["attention_mask"].to(torch_device),
        ).logits

        self.assertEqual(logits.shape, (4, 1498, 32))

    def test_mask_time_prob_ctc(self):
        model = Wav2Vec2ForCTC.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2", mask_time_prob=0.2, mask_time_length=2
        )
        model.to(torch_device).train()
        processor = Wav2Vec2Processor.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2", return_attention_mask=True
        )

        batch_duration_in_seconds = [1, 3, 2, 6]
        input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds]

        batch = processor(
            input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt"
        )

        logits = model(
            input_values=batch["input_values"].to(torch_device),
            attention_mask=batch["attention_mask"].to(torch_device),
        ).logits

        self.assertEqual(logits.shape, (4, 1498, 32))

881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
    def test_mask_time_feature_prob_ctc_single_batch(self):
        model = Wav2Vec2ForCTC.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2",
            mask_time_prob=0.2,
            mask_feature_prob=0.2,
            mask_time_length=2,
            mask_feature_length=2,
        )
        model.to(torch_device).train()
        processor = Wav2Vec2Processor.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2", return_attention_mask=True
        )

        batch_duration_in_seconds = [6]
        input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds]

        batch = processor(
            input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt"
        )

        logits = model(
            input_values=batch["input_values"].to(torch_device),
            attention_mask=batch["attention_mask"].to(torch_device),
        ).logits

        self.assertEqual(logits.shape, (1, 1498, 32))

908
909
910
911
    @unittest.skip(reason="Feed forward chunking is not implemented")
    def test_feed_forward_chunking(self):
        pass

Patrick von Platen's avatar
Patrick von Platen committed
912
913
914
915
916
917
    @slow
    def test_model_from_pretrained(self):
        model = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")
        self.assertIsNotNone(model)


918
919
920
921
922
923
924
925
@require_torch
class Wav2Vec2UtilsTest(unittest.TestCase):
    def test_compute_mask_indices(self):
        batch_size = 4
        sequence_length = 60
        mask_prob = 0.5
        mask_length = 1

926
927
        mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)
        mask = torch.from_numpy(mask).to(torch_device)
928
929
930

        self.assertListEqual(mask.sum(axis=-1).tolist(), [mask_prob * sequence_length for _ in range(batch_size)])

931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
    def test_compute_mask_indices_low_prob(self):
        # with these settings num_masked_spans=0.5, which means probabilistic rounding
        # ensures that in 5 out of 10 method calls, num_masked_spans=0, and in
        # the other 5 out of 10, cases num_masked_spans=1
        n_trials = 100
        batch_size = 4
        sequence_length = 100
        mask_prob = 0.05
        mask_length = 10

        count_dimensions_masked = 0
        count_dimensions_not_masked = 0

        for _ in range(n_trials):
            mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)
            mask = torch.from_numpy(mask).to(torch_device)

            num_masks = torch.sum(mask).item()

            if num_masks > 0:
                count_dimensions_masked += 1
            else:
                count_dimensions_not_masked += 1

        # as we test for at least 10 masked dimension and at least
        # 10 non-masked dimension, this test could fail with probability:
        # P(100 coin flips, at most 9 heads) = 1.66e-18
        self.assertGreater(count_dimensions_masked, int(n_trials * 0.1))
        self.assertGreater(count_dimensions_not_masked, int(n_trials * 0.1))

961
962
    def test_compute_mask_indices_overlap(self):
        batch_size = 4
Anton Lozhkov's avatar
Anton Lozhkov committed
963
        sequence_length = 80
964
965
966
        mask_prob = 0.5
        mask_length = 4

967
968
        mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)
        mask = torch.from_numpy(mask).to(torch_device)
969

Anton Lozhkov's avatar
Anton Lozhkov committed
970
        # because of overlap mask don't have to add up exactly to `mask_prob * sequence_length`, but have to be smaller or equal
971
        for batch_sum in mask.sum(axis=-1):
Anton Lozhkov's avatar
Anton Lozhkov committed
972
973
            self.assertTrue(int(batch_sum) <= mask_prob * sequence_length)

974
975
976
977
978
979
980
981
982
983
    def test_compute_mask_indices_attn_mask_overlap(self):
        batch_size = 4
        sequence_length = 80
        mask_prob = 0.5
        mask_length = 4

        attention_mask = torch.ones((batch_size, sequence_length), dtype=torch.long, device=torch_device)
        attention_mask[:2, sequence_length // 2 :] = 0

        mask = _compute_mask_indices(
984
            (batch_size, sequence_length), mask_prob, mask_length, attention_mask=attention_mask
985
        )
986
        mask = torch.from_numpy(mask).to(torch_device)
987
988
989
990
991
992

        for batch_sum in mask.sum(axis=-1):
            self.assertTrue(int(batch_sum) <= mask_prob * sequence_length)

        self.assertTrue(mask[:2, sequence_length // 2 :].sum() == 0)

Anton Lozhkov's avatar
Anton Lozhkov committed
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
    def test_compute_perplexity(self):
        probs = torch.arange(100, device=torch_device).reshape(2, 5, 10) / 100

        ppl = Wav2Vec2GumbelVectorQuantizer._compute_perplexity(probs)
        self.assertTrue(abs(ppl.item() - 141.4291) < 1e-3)

        # mask half of the input
        mask = torch.ones((2,), device=torch_device, dtype=torch.bool)
        mask[0] = 0

        ppl = Wav2Vec2GumbelVectorQuantizer._compute_perplexity(probs, mask)
        self.assertTrue(abs(ppl.item() - 58.6757) < 1e-3)

    def test_sample_negatives(self):
        batch_size = 2
        sequence_length = 10
        hidden_size = 4
        num_negatives = 3

        features = (torch.arange(sequence_length * hidden_size, device=torch_device) // hidden_size).view(
            sequence_length, hidden_size
        )  # each value in vector consits of same value
        features = features[None, :].expand(batch_size, sequence_length, hidden_size).contiguous()

1017
1018
1019
1020
1021
        # sample negative indices
        sampled_negative_indices = _sample_negative_indices((batch_size, sequence_length), num_negatives, None)
        sampled_negative_indices = torch.from_numpy(sampled_negative_indices).to(torch_device)
        negatives = features.view(-1, hidden_size)[sampled_negative_indices.long().view(-1)]
        negatives = negatives.view(batch_size, sequence_length, -1, hidden_size).permute(2, 0, 1, 3)
Anton Lozhkov's avatar
Anton Lozhkov committed
1022
1023
1024
1025
1026
1027
1028
1029
        self.assertTrue(negatives.shape == (num_negatives, batch_size, sequence_length, hidden_size))

        # make sure no negatively sampled vector is actually a positive one
        for negative in negatives:
            self.assertTrue(((negative - features) == 0).sum() == 0.0)

        # make sure that full vectors are sampled and not values of vectors => this means that `unique()` yields a single value for `hidden_size` dim
        self.assertTrue(negatives.unique(dim=-1).shape, (num_negatives, batch_size, sequence_length, 1))
1030

1031
    def test_sample_negatives_with_mask(self):
1032
1033
1034
1035
1036
1037
        batch_size = 2
        sequence_length = 10
        hidden_size = 4
        num_negatives = 3

        # second half of last input tensor is padded
1038
1039
        mask = torch.ones((batch_size, sequence_length), dtype=torch.long, device=torch_device)
        mask[-1, sequence_length // 2 :] = 0
1040
1041
1042
1043
1044
1045
1046

        features = (torch.arange(sequence_length * hidden_size, device=torch_device) // hidden_size).view(
            sequence_length, hidden_size
        )  # each value in vector consits of same value
        features = features[None, :].expand(batch_size, sequence_length, hidden_size).contiguous()

        # replace masked feature vectors with -100 to test that those are not sampled
1047
        features = torch.where(mask[:, :, None].expand(features.shape).bool(), features, -100)
1048

1049
1050
1051
1052
1053
1054
1055
        # sample negative indices
        sampled_negative_indices = _sample_negative_indices(
            (batch_size, sequence_length), num_negatives, mask.cpu().numpy()
        )
        sampled_negative_indices = torch.from_numpy(sampled_negative_indices).to(torch_device)
        negatives = features.view(-1, hidden_size)[sampled_negative_indices.long().view(-1)]
        negatives = negatives.view(batch_size, sequence_length, -1, hidden_size).permute(2, 0, 1, 3)
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067

        self.assertTrue((negatives >= 0).all().item())

        self.assertTrue(negatives.shape == (num_negatives, batch_size, sequence_length, hidden_size))

        # make sure no negatively sampled vector is actually a positive one
        for negative in negatives:
            self.assertTrue(((negative - features) == 0).sum() == 0.0)

        # make sure that full vectors are sampled and not values of vectors => this means that `unique()` yields a single value for `hidden_size` dim
        self.assertTrue(negatives.unique(dim=-1).shape, (num_negatives, batch_size, sequence_length, 1))

1068

Patrick von Platen's avatar
Patrick von Platen committed
1069
1070
@require_torch
@require_soundfile
Anton Lozhkov's avatar
Anton Lozhkov committed
1071
@slow
Patrick von Platen's avatar
Patrick von Platen committed
1072
1073
class Wav2Vec2ModelIntegrationTest(unittest.TestCase):
    def _load_datasamples(self, num_samples):
Patrick von Platen's avatar
Patrick von Platen committed
1074
        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
1075
1076
1077
1078
        # automatic decoding with librispeech
        speech_samples = ds.sort("id").filter(
            lambda x: x["id"] in [f"1272-141231-000{i}" for i in range(num_samples)]
        )[:num_samples]["audio"]
1079

1080
        return [x["array"] for x in speech_samples]
Patrick von Platen's avatar
Patrick von Platen committed
1081

1082
1083
1084
1085
1086
    def _load_superb(self, task, num_samples):
        ds = load_dataset("anton-l/superb_dummy", task, split="test")

        return ds[:num_samples]

1087
    def test_inference_ctc_normal(self):
1088
        model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
Patrick von Platen's avatar
Patrick von Platen committed
1089
        model.to(torch_device)
1090
        processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h", do_lower_case=True)
Patrick von Platen's avatar
Patrick von Platen committed
1091
1092
        input_speech = self._load_datasamples(1)

1093
        input_values = processor(input_speech, return_tensors="pt").input_values.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
1094
1095
1096
1097
1098

        with torch.no_grad():
            logits = model(input_values).logits

        predicted_ids = torch.argmax(logits, dim=-1)
1099
        predicted_trans = processor.batch_decode(predicted_ids)
Patrick von Platen's avatar
Patrick von Platen committed
1100
1101
1102
1103

        EXPECTED_TRANSCRIPTIONS = ["a man said to the universe sir i exist"]
        self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)

1104
    def test_inference_ctc_normal_batched(self):
1105
        model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
Patrick von Platen's avatar
Patrick von Platen committed
1106
        model.to(torch_device)
1107
        processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h", do_lower_case=True)
Patrick von Platen's avatar
Patrick von Platen committed
1108
1109
1110

        input_speech = self._load_datasamples(2)

1111
        inputs = processor(input_speech, return_tensors="pt", padding=True)
1112
1113

        input_values = inputs.input_values.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
1114
1115
1116
1117
1118

        with torch.no_grad():
            logits = model(input_values).logits

        predicted_ids = torch.argmax(logits, dim=-1)
1119
        predicted_trans = processor.batch_decode(predicted_ids)
Patrick von Platen's avatar
Patrick von Platen committed
1120
1121
1122
1123
1124
1125
1126

        EXPECTED_TRANSCRIPTIONS = [
            "a man said to the universe sir i exist",
            "sweat covered brion's body trickling into the tight lowing cloth that was the only garment he wore",
        ]
        self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)

1127
    def test_inference_ctc_robust_batched(self):
1128
        model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self").to(torch_device)
1129
        processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self", do_lower_case=True)
Patrick von Platen's avatar
Patrick von Platen committed
1130
1131
1132

        input_speech = self._load_datasamples(4)

1133
        inputs = processor(input_speech, return_tensors="pt", padding=True)
1134
1135
1136

        input_values = inputs.input_values.to(torch_device)
        attention_mask = inputs.attention_mask.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
1137
1138

        with torch.no_grad():
1139
            logits = model(input_values, attention_mask=attention_mask).logits
Patrick von Platen's avatar
Patrick von Platen committed
1140
1141

        predicted_ids = torch.argmax(logits, dim=-1)
1142
        predicted_trans = processor.batch_decode(predicted_ids)
Patrick von Platen's avatar
Patrick von Platen committed
1143
1144
1145
1146
1147
1148
1149
1150

        EXPECTED_TRANSCRIPTIONS = [
            "a man said to the universe sir i exist",
            "sweat covered brion's body trickling into the tight loin cloth that was the only garment he wore",
            "the cut on his chest still dripping blood the ache of his overstrained eyes even the soaring arena around him with the thousands of spectators were trivialities not worth thinking about",
            "his instant panic was followed by a small sharp blow high on his chest",
        ]
        self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)
Anton Lozhkov's avatar
Anton Lozhkov committed
1151

1152
    @unittest.skipIf(torch_device != "cpu", "cannot make deterministic on GPU")
Anton Lozhkov's avatar
Anton Lozhkov committed
1153
    def test_inference_integration(self):
1154
        model = Wav2Vec2ForPreTraining.from_pretrained("facebook/wav2vec2-base")
Anton Lozhkov's avatar
Anton Lozhkov committed
1155
        model.to(torch_device)
1156
        feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("facebook/wav2vec2-base")
Anton Lozhkov's avatar
Anton Lozhkov committed
1157
1158
1159
1160
1161
1162
1163
1164
1165
        input_speech = self._load_datasamples(2)

        inputs_dict = feature_extractor(input_speech, return_tensors="pt", padding=True)

        features_shape = (
            inputs_dict["input_values"].shape[0],
            model._get_feat_extract_output_lengths(torch.tensor(inputs_dict["input_values"].shape[1])),
        )

1166
        np.random.seed(4)
Anton Lozhkov's avatar
Anton Lozhkov committed
1167
1168
1169
1170
1171
        mask_time_indices = _compute_mask_indices(
            features_shape,
            model.config.mask_time_prob,
            model.config.mask_time_length,
            min_masks=2,
1172
1173
        )
        mask_time_indices = torch.from_numpy(mask_time_indices).to(torch_device)
Anton Lozhkov's avatar
Anton Lozhkov committed
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186

        with torch.no_grad():
            outputs = model(
                inputs_dict.input_values.to(torch_device),
                mask_time_indices=mask_time_indices,
            )

        # compute cosine similarity
        cosine_sim = torch.cosine_similarity(outputs.projected_states, outputs.projected_quantized_states, dim=-1)

        # retrieve cosine sim of masked features
        cosine_sim_masked = cosine_sim[mask_time_indices]

1187
1188
        # cosine similarity of model is all > 0.5 as model is
        # pre-trained on contrastive loss
Anton Lozhkov's avatar
Anton Lozhkov committed
1189
        # fmt: off
1190
1191
1192
1193
1194
1195
1196
        expected_cosine_sim_masked = torch.tensor([
            0.8523, 0.5860, 0.6905, 0.5557, 0.7456, 0.5249, 0.6639, 0.7654, 0.7565,
            0.8167, 0.8222, 0.7960, 0.8034, 0.8166, 0.8310, 0.8263, 0.8274, 0.8258,
            0.8179, 0.8412, 0.8536, 0.5098, 0.4728, 0.6461, 0.4498, 0.6002, 0.5774,
            0.6457, 0.7123, 0.5668, 0.6866, 0.4960, 0.6293, 0.7423, 0.7419, 0.7526,
            0.7768, 0.4898, 0.5393, 0.8183
        ], device=torch_device)
Anton Lozhkov's avatar
Anton Lozhkov committed
1197
1198
1199
1200
1201
        # fmt: on

        self.assertTrue(torch.allclose(cosine_sim_masked, expected_cosine_sim_masked, atol=1e-3))

    def test_inference_pretrained(self):
1202
        model = Wav2Vec2ForPreTraining.from_pretrained("facebook/wav2vec2-base")
Anton Lozhkov's avatar
Anton Lozhkov committed
1203
1204
        model.to(torch_device)
        feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
1205
            "facebook/wav2vec2-base", return_attention_mask=True
Anton Lozhkov's avatar
Anton Lozhkov committed
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
        )
        input_speech = self._load_datasamples(2)

        inputs_dict = feature_extractor(input_speech, return_tensors="pt", padding=True)

        features_shape = (
            inputs_dict["input_values"].shape[0],
            model._get_feat_extract_output_lengths(torch.tensor(inputs_dict["input_values"].shape[1])),
        )

        torch.manual_seed(0)
        mask_time_indices = _compute_mask_indices(
            features_shape,
            model.config.mask_time_prob,
            model.config.mask_time_length,
            min_masks=2,
1222
1223
        )
        mask_time_indices = torch.from_numpy(mask_time_indices).to(torch_device)
Anton Lozhkov's avatar
Anton Lozhkov committed
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239

        with torch.no_grad():
            outputs = model(
                inputs_dict.input_values.to(torch_device),
                attention_mask=inputs_dict.attention_mask.to(torch_device),
                mask_time_indices=mask_time_indices,
            )

        # compute cosine similarity
        cosine_sim = torch.cosine_similarity(outputs.projected_states, outputs.projected_quantized_states, dim=-1)

        # retrieve cosine sim of masked features
        cosine_sim_masked = cosine_sim[mask_time_indices]

        # ... now compare to randomly initialized model

1240
        config = Wav2Vec2Config.from_pretrained("facebook/wav2vec2-base")
Anton Lozhkov's avatar
Anton Lozhkov committed
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
        model_rand = Wav2Vec2ForPreTraining(config).to(torch_device).eval()

        with torch.no_grad():
            outputs_rand = model_rand(
                inputs_dict.input_values.to(torch_device),
                attention_mask=inputs_dict.attention_mask.to(torch_device),
                mask_time_indices=mask_time_indices,
            )

        # compute cosine similarity
        cosine_sim_rand = torch.cosine_similarity(
            outputs_rand.projected_states, outputs_rand.projected_quantized_states, dim=-1
        )

        # retrieve cosine sim of masked features
        cosine_sim_masked_rand = cosine_sim_rand[mask_time_indices]

        # a pretrained wav2vec2 model has learned to predict the quantized latent states
        # => the cosine similarity between quantized states and predicted states > 0.5
        # a random wav2vec2 model has not learned to predict the quantized latent states
        # => the cosine similarity between quantized states and predicted states is very likely < 0.1
        self.assertTrue(cosine_sim_masked.mean().item() - 5 * cosine_sim_masked_rand.mean().item() > 0)

1264
    @unittest.skipIf(torch_device != "cpu", "cannot make deterministic on GPU")
Anton Lozhkov's avatar
Anton Lozhkov committed
1265
1266
    def test_loss_pretraining(self):
        model = Wav2Vec2ForPreTraining.from_pretrained(
1267
            "facebook/wav2vec2-base",
Anton Lozhkov's avatar
Anton Lozhkov committed
1268
1269
1270
1271
1272
1273
1274
1275
            attention_dropout=0.0,
            feat_proj_dropout=0.0,
            hidden_dropout=0.0,
            layerdrop=0.0,
        )
        model.to(torch_device).train()

        feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
1276
            "facebook/wav2vec2-base", return_attention_mask=True
Anton Lozhkov's avatar
Anton Lozhkov committed
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
        )
        input_speech = self._load_datasamples(2)

        inputs_dict = feature_extractor(input_speech, return_tensors="pt", padding=True)

        features_shape = (
            inputs_dict["input_values"].shape[0],
            model._get_feat_extract_output_lengths(inputs_dict["input_values"].shape[1]),
        )

        torch.manual_seed(0)
1288
1289
        np.random.seed(0)

Anton Lozhkov's avatar
Anton Lozhkov committed
1290
1291
1292
1293
1294
        mask_time_indices = _compute_mask_indices(
            features_shape,
            model.config.mask_time_prob,
            model.config.mask_time_length,
            min_masks=2,
1295
1296
1297
1298
1299
1300
1301
        )
        sampled_negative_indices = _sample_negative_indices(
            mask_time_indices.shape, model.config.num_negatives, mask_time_indices
        )

        mask_time_indices = torch.from_numpy(mask_time_indices).to(torch_device)
        sampled_negative_indices = torch.from_numpy(sampled_negative_indices).to(torch_device)
Anton Lozhkov's avatar
Anton Lozhkov committed
1302
1303
1304
1305
1306
1307

        with torch.no_grad():
            outputs = model(
                inputs_dict.input_values.to(torch_device),
                attention_mask=inputs_dict.attention_mask.to(torch_device),
                mask_time_indices=mask_time_indices,
1308
                sampled_negative_indices=sampled_negative_indices,
Anton Lozhkov's avatar
Anton Lozhkov committed
1309
1310
1311
1312
1313
            )

        # check diversity loss
        num_codevectors = model.config.num_codevectors_per_group * model.config.num_codevector_groups
        diversity_loss = (num_codevectors - outputs.codevector_perplexity) / num_codevectors
1314
        self.assertTrue(abs(diversity_loss.item() - 0.9538) < 1e-3)
Anton Lozhkov's avatar
Anton Lozhkov committed
1315
1316

        # check overall loss (contrastive loss + diversity loss)
1317
        expected_loss = 116.7094
Anton Lozhkov's avatar
Anton Lozhkov committed
1318
1319

        self.assertTrue(abs(outputs.loss.item() - expected_loss) < 1e-3)
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408

    def test_inference_keyword_spotting(self):
        model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-ks").to(torch_device)
        processor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-ks")
        input_data = self._load_superb("ks", 4)
        inputs = processor(input_data["speech"], return_tensors="pt", padding=True)

        input_values = inputs.input_values.to(torch_device)
        attention_mask = inputs.attention_mask.to(torch_device)
        with torch.no_grad():
            outputs = model(input_values, attention_mask=attention_mask)
        predicted_logits, predicted_ids = torch.max(outputs.logits, dim=-1)

        expected_labels = [7, 6, 10, 9]
        # s3prl logits for the same batch
        expected_logits = torch.tensor([6.1186, 11.8961, 10.2931, 6.0898], device=torch_device)

        self.assertListEqual(predicted_ids.tolist(), expected_labels)
        self.assertTrue(torch.allclose(predicted_logits, expected_logits, atol=1e-2))

    def test_inference_intent_classification(self):
        model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-ic").to(torch_device)
        processor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-ic")
        input_data = self._load_superb("ic", 4)
        inputs = processor(input_data["speech"], return_tensors="pt", padding=True)

        input_values = inputs.input_values.to(torch_device)
        attention_mask = inputs.attention_mask.to(torch_device)
        with torch.no_grad():
            outputs = model(input_values, attention_mask=attention_mask)

        predicted_logits_action, predicted_ids_action = torch.max(outputs.logits[:, :6], dim=-1)
        predicted_logits_object, predicted_ids_object = torch.max(outputs.logits[:, 6:20], dim=-1)
        predicted_logits_location, predicted_ids_location = torch.max(outputs.logits[:, 20:24], dim=-1)

        expected_labels_action = [0, 0, 2, 3]
        expected_logits_action = torch.tensor([0.4568, 11.0848, 1.6621, 9.3841], device=torch_device)
        expected_labels_object = [3, 10, 3, 4]
        expected_logits_object = torch.tensor([1.5322, 10.7094, 5.2469, 22.1318], device=torch_device)
        expected_labels_location = [0, 0, 0, 1]
        expected_logits_location = torch.tensor([1.5335, 6.5096, 10.5704, 11.0569], device=torch_device)

        self.assertListEqual(predicted_ids_action.tolist(), expected_labels_action)
        self.assertListEqual(predicted_ids_object.tolist(), expected_labels_object)
        self.assertListEqual(predicted_ids_location.tolist(), expected_labels_location)

        self.assertTrue(torch.allclose(predicted_logits_action, expected_logits_action, atol=1e-2))
        self.assertTrue(torch.allclose(predicted_logits_object, expected_logits_object, atol=1e-2))
        self.assertTrue(torch.allclose(predicted_logits_location, expected_logits_location, atol=1e-2))

    def test_inference_speaker_identification(self):
        model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-sid").to(torch_device)
        processor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-sid")
        input_data = self._load_superb("si", 4)

        output_logits = []
        with torch.no_grad():
            for example in input_data["speech"]:
                input = processor(example, return_tensors="pt", padding=True)
                output = model(input.input_values.to(torch_device), attention_mask=None)
                output_logits.append(output.logits[0])
        output_logits = torch.stack(output_logits)
        predicted_logits, predicted_ids = torch.max(output_logits, dim=-1)

        expected_labels = [251, 1, 1, 3]
        # s3prl logits for the same batch
        expected_logits = torch.tensor([37.5627, 71.6362, 64.2419, 31.7778], device=torch_device)

        self.assertListEqual(predicted_ids.tolist(), expected_labels)
        self.assertTrue(torch.allclose(predicted_logits, expected_logits, atol=1e-2))

    def test_inference_emotion_recognition(self):
        model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-er").to(torch_device)
        processor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-er")
        input_data = self._load_superb("er", 4)
        inputs = processor(input_data["speech"], return_tensors="pt", padding=True)

        input_values = inputs.input_values.to(torch_device)
        attention_mask = inputs.attention_mask.to(torch_device)
        with torch.no_grad():
            outputs = model(input_values, attention_mask=attention_mask)
        predicted_logits, predicted_ids = torch.max(outputs.logits, dim=-1)

        expected_labels = [1, 1, 2, 2]
        # s3prl logits for the same batch
        expected_logits = torch.tensor([2.1722, 3.0779, 8.0287, 6.6797], device=torch_device)

        self.assertListEqual(predicted_ids.tolist(), expected_labels)
        self.assertTrue(torch.allclose(predicted_logits, expected_logits, atol=1e-2))
1409

1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
    def test_phoneme_recognition(self):
        model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft").to(torch_device)
        processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft")

        input_speech = self._load_datasamples(4)

        inputs = processor(input_speech, return_tensors="pt", padding=True)

        input_values = inputs.input_values.to(torch_device)
        attention_mask = inputs.attention_mask.to(torch_device)

        with torch.no_grad():
            logits = model(input_values, attention_mask=attention_mask).logits

        predicted_ids = torch.argmax(logits, dim=-1)
        predicted_trans = processor.batch_decode(predicted_ids)

        EXPECTED_TRANSCRIPTIONS = [
            "ɐ m æ n s ɛ d t ə ð ə j uː n ɪ v ɚ s s ɚ aɪ ɛ ɡ z ɪ s t",
            "s w ɛ t k ʌ v ɚ d b ɹ iː ɔ n z b ɑː d i t ɹ ɪ k l ɪ ŋ ɪ n t ə ð ə t aɪ t l oɪ n k l ɑː θ ð æ w ʌ z ð ɪ oʊ n l i ɡ ɑːɹ m ə n t h iː w ɔːɹ",
            "ð ə k aɪ t ɔ n h ɪ z tʃ ɛ s t s t ɪ l d ɹ ɪ p ɪ ŋ b l ʌ d ð ɪ eɪ k ʌ v h ɪ z oʊ v ɚ s t ɹ eɪ n d aɪ z iː v ə n ð ə s ɔːɹ ɹ ɪ ŋ ɐ ɹ iː n ɐ ɚ ɹ aʊ n d h ɪ m w ɪ ð ə θ aʊ z ə n d z ʌ v s p ɛ k t eɪ ɾ ɚ z w ɜː t ɹ ɪ v ɪ æ l ᵻ ɾ i z n ɑː t w ɜː θ θ ɪ ŋ k ɪ ŋ ɐ b aʊ t",
            "h ɪ z ɪ n s t ə n t v p æ n ɪ k w ʌ z f ɑː l oʊ d b aɪ ɐ s m ɔː l ʃ ɑːɹ p b l oʊ h aɪ ɔ n h ɪ z tʃ ɛ s t",
        ]
        # should correspond to =>:
        # [
        # "a man said to the universe sir i exist",
        # "sweat covered brion's body trickling into the tight loin cloth that was the only garment he wore",
        # "the cut on his chest still dripping blood the ache of his overstrained eyes even the soaring arena around him with the thousands of spectators were trivialities not worth thinking about",
        # "his instant panic was followed by a small sharp blow high on his chest",
        # ]
        self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)

1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
    @require_pyctcdecode
    @require_torchaudio
    def test_wav2vec2_with_lm(self):
        ds = load_dataset("common_voice", "es", split="test", streaming=True)
        sample = next(iter(ds))

        resampled_audio = torchaudio.functional.resample(
            torch.tensor(sample["audio"]["array"]), 48_000, 16_000
        ).numpy()

        model = Wav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm").to(
            torch_device
        )
        processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")

        input_values = processor(resampled_audio, return_tensors="pt").input_values

        with torch.no_grad():
            logits = model(input_values.to(torch_device)).logits

        transcription = processor.batch_decode(logits.cpu().numpy()).text

        self.assertEqual(transcription[0], "bien y qué regalo vas a abrir primero")
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490

    def test_inference_diarization(self):
        model = Wav2Vec2ForAudioFrameClassification.from_pretrained("anton-l/wav2vec2-base-superb-sd").to(torch_device)
        processor = Wav2Vec2FeatureExtractor.from_pretrained("anton-l/wav2vec2-base-superb-sd")
        input_data = self._load_superb("sd", 4)
        inputs = processor(input_data["speech"], return_tensors="pt", padding=True, sampling_rate=16_000)

        input_values = inputs.input_values.to(torch_device)
        attention_mask = inputs.attention_mask.to(torch_device)
        with torch.no_grad():
            outputs = model(input_values, attention_mask=attention_mask)
        # labels is a one-hot array of shape (num_frames, num_speakers)
        labels = (outputs.logits > 0).long()

        # s3prl logits for the same batch
        expected_logits = torch.tensor(
            [
                [[-5.2807, -5.1272], [-5.4059, -4.7757], [-5.2764, -4.9621], [-5.0117, -4.5851]],
                [[-1.7643, -0.5462], [-1.7369, -0.2649], [-1.5066, -0.6200], [-4.5703, -2.4863]],
                [[-0.8656, -0.4783], [-0.8899, -0.3289], [-0.9267, -0.5781], [-0.7817, -0.4619]],
                [[-4.8625, -2.5316], [-5.2339, -2.2155], [-4.9835, -2.0344], [-4.4727, -1.8421]],
            ],
            device=torch_device,
        )
        self.assertEqual(labels[0, :, 0].sum(), 555)
        self.assertEqual(labels[0, :, 1].sum(), 299)
1491
1492
        # TODO: update the tolerance after the CI moves to torch 1.10
        self.assertTrue(torch.allclose(outputs.logits[:, :4], expected_logits, atol=1e-2))
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515

    def test_inference_speaker_verification(self):
        model = Wav2Vec2ForXVector.from_pretrained("anton-l/wav2vec2-base-superb-sv").to(torch_device)
        processor = Wav2Vec2FeatureExtractor.from_pretrained("anton-l/wav2vec2-base-superb-sv")
        input_data = self._load_superb("si", 4)

        inputs = processor(input_data["speech"], return_tensors="pt", padding=True, sampling_rate=16_000)
        labels = torch.tensor([5, 1, 1, 3], device=torch_device).T

        with torch.no_grad():
            input_values = inputs.input_values.to(torch_device)
            attention_mask = inputs.attention_mask.to(torch_device)
            outputs = model(input_values, attention_mask=attention_mask, labels=labels)
        embeddings = torch.nn.functional.normalize(outputs.embeddings, dim=-1).cpu()

        cosine_sim = torch.nn.CosineSimilarity(dim=-1)
        # id10002 vs id10002
        self.assertAlmostEqual(cosine_sim(embeddings[1], embeddings[2]).numpy(), 0.9758, 3)
        # id10006 vs id10002
        self.assertAlmostEqual(cosine_sim(embeddings[0], embeddings[1]).numpy(), 0.7579, 3)
        # id10002 vs id10004
        self.assertAlmostEqual(cosine_sim(embeddings[2], embeddings[3]).numpy(), 0.7594, 3)

1516
1517
        # TODO: update the tolerance after the CI moves to torch 1.10
        self.assertAlmostEqual(outputs.loss.item(), 17.7963, 2)