test_modeling_wav2vec2.py 34 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Wav2Vec2 model. """


import math
import unittest

21
22
import pytest

23
from tests.test_modeling_common import floats_tensor, ids_tensor, random_attention_mask
Patrick von Platen's avatar
Patrick von Platen committed
24
25
26
27
28
29
30
31
32
33
from transformers import is_torch_available
from transformers.testing_utils import require_datasets, require_soundfile, require_torch, slow, torch_device

from .test_configuration_common import ConfigTester
from .test_modeling_common import ModelTesterMixin, _config_zero_init


if is_torch_available():
    import torch

Anton Lozhkov's avatar
Anton Lozhkov committed
34
35
36
37
38
39
40
41
42
43
    from transformers import (
        Wav2Vec2Config,
        Wav2Vec2FeatureExtractor,
        Wav2Vec2ForCTC,
        Wav2Vec2ForMaskedLM,
        Wav2Vec2ForPreTraining,
        Wav2Vec2Model,
        Wav2Vec2Processor,
    )
    from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2GumbelVectorQuantizer, _compute_mask_indices
Patrick von Platen's avatar
Patrick von Platen committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106


class Wav2Vec2ModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=1024,  # speech is longer
        is_training=False,
        hidden_size=16,
        feat_extract_norm="group",
        feat_extract_dropout=0.0,
        feat_extract_activation="gelu",
        conv_dim=(32, 32, 32),
        conv_stride=(4, 4, 4),
        conv_kernel=(8, 8, 8),
        conv_bias=False,
        num_conv_pos_embeddings=16,
        num_conv_pos_embedding_groups=2,
        num_hidden_layers=4,
        num_attention_heads=2,
        hidden_dropout_prob=0.1,  # this is most likely not correctly set yet
        intermediate_size=20,
        layer_norm_eps=1e-5,
        hidden_act="gelu",
        initializer_range=0.02,
        vocab_size=32,
        do_stable_layer_norm=False,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.hidden_size = hidden_size
        self.feat_extract_norm = feat_extract_norm
        self.feat_extract_dropout = feat_extract_dropout
        self.feat_extract_activation = feat_extract_activation
        self.conv_dim = conv_dim
        self.conv_stride = conv_stride
        self.conv_kernel = conv_kernel
        self.conv_bias = conv_bias
        self.num_conv_pos_embeddings = num_conv_pos_embeddings
        self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.hidden_dropout_prob = hidden_dropout_prob
        self.intermediate_size = intermediate_size
        self.layer_norm_eps = layer_norm_eps
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.vocab_size = vocab_size
        self.do_stable_layer_norm = do_stable_layer_norm
        self.scope = scope

        output_seq_length = self.seq_length
        for kernel, stride in zip(self.conv_kernel, self.conv_stride):
            output_seq_length = (output_seq_length - (kernel - 1)) / stride
        self.output_seq_length = int(math.ceil(output_seq_length))
        self.encoder_seq_length = self.output_seq_length

    def prepare_config_and_inputs(self):
        input_values = floats_tensor([self.batch_size, self.seq_length], self.vocab_size)
107
        attention_mask = random_attention_mask([self.batch_size, self.seq_length])
Patrick von Platen's avatar
Patrick von Platen committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

        config = Wav2Vec2Config(
            hidden_size=self.hidden_size,
            feat_extract_norm=self.feat_extract_norm,
            feat_extract_dropout=self.feat_extract_dropout,
            feat_extract_activation=self.feat_extract_activation,
            conv_dim=self.conv_dim,
            conv_stride=self.conv_stride,
            conv_kernel=self.conv_kernel,
            conv_bias=self.conv_bias,
            num_conv_pos_embeddings=self.num_conv_pos_embeddings,
            num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            hidden_dropout_prob=self.hidden_dropout_prob,
            intermediate_size=self.intermediate_size,
            layer_norm_eps=self.layer_norm_eps,
            hidden_act=self.hidden_act,
            initializer_range=self.initializer_range,
            vocab_size=self.vocab_size,
        )

130
        return config, input_values, attention_mask
Patrick von Platen's avatar
Patrick von Platen committed
131

132
    def create_and_check_model(self, config, input_values, attention_mask):
Patrick von Platen's avatar
Patrick von Platen committed
133
134
135
        model = Wav2Vec2Model(config=config)
        model.to(torch_device)
        model.eval()
136
        result = model(input_values, attention_mask=attention_mask)
Patrick von Platen's avatar
Patrick von Platen committed
137
138
139
140
        self.parent.assertEqual(
            result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size)
        )

141
    def create_and_check_batch_inference(self, config, input_values, *args):
142
        # test does not pass for models making use of `group_norm`
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
        # check: https://github.com/pytorch/fairseq/issues/3227
        model = Wav2Vec2Model(config=config)
        model.to(torch_device)
        model.eval()

        input_values = input_values[:3]
        attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.bool)

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0
            attention_mask[i, input_lengths[i] :] = 0.0

        batch_outputs = model(input_values, attention_mask=attention_mask).last_hidden_state

        for i in range(input_values.shape[0]):
            input_slice = input_values[i : i + 1, : input_lengths[i]]
            output = model(input_slice).last_hidden_state

            batch_output = batch_outputs[i : i + 1, : output.shape[1]]
            self.parent.assertTrue(torch.allclose(output, batch_output, atol=1e-3))

167
168
169
170
171
172
173
174
    def check_ctc_loss(self, config, input_values, *args):
        model = Wav2Vec2ForCTC(config=config)
        model.to(torch_device)

        # make sure that dropout is disabled
        model.eval()

        input_values = input_values[:3]
175
        attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long)
176
177
178
179
180
181
182
183

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
        labels = ids_tensor((input_values.shape[0], min(max_length_labels) - 1), model.config.vocab_size)

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0
184
            attention_mask[i, input_lengths[i] :] = 0
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

        model.config.ctc_loss_reduction = "sum"
        sum_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss

        model.config.ctc_loss_reduction = "mean"
        mean_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss

        self.parent.assertTrue(abs(labels.shape[0] * labels.shape[1] * mean_loss.item() - sum_loss.item()) < 1e-3)

    def check_training(self, config, input_values, *args):
        config.ctc_zero_infinity = True
        model = Wav2Vec2ForCTC(config=config)
        model.to(torch_device)
        model.train()

        # freeze feature encoder
        model.freeze_feature_extractor()

        input_values = input_values[:3]

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
        labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size)

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0

            if max_length_labels[i] < labels.shape[-1]:
                # it's important that we make sure that target lenghts are at least
                # one shorter than logit lenghts to prevent -inf
                labels[i, max_length_labels[i] - 1 :] = -100

        loss = model(input_values, labels=labels).loss
        self.parent.assertFalse(torch.isinf(loss).item())

        loss.backward()

223
224
225
226
227
228
229
230
231
232
233
234
235
236
    def check_labels_out_of_vocab(self, config, input_values, *args):
        model = Wav2Vec2ForCTC(config)
        model.to(torch_device)
        model.train()

        input_values = input_values[:3]

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
        labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size + 100)

        with pytest.raises(ValueError):
            model(input_values, labels=labels)

Patrick von Platen's avatar
Patrick von Platen committed
237
    def prepare_config_and_inputs_for_common(self):
238
239
        config, input_values, attention_mask = self.prepare_config_and_inputs()
        inputs_dict = {"input_values": input_values, "attention_mask": attention_mask}
Patrick von Platen's avatar
Patrick von Platen committed
240
241
242
243
244
245
        return config, inputs_dict


@require_torch
class Wav2Vec2ModelTest(ModelTesterMixin, unittest.TestCase):
    all_model_classes = (
Anton Lozhkov's avatar
Anton Lozhkov committed
246
        (Wav2Vec2ForCTC, Wav2Vec2Model, Wav2Vec2ForMaskedLM, Wav2Vec2ForPreTraining) if is_torch_available() else ()
Patrick von Platen's avatar
Patrick von Platen committed
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
    )
    test_pruning = False
    test_headmasking = False
    test_torchscript = False

    def setUp(self):
        self.model_tester = Wav2Vec2ModelTester(self)
        self.config_tester = ConfigTester(self, config_class=Wav2Vec2Config, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

263
264
265
266
267
268
269
270
    def test_ctc_loss_inference(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_ctc_loss(*config_and_inputs)

    def test_train(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_training(*config_and_inputs)

271
272
273
274
    def test_labels_out_of_vocab(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_labels_out_of_vocab(*config_and_inputs)

Patrick von Platen's avatar
Patrick von Platen committed
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
    # Wav2Vec2 has no inputs_embeds
    def test_inputs_embeds(self):
        pass

    # `input_ids` is renamed to `input_values`
    def test_forward_signature(self):
        pass

    # Wav2Vec2 cannot resize token embeddings
    # since it has no tokens embeddings
    def test_resize_tokens_embeddings(self):
        pass

    # Wav2Vec2 has no inputs_embeds
    # and thus the `get_input_embeddings` fn
    # is not implemented
    def test_model_common_attributes(self):
        pass

294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        config.output_attentions = True

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        # set layer drop to 0
        model.config.layerdrop = 0.0

        input_values = inputs_dict["input_values"]

        input_lengths = torch.tensor(
            [input_values.shape[1] for _ in range(input_values.shape[0])], dtype=torch.long, device=torch_device
        )
        output_lengths = model._get_feat_extract_output_lengths(input_lengths)

        labels = ids_tensor((input_values.shape[0], output_lengths[0] - 2), self.model_tester.vocab_size)
        inputs_dict["attention_mask"] = torch.ones_like(inputs_dict["attention_mask"])
        inputs_dict["labels"] = labels

        outputs = model(**inputs_dict)

        output = outputs[0]

        # Encoder-/Decoder-only models
        hidden_states = outputs.hidden_states[0]
        attentions = outputs.attentions[0]

        hidden_states.retain_grad()
        attentions.retain_grad()

        output.flatten()[0].backward(retain_graph=True)

        self.assertIsNotNone(hidden_states.grad)
        self.assertIsNotNone(attentions.grad)

Patrick von Platen's avatar
Patrick von Platen committed
334
335
336
337
338
339
340
    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
Anton Lozhkov's avatar
Anton Lozhkov committed
341
342
343
344
345
346
                uniform_init_parms = [
                    "conv.weight",
                    "masked_spec_embed",
                    "codevectors",
                    "quantizer.weight_proj.weight",
                ]
Patrick von Platen's avatar
Patrick von Platen committed
347
                if param.requires_grad:
Anton Lozhkov's avatar
Anton Lozhkov committed
348
                    if any([x in name for x in uniform_init_parms]):
Patrick von Platen's avatar
Patrick von Platen committed
349
350
                        self.assertTrue(
                            -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
351
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
Patrick von Platen's avatar
Patrick von Platen committed
352
353
354
355
356
                        )
                    else:
                        self.assertIn(
                            ((param.data.mean() * 1e9).round() / 1e9).item(),
                            [0.0, 1.0],
357
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
Patrick von Platen's avatar
Patrick von Platen committed
358
359
                        )

360
361
362
363
    # overwrite from test_modeling_common
    def _mock_init_weights(self, module):
        if hasattr(module, "weight") and module.weight is not None:
            module.weight.data.fill_(3)
Anton Lozhkov's avatar
Anton Lozhkov committed
364
        if hasattr(module, "weight_g") and module.weight_g is not None:
365
            module.weight_g.data.fill_(3)
Anton Lozhkov's avatar
Anton Lozhkov committed
366
367
        if hasattr(module, "weight_v") and module.weight_v is not None:
            module.weight_v.data.fill_(3)
368
369
        if hasattr(module, "bias") and module.bias is not None:
            module.bias.data.fill_(3)
Anton Lozhkov's avatar
Anton Lozhkov committed
370
371
        if hasattr(module, "codevectors") and module.codevectors is not None:
            module.codevectors.data.fill_(3)
372
373
        if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None:
            module.masked_spec_embed.data.fill_(3)
374

Patrick von Platen's avatar
Patrick von Platen committed
375
376
377
378
379
380
381
382
    @slow
    def test_model_from_pretrained(self):
        model = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")
        self.assertIsNotNone(model)


@require_torch
class Wav2Vec2RobustModelTest(ModelTesterMixin, unittest.TestCase):
Anton Lozhkov's avatar
Anton Lozhkov committed
383
384
385
    all_model_classes = (
        (Wav2Vec2ForCTC, Wav2Vec2Model, Wav2Vec2ForMaskedLM, Wav2Vec2ForPreTraining) if is_torch_available() else ()
    )
Patrick von Platen's avatar
Patrick von Platen committed
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
    test_pruning = False
    test_headmasking = False
    test_torchscript = False

    def setUp(self):
        self.model_tester = Wav2Vec2ModelTester(
            self, conv_stride=(3, 3, 3), feat_extract_norm="layer", do_stable_layer_norm=True
        )
        self.config_tester = ConfigTester(self, config_class=Wav2Vec2Config, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

403
404
405
406
    def test_batched_inference(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_batch_inference(*config_and_inputs)

407
408
409
410
411
412
413
414
    def test_ctc_loss_inference(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_ctc_loss(*config_and_inputs)

    def test_train(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_training(*config_and_inputs)

415
416
417
418
    def test_labels_out_of_vocab(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_labels_out_of_vocab(*config_and_inputs)

Patrick von Platen's avatar
Patrick von Platen committed
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
    # Wav2Vec2 has no inputs_embeds
    def test_inputs_embeds(self):
        pass

    # `input_ids` is renamed to `input_values`
    def test_forward_signature(self):
        pass

    # Wav2Vec2 cannot resize token embeddings
    # since it has no tokens embeddings
    def test_resize_tokens_embeddings(self):
        pass

    # Wav2Vec2 has no inputs_embeds
    # and thus the `get_input_embeddings` fn
    # is not implemented
    def test_model_common_attributes(self):
        pass

438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        config.output_attentions = True

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        # set layer drop to 0
        model.config.layerdrop = 0.0

        input_values = inputs_dict["input_values"]

        input_lengths = torch.tensor(
            [input_values.shape[1] for _ in range(input_values.shape[0])], dtype=torch.long, device=torch_device
        )
        output_lengths = model._get_feat_extract_output_lengths(input_lengths)

        labels = ids_tensor((input_values.shape[0], output_lengths[0] - 2), self.model_tester.vocab_size)
        inputs_dict["attention_mask"] = torch.ones_like(inputs_dict["attention_mask"])
        inputs_dict["labels"] = labels

        outputs = model(**inputs_dict)

        output = outputs[0]

        # Encoder-/Decoder-only models
        hidden_states = outputs.hidden_states[0]
        attentions = outputs.attentions[0]

        hidden_states.retain_grad()
        attentions.retain_grad()

        output.flatten()[0].backward(retain_graph=True)

        self.assertIsNotNone(hidden_states.grad)
        self.assertIsNotNone(attentions.grad)

Patrick von Platen's avatar
Patrick von Platen committed
478
479
480
481
482
483
484
    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
Anton Lozhkov's avatar
Anton Lozhkov committed
485
486
487
488
489
490
                uniform_init_parms = [
                    "conv.weight",
                    "masked_spec_embed",
                    "codevectors",
                    "quantizer.weight_proj.weight",
                ]
Patrick von Platen's avatar
Patrick von Platen committed
491
                if param.requires_grad:
Anton Lozhkov's avatar
Anton Lozhkov committed
492
                    if any([x in name for x in uniform_init_parms]):
Patrick von Platen's avatar
Patrick von Platen committed
493
494
                        self.assertTrue(
                            -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
495
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
Patrick von Platen's avatar
Patrick von Platen committed
496
497
498
499
500
                        )
                    else:
                        self.assertIn(
                            ((param.data.mean() * 1e9).round() / 1e9).item(),
                            [0.0, 1.0],
501
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
Patrick von Platen's avatar
Patrick von Platen committed
502
503
                        )

504
505
506
507
    # overwrite from test_modeling_common
    def _mock_init_weights(self, module):
        if hasattr(module, "weight") and module.weight is not None:
            module.weight.data.fill_(3)
Anton Lozhkov's avatar
Anton Lozhkov committed
508
        if hasattr(module, "weight_g") and module.weight_g is not None:
509
            module.weight_g.data.fill_(3)
Anton Lozhkov's avatar
Anton Lozhkov committed
510
511
        if hasattr(module, "weight_v") and module.weight_v is not None:
            module.weight_v.data.fill_(3)
512
513
        if hasattr(module, "bias") and module.bias is not None:
            module.bias.data.fill_(3)
Anton Lozhkov's avatar
Anton Lozhkov committed
514
515
        if hasattr(module, "codevectors") and module.codevectors is not None:
            module.codevectors.data.fill_(3)
516
517
        if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None:
            module.masked_spec_embed.data.fill_(3)
Anton Lozhkov's avatar
Anton Lozhkov committed
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550

    def test_model_for_pretraining(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        model = Wav2Vec2ForPreTraining(config).to(torch_device)

        features_shape = (
            inputs_dict["input_values"].shape[0],
            model._get_feat_extract_output_lengths(torch.tensor(inputs_dict["input_values"].shape[1])),
        )

        mask_time_indices = _compute_mask_indices(
            features_shape,
            model.config.mask_time_prob,
            model.config.mask_time_length,
            device=inputs_dict["input_values"].device,
            min_masks=2,
        ).to(torch_device)

        loss = model(
            inputs_dict["input_values"],
            attention_mask=inputs_dict["attention_mask"],
            mask_time_indices=mask_time_indices,
        ).loss

        mask_time_indices[:, : mask_time_indices.shape[-1] // 2] = True
        loss_more_masked = model(
            inputs_dict["input_values"],
            attention_mask=inputs_dict["attention_mask"],
            mask_time_indices=mask_time_indices,
        ).loss

        # loss_more_masked has to be bigger or equal loss since more masked inputs have to be predicted
        self.assertTrue(loss.detach().item() <= loss_more_masked.detach().item())
551

Patrick von Platen's avatar
Patrick von Platen committed
552
553
554
555
556
557
    @slow
    def test_model_from_pretrained(self):
        model = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")
        self.assertIsNotNone(model)


558
559
560
561
562
563
564
565
@require_torch
class Wav2Vec2UtilsTest(unittest.TestCase):
    def test_compute_mask_indices(self):
        batch_size = 4
        sequence_length = 60
        mask_prob = 0.5
        mask_length = 1

566
        mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length, torch_device)
567
568
569
570
571

        self.assertListEqual(mask.sum(axis=-1).tolist(), [mask_prob * sequence_length for _ in range(batch_size)])

    def test_compute_mask_indices_overlap(self):
        batch_size = 4
Anton Lozhkov's avatar
Anton Lozhkov committed
572
        sequence_length = 80
573
574
575
        mask_prob = 0.5
        mask_length = 4

576
        mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length, torch_device)
577

Anton Lozhkov's avatar
Anton Lozhkov committed
578
        # because of overlap mask don't have to add up exactly to `mask_prob * sequence_length`, but have to be smaller or equal
579
        for batch_sum in mask.sum(axis=-1):
Anton Lozhkov's avatar
Anton Lozhkov committed
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
            self.assertTrue(int(batch_sum) <= mask_prob * sequence_length)

    def test_compute_perplexity(self):
        probs = torch.arange(100, device=torch_device).reshape(2, 5, 10) / 100

        ppl = Wav2Vec2GumbelVectorQuantizer._compute_perplexity(probs)
        self.assertTrue(abs(ppl.item() - 141.4291) < 1e-3)

        # mask half of the input
        mask = torch.ones((2,), device=torch_device, dtype=torch.bool)
        mask[0] = 0

        ppl = Wav2Vec2GumbelVectorQuantizer._compute_perplexity(probs, mask)
        self.assertTrue(abs(ppl.item() - 58.6757) < 1e-3)

    def test_sample_negatives(self):
        batch_size = 2
        sequence_length = 10
        hidden_size = 4
        num_negatives = 3

        features = (torch.arange(sequence_length * hidden_size, device=torch_device) // hidden_size).view(
            sequence_length, hidden_size
        )  # each value in vector consits of same value
        features = features[None, :].expand(batch_size, sequence_length, hidden_size).contiguous()

        negatives = Wav2Vec2ForPreTraining._sample_negatives(features, num_negatives)

        self.assertTrue(negatives.shape == (num_negatives, batch_size, sequence_length, hidden_size))

        # make sure no negatively sampled vector is actually a positive one
        for negative in negatives:
            self.assertTrue(((negative - features) == 0).sum() == 0.0)

        # make sure that full vectors are sampled and not values of vectors => this means that `unique()` yields a single value for `hidden_size` dim
        self.assertTrue(negatives.unique(dim=-1).shape, (num_negatives, batch_size, sequence_length, 1))
616
617


Patrick von Platen's avatar
Patrick von Platen committed
618
619
620
@require_torch
@require_datasets
@require_soundfile
Anton Lozhkov's avatar
Anton Lozhkov committed
621
@slow
Patrick von Platen's avatar
Patrick von Platen committed
622
623
624
625
626
627
class Wav2Vec2ModelIntegrationTest(unittest.TestCase):
    def _load_datasamples(self, num_samples):
        from datasets import load_dataset

        import soundfile as sf

628
629
        ids = [f"1272-141231-000{i}" for i in range(num_samples)]

Patrick von Platen's avatar
Patrick von Platen committed
630
631
632
633
634
635
636
        # map files to raw
        def map_to_array(batch):
            speech, _ = sf.read(batch["file"])
            batch["speech"] = speech
            return batch

        ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
637
638

        ds = ds.filter(lambda x: x["id"] in ids).sort("id").map(map_to_array)
Patrick von Platen's avatar
Patrick von Platen committed
639
640
641

        return ds["speech"][:num_samples]

642
    def test_inference_ctc_normal(self):
643
        model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
Patrick von Platen's avatar
Patrick von Platen committed
644
        model.to(torch_device)
645
        processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h", do_lower_case=True)
Patrick von Platen's avatar
Patrick von Platen committed
646
647
        input_speech = self._load_datasamples(1)

648
        input_values = processor(input_speech, return_tensors="pt").input_values.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
649
650
651
652
653

        with torch.no_grad():
            logits = model(input_values).logits

        predicted_ids = torch.argmax(logits, dim=-1)
654
        predicted_trans = processor.batch_decode(predicted_ids)
Patrick von Platen's avatar
Patrick von Platen committed
655
656
657
658

        EXPECTED_TRANSCRIPTIONS = ["a man said to the universe sir i exist"]
        self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)

659
    def test_inference_ctc_normal_batched(self):
660
        model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
Patrick von Platen's avatar
Patrick von Platen committed
661
        model.to(torch_device)
662
        processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h", do_lower_case=True)
Patrick von Platen's avatar
Patrick von Platen committed
663
664
665

        input_speech = self._load_datasamples(2)

666
        inputs = processor(input_speech, return_tensors="pt", padding=True, truncation=True)
667
668

        input_values = inputs.input_values.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
669
670
671
672
673

        with torch.no_grad():
            logits = model(input_values).logits

        predicted_ids = torch.argmax(logits, dim=-1)
674
        predicted_trans = processor.batch_decode(predicted_ids)
Patrick von Platen's avatar
Patrick von Platen committed
675
676
677
678
679
680
681

        EXPECTED_TRANSCRIPTIONS = [
            "a man said to the universe sir i exist",
            "sweat covered brion's body trickling into the tight lowing cloth that was the only garment he wore",
        ]
        self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)

682
    def test_inference_ctc_robust_batched(self):
683
        model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self").to(torch_device)
684
        processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self", do_lower_case=True)
Patrick von Platen's avatar
Patrick von Platen committed
685
686
687

        input_speech = self._load_datasamples(4)

688
        inputs = processor(input_speech, return_tensors="pt", padding=True, truncation=True)
689
690
691

        input_values = inputs.input_values.to(torch_device)
        attention_mask = inputs.attention_mask.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
692
693

        with torch.no_grad():
694
            logits = model(input_values, attention_mask=attention_mask).logits
Patrick von Platen's avatar
Patrick von Platen committed
695
696

        predicted_ids = torch.argmax(logits, dim=-1)
697
        predicted_trans = processor.batch_decode(predicted_ids)
Patrick von Platen's avatar
Patrick von Platen committed
698
699
700
701
702
703
704
705

        EXPECTED_TRANSCRIPTIONS = [
            "a man said to the universe sir i exist",
            "sweat covered brion's body trickling into the tight loin cloth that was the only garment he wore",
            "the cut on his chest still dripping blood the ache of his overstrained eyes even the soaring arena around him with the thousands of spectators were trivialities not worth thinking about",
            "his instant panic was followed by a small sharp blow high on his chest",
        ]
        self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)
Anton Lozhkov's avatar
Anton Lozhkov committed
706
707

    def test_inference_integration(self):
708
        model = Wav2Vec2ForPreTraining.from_pretrained("facebook/wav2vec2-base")
Anton Lozhkov's avatar
Anton Lozhkov committed
709
710
        model.to(torch_device)
        feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
711
            "facebook/wav2vec2-base", return_attention_mask=True
Anton Lozhkov's avatar
Anton Lozhkov committed
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
        )
        input_speech = self._load_datasamples(2)

        inputs_dict = feature_extractor(input_speech, return_tensors="pt", padding=True)

        features_shape = (
            inputs_dict["input_values"].shape[0],
            model._get_feat_extract_output_lengths(torch.tensor(inputs_dict["input_values"].shape[1])),
        )

        torch.manual_seed(0)
        mask_time_indices = _compute_mask_indices(
            features_shape,
            model.config.mask_time_prob,
            model.config.mask_time_length,
            device=inputs_dict["input_values"].device,
            min_masks=2,
        ).to(torch_device)

        with torch.no_grad():
            outputs = model(
                inputs_dict.input_values.to(torch_device),
                attention_mask=inputs_dict.attention_mask.to(torch_device),
                mask_time_indices=mask_time_indices,
            )

        # compute cosine similarity
        cosine_sim = torch.cosine_similarity(outputs.projected_states, outputs.projected_quantized_states, dim=-1)

        # retrieve cosine sim of masked features
        cosine_sim_masked = cosine_sim[mask_time_indices]

        # fmt: off
        expected_cosine_sim_masked = torch.tensor(
            [0.7458, 0.7188, 0.6418, 0.3729, 0.3741, 0.3694, 0.3110, 0.2257, 0.4403, 0.5415, 0.3950, 0.3701, 0.8831, 0.8613, 0.5229, 0.6696, 0.7206, 0.7877, 0.6758, 0.8746, 0.6596, 0.6282, 0.6178, 0.5839, 0.5926, 0.6651, 0.4635, 0.6332, 0.6572, 0.8776, 0.4999, 0.7001, 0.7257, 0.5098, 0.6229, 0.4566, 0.5261, 0.6363, 0.5371, 0.6997],
            device=torch_device,
        )
        # fmt: on

        self.assertTrue(torch.allclose(cosine_sim_masked, expected_cosine_sim_masked, atol=1e-3))

    def test_inference_pretrained(self):
754
        model = Wav2Vec2ForPreTraining.from_pretrained("facebook/wav2vec2-base")
Anton Lozhkov's avatar
Anton Lozhkov committed
755
756
        model.to(torch_device)
        feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
757
            "facebook/wav2vec2-base", return_attention_mask=True
Anton Lozhkov's avatar
Anton Lozhkov committed
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
        )
        input_speech = self._load_datasamples(2)

        inputs_dict = feature_extractor(input_speech, return_tensors="pt", padding=True)

        features_shape = (
            inputs_dict["input_values"].shape[0],
            model._get_feat_extract_output_lengths(torch.tensor(inputs_dict["input_values"].shape[1])),
        )

        torch.manual_seed(0)
        mask_time_indices = _compute_mask_indices(
            features_shape,
            model.config.mask_time_prob,
            model.config.mask_time_length,
            device=inputs_dict["input_values"].device,
            min_masks=2,
        ).to(torch_device)

        with torch.no_grad():
            outputs = model(
                inputs_dict.input_values.to(torch_device),
                attention_mask=inputs_dict.attention_mask.to(torch_device),
                mask_time_indices=mask_time_indices,
            )

        # compute cosine similarity
        cosine_sim = torch.cosine_similarity(outputs.projected_states, outputs.projected_quantized_states, dim=-1)

        # retrieve cosine sim of masked features
        cosine_sim_masked = cosine_sim[mask_time_indices]

        # ... now compare to randomly initialized model

792
        config = Wav2Vec2Config.from_pretrained("facebook/wav2vec2-base")
Anton Lozhkov's avatar
Anton Lozhkov committed
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
        model_rand = Wav2Vec2ForPreTraining(config).to(torch_device).eval()

        with torch.no_grad():
            outputs_rand = model_rand(
                inputs_dict.input_values.to(torch_device),
                attention_mask=inputs_dict.attention_mask.to(torch_device),
                mask_time_indices=mask_time_indices,
            )

        # compute cosine similarity
        cosine_sim_rand = torch.cosine_similarity(
            outputs_rand.projected_states, outputs_rand.projected_quantized_states, dim=-1
        )

        # retrieve cosine sim of masked features
        cosine_sim_masked_rand = cosine_sim_rand[mask_time_indices]

        # a pretrained wav2vec2 model has learned to predict the quantized latent states
        # => the cosine similarity between quantized states and predicted states > 0.5
        # a random wav2vec2 model has not learned to predict the quantized latent states
        # => the cosine similarity between quantized states and predicted states is very likely < 0.1
        self.assertTrue(cosine_sim_masked.mean().item() - 5 * cosine_sim_masked_rand.mean().item() > 0)

816
    @unittest.skipIf(torch_device != "cpu", "cannot make deterministic on GPU")
Anton Lozhkov's avatar
Anton Lozhkov committed
817
818
    def test_loss_pretraining(self):
        model = Wav2Vec2ForPreTraining.from_pretrained(
819
            "facebook/wav2vec2-base",
Anton Lozhkov's avatar
Anton Lozhkov committed
820
821
822
823
824
825
826
827
            attention_dropout=0.0,
            feat_proj_dropout=0.0,
            hidden_dropout=0.0,
            layerdrop=0.0,
        )
        model.to(torch_device).train()

        feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
828
            "facebook/wav2vec2-base", return_attention_mask=True
Anton Lozhkov's avatar
Anton Lozhkov committed
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
        )
        input_speech = self._load_datasamples(2)

        inputs_dict = feature_extractor(input_speech, return_tensors="pt", padding=True)

        features_shape = (
            inputs_dict["input_values"].shape[0],
            model._get_feat_extract_output_lengths(inputs_dict["input_values"].shape[1]),
        )

        torch.manual_seed(0)
        mask_time_indices = _compute_mask_indices(
            features_shape,
            model.config.mask_time_prob,
            model.config.mask_time_length,
            device=inputs_dict["input_values"].device,
            min_masks=2,
        ).to(torch_device)

        with torch.no_grad():
            outputs = model(
                inputs_dict.input_values.to(torch_device),
                attention_mask=inputs_dict.attention_mask.to(torch_device),
                mask_time_indices=mask_time_indices,
            )

        # check diversity loss
        num_codevectors = model.config.num_codevectors_per_group * model.config.num_codevector_groups
        diversity_loss = (num_codevectors - outputs.codevector_perplexity) / num_codevectors
        self.assertTrue(abs(diversity_loss.item() - 0.8859) < 1e-3)

        # check overall loss (contrastive loss + diversity loss)
861
        expected_loss = 62.5170
Anton Lozhkov's avatar
Anton Lozhkov committed
862
863

        self.assertTrue(abs(outputs.loss.item() - expected_loss) < 1e-3)