test_modeling_wav2vec2.py 56 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Wav2Vec2 model. """

import math
import unittest

20
import numpy as np
21
from datasets import load_dataset
22

23
from tests.test_modeling_common import floats_tensor, ids_tensor, random_attention_mask
24
from transformers import Wav2Vec2Config, is_torch_available
25
26
from transformers.testing_utils import (
    is_pt_flax_cross_test,
27
28
    is_pyctcdecode_available,
    is_torchaudio_available,
29
    require_datasets,
30
    require_pyctcdecode,
31
32
    require_soundfile,
    require_torch,
33
    require_torchaudio,
34
35
36
    slow,
    torch_device,
)
Patrick von Platen's avatar
Patrick von Platen committed
37
38
39
40
41
42
43
44

from .test_configuration_common import ConfigTester
from .test_modeling_common import ModelTesterMixin, _config_zero_init


if is_torch_available():
    import torch

Anton Lozhkov's avatar
Anton Lozhkov committed
45
46
47
48
49
    from transformers import (
        Wav2Vec2FeatureExtractor,
        Wav2Vec2ForCTC,
        Wav2Vec2ForMaskedLM,
        Wav2Vec2ForPreTraining,
50
        Wav2Vec2ForSequenceClassification,
Anton Lozhkov's avatar
Anton Lozhkov committed
51
52
53
        Wav2Vec2Model,
        Wav2Vec2Processor,
    )
54
55
56
57
58
    from transformers.models.wav2vec2.modeling_wav2vec2 import (
        Wav2Vec2GumbelVectorQuantizer,
        _compute_mask_indices,
        _sample_negative_indices,
    )
Patrick von Platen's avatar
Patrick von Platen committed
59
60


61
62
63
64
65
66
67
68
if is_torchaudio_available():
    import torchaudio


if is_pyctcdecode_available():
    from transformers import Wav2Vec2ProcessorWithLM


Patrick von Platen's avatar
Patrick von Platen committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
class Wav2Vec2ModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=1024,  # speech is longer
        is_training=False,
        hidden_size=16,
        feat_extract_norm="group",
        feat_extract_dropout=0.0,
        feat_extract_activation="gelu",
        conv_dim=(32, 32, 32),
        conv_stride=(4, 4, 4),
        conv_kernel=(8, 8, 8),
        conv_bias=False,
        num_conv_pos_embeddings=16,
        num_conv_pos_embedding_groups=2,
        num_hidden_layers=4,
        num_attention_heads=2,
        hidden_dropout_prob=0.1,  # this is most likely not correctly set yet
        intermediate_size=20,
        layer_norm_eps=1e-5,
        hidden_act="gelu",
        initializer_range=0.02,
93
94
        mask_time_prob=0.5,
        mask_time_length=2,
Patrick von Platen's avatar
Patrick von Platen committed
95
96
        vocab_size=32,
        do_stable_layer_norm=False,
97
98
        num_adapter_layers=1,
        adapter_stride=2,
Patrick von Platen's avatar
Patrick von Platen committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.hidden_size = hidden_size
        self.feat_extract_norm = feat_extract_norm
        self.feat_extract_dropout = feat_extract_dropout
        self.feat_extract_activation = feat_extract_activation
        self.conv_dim = conv_dim
        self.conv_stride = conv_stride
        self.conv_kernel = conv_kernel
        self.conv_bias = conv_bias
        self.num_conv_pos_embeddings = num_conv_pos_embeddings
        self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.hidden_dropout_prob = hidden_dropout_prob
        self.intermediate_size = intermediate_size
        self.layer_norm_eps = layer_norm_eps
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.vocab_size = vocab_size
        self.do_stable_layer_norm = do_stable_layer_norm
124
125
        self.num_adapter_layers = num_adapter_layers
        self.adapter_stride = adapter_stride
126
127
        self.mask_time_prob = mask_time_prob
        self.mask_time_length = mask_time_length
Patrick von Platen's avatar
Patrick von Platen committed
128
129
130
131
132
133
134
135
        self.scope = scope

        output_seq_length = self.seq_length
        for kernel, stride in zip(self.conv_kernel, self.conv_stride):
            output_seq_length = (output_seq_length - (kernel - 1)) / stride
        self.output_seq_length = int(math.ceil(output_seq_length))
        self.encoder_seq_length = self.output_seq_length

136
137
        self.adapter_output_seq_length = (self.output_seq_length - 1) // adapter_stride + 1

Patrick von Platen's avatar
Patrick von Platen committed
138
139
    def prepare_config_and_inputs(self):
        input_values = floats_tensor([self.batch_size, self.seq_length], self.vocab_size)
140
        attention_mask = random_attention_mask([self.batch_size, self.seq_length])
Patrick von Platen's avatar
Patrick von Platen committed
141

142
143
144
145
146
147
        config = self.get_config()

        return config, input_values, attention_mask

    def get_config(self):
        return Wav2Vec2Config(
Patrick von Platen's avatar
Patrick von Platen committed
148
149
150
151
152
153
154
155
            hidden_size=self.hidden_size,
            feat_extract_norm=self.feat_extract_norm,
            feat_extract_dropout=self.feat_extract_dropout,
            feat_extract_activation=self.feat_extract_activation,
            conv_dim=self.conv_dim,
            conv_stride=self.conv_stride,
            conv_kernel=self.conv_kernel,
            conv_bias=self.conv_bias,
156
157
            mask_time_prob=self.mask_time_prob,
            mask_time_length=self.mask_time_length,
Patrick von Platen's avatar
Patrick von Platen committed
158
159
160
161
162
163
164
            num_conv_pos_embeddings=self.num_conv_pos_embeddings,
            num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            hidden_dropout_prob=self.hidden_dropout_prob,
            intermediate_size=self.intermediate_size,
            layer_norm_eps=self.layer_norm_eps,
165
            do_stable_layer_norm=self.do_stable_layer_norm,
Patrick von Platen's avatar
Patrick von Platen committed
166
167
168
            hidden_act=self.hidden_act,
            initializer_range=self.initializer_range,
            vocab_size=self.vocab_size,
169
170
            num_adapter_layers=self.num_adapter_layers,
            adapter_stride=self.adapter_stride,
Patrick von Platen's avatar
Patrick von Platen committed
171
172
        )

173
    def create_and_check_model(self, config, input_values, attention_mask):
Patrick von Platen's avatar
Patrick von Platen committed
174
175
176
        model = Wav2Vec2Model(config=config)
        model.to(torch_device)
        model.eval()
177
        result = model(input_values, attention_mask=attention_mask)
Patrick von Platen's avatar
Patrick von Platen committed
178
179
180
181
        self.parent.assertEqual(
            result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size)
        )

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
    def create_and_check_model_with_adapter(self, config, input_values, attention_mask):
        config.add_adapter = True
        model = Wav2Vec2Model(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_values, attention_mask=attention_mask)
        self.parent.assertEqual(
            result.last_hidden_state.shape, (self.batch_size, self.adapter_output_seq_length, self.hidden_size)
        )

    def create_and_check_model_with_adapter_proj_dim(self, config, input_values, attention_mask):
        config.add_adapter = True
        config.output_hidden_size = 8
        model = Wav2Vec2Model(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_values, attention_mask=attention_mask)
        self.parent.assertEqual(
            result.last_hidden_state.shape,
            (self.batch_size, self.adapter_output_seq_length, config.output_hidden_size),
        )

204
    def create_and_check_batch_inference(self, config, input_values, *args):
205
        # test does not pass for models making use of `group_norm`
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
        # check: https://github.com/pytorch/fairseq/issues/3227
        model = Wav2Vec2Model(config=config)
        model.to(torch_device)
        model.eval()

        input_values = input_values[:3]
        attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.bool)

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0
            attention_mask[i, input_lengths[i] :] = 0.0

        batch_outputs = model(input_values, attention_mask=attention_mask).last_hidden_state

        for i in range(input_values.shape[0]):
            input_slice = input_values[i : i + 1, : input_lengths[i]]
            output = model(input_slice).last_hidden_state

            batch_output = batch_outputs[i : i + 1, : output.shape[1]]
            self.parent.assertTrue(torch.allclose(output, batch_output, atol=1e-3))

230
231
232
233
234
235
236
237
    def check_ctc_loss(self, config, input_values, *args):
        model = Wav2Vec2ForCTC(config=config)
        model.to(torch_device)

        # make sure that dropout is disabled
        model.eval()

        input_values = input_values[:3]
238
        attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long)
239
240
241
242
243
244
245
246

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
        labels = ids_tensor((input_values.shape[0], min(max_length_labels) - 1), model.config.vocab_size)

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0
247
            attention_mask[i, input_lengths[i] :] = 0
248
249

        model.config.ctc_loss_reduction = "sum"
250
        sum_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()
251
252

        model.config.ctc_loss_reduction = "mean"
253
        mean_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()
254

255
256
        self.parent.assertTrue(isinstance(sum_loss, float))
        self.parent.assertTrue(isinstance(mean_loss, float))
257

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
    def check_seq_classifier_loss(self, config, input_values, *args):
        model = Wav2Vec2ForSequenceClassification(config=config)
        model.to(torch_device)

        # make sure that dropout is disabled
        model.eval()

        input_values = input_values[:3]
        attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long)

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label))

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0
            attention_mask[i, input_lengths[i] :] = 0

        masked_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()
        unmasked_loss = model(input_values, labels=labels).loss.item()

        self.parent.assertTrue(isinstance(masked_loss, float))
        self.parent.assertTrue(isinstance(unmasked_loss, float))
        self.parent.assertTrue(masked_loss != unmasked_loss)

    def check_ctc_training(self, config, input_values, *args):
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
        config.ctc_zero_infinity = True
        model = Wav2Vec2ForCTC(config=config)
        model.to(torch_device)
        model.train()

        # freeze feature encoder
        model.freeze_feature_extractor()

        input_values = input_values[:3]

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
        labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size)

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0

            if max_length_labels[i] < labels.shape[-1]:
                # it's important that we make sure that target lenghts are at least
                # one shorter than logit lenghts to prevent -inf
                labels[i, max_length_labels[i] - 1 :] = -100

        loss = model(input_values, labels=labels).loss
        self.parent.assertFalse(torch.isinf(loss).item())

        loss.backward()

312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
    def check_seq_classifier_training(self, config, input_values, *args):
        config.ctc_zero_infinity = True
        model = Wav2Vec2ForSequenceClassification(config=config)
        model.to(torch_device)
        model.train()

        # freeze everything but the classification head
        model.freeze_base_model()

        input_values = input_values[:3]

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label))

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0

        loss = model(input_values, labels=labels).loss
        self.parent.assertFalse(torch.isinf(loss).item())

        loss.backward()

335
336
337
338
339
340
341
342
343
344
345
    def check_labels_out_of_vocab(self, config, input_values, *args):
        model = Wav2Vec2ForCTC(config)
        model.to(torch_device)
        model.train()

        input_values = input_values[:3]

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
        labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size + 100)

346
        with self.parent.assertRaises(ValueError):
347
348
            model(input_values, labels=labels)

Patrick von Platen's avatar
Patrick von Platen committed
349
    def prepare_config_and_inputs_for_common(self):
350
351
        config, input_values, attention_mask = self.prepare_config_and_inputs()
        inputs_dict = {"input_values": input_values, "attention_mask": attention_mask}
Patrick von Platen's avatar
Patrick von Platen committed
352
353
354
355
356
357
        return config, inputs_dict


@require_torch
class Wav2Vec2ModelTest(ModelTesterMixin, unittest.TestCase):
    all_model_classes = (
358
359
360
        (Wav2Vec2ForCTC, Wav2Vec2Model, Wav2Vec2ForMaskedLM, Wav2Vec2ForSequenceClassification, Wav2Vec2ForPreTraining)
        if is_torch_available()
        else ()
Patrick von Platen's avatar
Patrick von Platen committed
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
    )
    test_pruning = False
    test_headmasking = False
    test_torchscript = False

    def setUp(self):
        self.model_tester = Wav2Vec2ModelTester(self)
        self.config_tester = ConfigTester(self, config_class=Wav2Vec2Config, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

377
378
379
380
381
382
383
384
    def test_model_with_adapter(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model_with_adapter(*config_and_inputs)

    def test_model_with_adapter_proj_dim(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model_with_adapter_proj_dim(*config_and_inputs)

385
386
387
388
    def test_ctc_loss_inference(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_ctc_loss(*config_and_inputs)

389
    def test_seq_classifier_loss_inference(self):
390
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
391
392
393
394
395
396
397
398
399
        self.model_tester.check_seq_classifier_loss(*config_and_inputs)

    def test_ctc_train(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_ctc_training(*config_and_inputs)

    def test_seq_classifier_train(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_seq_classifier_training(*config_and_inputs)
400

401
402
403
404
    def test_labels_out_of_vocab(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_labels_out_of_vocab(*config_and_inputs)

Patrick von Platen's avatar
Patrick von Platen committed
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
    # Wav2Vec2 has no inputs_embeds
    def test_inputs_embeds(self):
        pass

    # `input_ids` is renamed to `input_values`
    def test_forward_signature(self):
        pass

    # Wav2Vec2 cannot resize token embeddings
    # since it has no tokens embeddings
    def test_resize_tokens_embeddings(self):
        pass

    # Wav2Vec2 has no inputs_embeds
    # and thus the `get_input_embeddings` fn
    # is not implemented
    def test_model_common_attributes(self):
        pass

424
425
426
427
428
429
430
431
432
433
    @is_pt_flax_cross_test
    # non-robust architecture does not exist in Flax
    def test_equivalence_flax_to_pt(self):
        pass

    @is_pt_flax_cross_test
    # non-robust architecture does not exist in Flax
    def test_equivalence_pt_to_flax(self):
        pass

434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        config.output_attentions = True

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        # set layer drop to 0
        model.config.layerdrop = 0.0

        input_values = inputs_dict["input_values"]

        input_lengths = torch.tensor(
            [input_values.shape[1] for _ in range(input_values.shape[0])], dtype=torch.long, device=torch_device
        )
        output_lengths = model._get_feat_extract_output_lengths(input_lengths)

        labels = ids_tensor((input_values.shape[0], output_lengths[0] - 2), self.model_tester.vocab_size)
        inputs_dict["attention_mask"] = torch.ones_like(inputs_dict["attention_mask"])
        inputs_dict["labels"] = labels

        outputs = model(**inputs_dict)

        output = outputs[0]

        # Encoder-/Decoder-only models
        hidden_states = outputs.hidden_states[0]
        attentions = outputs.attentions[0]

        hidden_states.retain_grad()
        attentions.retain_grad()

        output.flatten()[0].backward(retain_graph=True)

        self.assertIsNotNone(hidden_states.grad)
        self.assertIsNotNone(attentions.grad)

Patrick von Platen's avatar
Patrick von Platen committed
474
475
476
477
478
479
480
    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
Anton Lozhkov's avatar
Anton Lozhkov committed
481
482
483
484
485
                uniform_init_parms = [
                    "conv.weight",
                    "masked_spec_embed",
                    "codevectors",
                    "quantizer.weight_proj.weight",
486
487
488
489
490
491
                    "project_hid.weight",
                    "project_hid.bias",
                    "project_q.weight",
                    "project_q.bias",
                    "feature_projection.projection.weight",
                    "feature_projection.projection.bias",
Anton Lozhkov's avatar
Anton Lozhkov committed
492
                ]
Patrick von Platen's avatar
Patrick von Platen committed
493
                if param.requires_grad:
Anton Lozhkov's avatar
Anton Lozhkov committed
494
                    if any([x in name for x in uniform_init_parms]):
Patrick von Platen's avatar
Patrick von Platen committed
495
496
                        self.assertTrue(
                            -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
497
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
Patrick von Platen's avatar
Patrick von Platen committed
498
499
500
501
502
                        )
                    else:
                        self.assertIn(
                            ((param.data.mean() * 1e9).round() / 1e9).item(),
                            [0.0, 1.0],
503
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
Patrick von Platen's avatar
Patrick von Platen committed
504
505
                        )

506
507
508
509
    # overwrite from test_modeling_common
    def _mock_init_weights(self, module):
        if hasattr(module, "weight") and module.weight is not None:
            module.weight.data.fill_(3)
Anton Lozhkov's avatar
Anton Lozhkov committed
510
        if hasattr(module, "weight_g") and module.weight_g is not None:
511
            module.weight_g.data.fill_(3)
Anton Lozhkov's avatar
Anton Lozhkov committed
512
513
        if hasattr(module, "weight_v") and module.weight_v is not None:
            module.weight_v.data.fill_(3)
514
515
        if hasattr(module, "bias") and module.bias is not None:
            module.bias.data.fill_(3)
Anton Lozhkov's avatar
Anton Lozhkov committed
516
517
        if hasattr(module, "codevectors") and module.codevectors is not None:
            module.codevectors.data.fill_(3)
518
519
        if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None:
            module.masked_spec_embed.data.fill_(3)
520

521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
    def test_mask_feature_prob_ctc(self):
        model = Wav2Vec2ForCTC.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2", mask_feature_prob=0.2, mask_feature_length=2
        )
        model.to(torch_device).train()
        processor = Wav2Vec2Processor.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2", return_attention_mask=True
        )

        batch_duration_in_seconds = [1, 3, 2, 6]
        input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds]

        batch = processor(
            input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt"
        )

        logits = model(
            input_values=batch["input_values"].to(torch_device),
            attention_mask=batch["attention_mask"].to(torch_device),
        ).logits

        self.assertEqual(logits.shape, (4, 1498, 32))

    def test_mask_time_prob_ctc(self):
        model = Wav2Vec2ForCTC.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2", mask_time_prob=0.2, mask_time_length=2
        )
        model.to(torch_device).train()
        processor = Wav2Vec2Processor.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2", return_attention_mask=True
        )

        batch_duration_in_seconds = [1, 3, 2, 6]
        input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds]

        batch = processor(
            input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt"
        )

        logits = model(
            input_values=batch["input_values"].to(torch_device),
            attention_mask=batch["attention_mask"].to(torch_device),
        ).logits

        self.assertEqual(logits.shape, (4, 1498, 32))

Patrick von Platen's avatar
Patrick von Platen committed
567
568
569
570
571
572
573
574
    @slow
    def test_model_from_pretrained(self):
        model = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")
        self.assertIsNotNone(model)


@require_torch
class Wav2Vec2RobustModelTest(ModelTesterMixin, unittest.TestCase):
Anton Lozhkov's avatar
Anton Lozhkov committed
575
    all_model_classes = (
576
577
578
        (Wav2Vec2ForCTC, Wav2Vec2Model, Wav2Vec2ForMaskedLM, Wav2Vec2ForSequenceClassification, Wav2Vec2ForPreTraining)
        if is_torch_available()
        else ()
Anton Lozhkov's avatar
Anton Lozhkov committed
579
    )
Patrick von Platen's avatar
Patrick von Platen committed
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
    test_pruning = False
    test_headmasking = False
    test_torchscript = False

    def setUp(self):
        self.model_tester = Wav2Vec2ModelTester(
            self, conv_stride=(3, 3, 3), feat_extract_norm="layer", do_stable_layer_norm=True
        )
        self.config_tester = ConfigTester(self, config_class=Wav2Vec2Config, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)
596
597
598
599
600
601
602
603

    def test_model_with_adapter(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model_with_adapter(*config_and_inputs)

    def test_model_with_adapter_proj_dim(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model_with_adapter_proj_dim(*config_and_inputs)
Patrick von Platen's avatar
Patrick von Platen committed
604

605
606
607
608
    def test_batched_inference(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_batch_inference(*config_and_inputs)

609
610
611
612
    def test_ctc_loss_inference(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_ctc_loss(*config_and_inputs)

613
614
615
616
617
    def test_seq_classifier_loss_inference(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_seq_classifier_loss(*config_and_inputs)

    def test_ctc_train(self):
618
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
619
620
621
622
623
        self.model_tester.check_ctc_training(*config_and_inputs)

    def test_seq_classifier_train(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_seq_classifier_training(*config_and_inputs)
624

625
626
627
628
    def test_labels_out_of_vocab(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_labels_out_of_vocab(*config_and_inputs)

Patrick von Platen's avatar
Patrick von Platen committed
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
    # Wav2Vec2 has no inputs_embeds
    def test_inputs_embeds(self):
        pass

    # `input_ids` is renamed to `input_values`
    def test_forward_signature(self):
        pass

    # Wav2Vec2 cannot resize token embeddings
    # since it has no tokens embeddings
    def test_resize_tokens_embeddings(self):
        pass

    # Wav2Vec2 has no inputs_embeds
    # and thus the `get_input_embeddings` fn
    # is not implemented
    def test_model_common_attributes(self):
        pass

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        config.output_attentions = True

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        # set layer drop to 0
        model.config.layerdrop = 0.0

        input_values = inputs_dict["input_values"]

        input_lengths = torch.tensor(
            [input_values.shape[1] for _ in range(input_values.shape[0])], dtype=torch.long, device=torch_device
        )
        output_lengths = model._get_feat_extract_output_lengths(input_lengths)

        labels = ids_tensor((input_values.shape[0], output_lengths[0] - 2), self.model_tester.vocab_size)
        inputs_dict["attention_mask"] = torch.ones_like(inputs_dict["attention_mask"])
        inputs_dict["labels"] = labels

        outputs = model(**inputs_dict)

        output = outputs[0]

        # Encoder-/Decoder-only models
        hidden_states = outputs.hidden_states[0]
        attentions = outputs.attentions[0]

        hidden_states.retain_grad()
        attentions.retain_grad()

        output.flatten()[0].backward(retain_graph=True)

        self.assertIsNotNone(hidden_states.grad)
        self.assertIsNotNone(attentions.grad)

Patrick von Platen's avatar
Patrick von Platen committed
688
689
690
691
692
693
694
    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
Anton Lozhkov's avatar
Anton Lozhkov committed
695
696
697
698
699
                uniform_init_parms = [
                    "conv.weight",
                    "masked_spec_embed",
                    "codevectors",
                    "quantizer.weight_proj.weight",
700
701
702
703
704
705
                    "project_hid.weight",
                    "project_hid.bias",
                    "project_q.weight",
                    "project_q.bias",
                    "feature_projection.projection.weight",
                    "feature_projection.projection.bias",
Anton Lozhkov's avatar
Anton Lozhkov committed
706
                ]
Patrick von Platen's avatar
Patrick von Platen committed
707
                if param.requires_grad:
Anton Lozhkov's avatar
Anton Lozhkov committed
708
                    if any([x in name for x in uniform_init_parms]):
Patrick von Platen's avatar
Patrick von Platen committed
709
710
                        self.assertTrue(
                            -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
711
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
Patrick von Platen's avatar
Patrick von Platen committed
712
713
714
715
716
                        )
                    else:
                        self.assertIn(
                            ((param.data.mean() * 1e9).round() / 1e9).item(),
                            [0.0, 1.0],
717
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
Patrick von Platen's avatar
Patrick von Platen committed
718
719
                        )

720
721
722
723
    # overwrite from test_modeling_common
    def _mock_init_weights(self, module):
        if hasattr(module, "weight") and module.weight is not None:
            module.weight.data.fill_(3)
Anton Lozhkov's avatar
Anton Lozhkov committed
724
        if hasattr(module, "weight_g") and module.weight_g is not None:
725
            module.weight_g.data.fill_(3)
Anton Lozhkov's avatar
Anton Lozhkov committed
726
727
        if hasattr(module, "weight_v") and module.weight_v is not None:
            module.weight_v.data.fill_(3)
728
729
        if hasattr(module, "bias") and module.bias is not None:
            module.bias.data.fill_(3)
Anton Lozhkov's avatar
Anton Lozhkov committed
730
731
        if hasattr(module, "codevectors") and module.codevectors is not None:
            module.codevectors.data.fill_(3)
732
733
        if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None:
            module.masked_spec_embed.data.fill_(3)
Anton Lozhkov's avatar
Anton Lozhkov committed
734
735
736
737
738
739
740

    def test_model_for_pretraining(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        model = Wav2Vec2ForPreTraining(config).to(torch_device)

        features_shape = (
            inputs_dict["input_values"].shape[0],
741
            model._get_feat_extract_output_lengths(inputs_dict["input_values"].shape[1]),
Anton Lozhkov's avatar
Anton Lozhkov committed
742
743
744
745
746
747
748
        )

        mask_time_indices = _compute_mask_indices(
            features_shape,
            model.config.mask_time_prob,
            model.config.mask_time_length,
            min_masks=2,
749
750
751
752
753
        )
        sampled_negative_indices = _sample_negative_indices(features_shape, 10, mask_time_indices)

        mask_time_indices = torch.from_numpy(mask_time_indices).to(torch_device)
        sampled_negative_indices = torch.from_numpy(sampled_negative_indices).to(torch_device)
Anton Lozhkov's avatar
Anton Lozhkov committed
754
755
756
757
758

        loss = model(
            inputs_dict["input_values"],
            attention_mask=inputs_dict["attention_mask"],
            mask_time_indices=mask_time_indices,
759
            sampled_negative_indices=sampled_negative_indices,
Anton Lozhkov's avatar
Anton Lozhkov committed
760
761
        ).loss

762
        # more losses
Anton Lozhkov's avatar
Anton Lozhkov committed
763
        mask_time_indices[:, : mask_time_indices.shape[-1] // 2] = True
764
765
766

        sampled_negative_indices = _sample_negative_indices(features_shape, 10, mask_time_indices.cpu().numpy())
        sampled_negative_indices = torch.from_numpy(sampled_negative_indices).to(torch_device)
Anton Lozhkov's avatar
Anton Lozhkov committed
767
768
769
770
        loss_more_masked = model(
            inputs_dict["input_values"],
            attention_mask=inputs_dict["attention_mask"],
            mask_time_indices=mask_time_indices,
771
            sampled_negative_indices=sampled_negative_indices,
Anton Lozhkov's avatar
Anton Lozhkov committed
772
773
774
775
        ).loss

        # loss_more_masked has to be bigger or equal loss since more masked inputs have to be predicted
        self.assertTrue(loss.detach().item() <= loss_more_masked.detach().item())
776

777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
    def test_mask_feature_prob_ctc(self):
        model = Wav2Vec2ForCTC.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2", mask_feature_prob=0.2, mask_feature_length=2
        )
        model.to(torch_device).train()
        processor = Wav2Vec2Processor.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2", return_attention_mask=True
        )

        batch_duration_in_seconds = [1, 3, 2, 6]
        input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds]

        batch = processor(
            input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt"
        )

        logits = model(
            input_values=batch["input_values"].to(torch_device),
            attention_mask=batch["attention_mask"].to(torch_device),
        ).logits

        self.assertEqual(logits.shape, (4, 1498, 32))

    def test_mask_time_prob_ctc(self):
        model = Wav2Vec2ForCTC.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2", mask_time_prob=0.2, mask_time_length=2
        )
        model.to(torch_device).train()
        processor = Wav2Vec2Processor.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2", return_attention_mask=True
        )

        batch_duration_in_seconds = [1, 3, 2, 6]
        input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds]

        batch = processor(
            input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt"
        )

        logits = model(
            input_values=batch["input_values"].to(torch_device),
            attention_mask=batch["attention_mask"].to(torch_device),
        ).logits

        self.assertEqual(logits.shape, (4, 1498, 32))

823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
    def test_mask_time_feature_prob_ctc_single_batch(self):
        model = Wav2Vec2ForCTC.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2",
            mask_time_prob=0.2,
            mask_feature_prob=0.2,
            mask_time_length=2,
            mask_feature_length=2,
        )
        model.to(torch_device).train()
        processor = Wav2Vec2Processor.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2", return_attention_mask=True
        )

        batch_duration_in_seconds = [6]
        input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds]

        batch = processor(
            input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt"
        )

        logits = model(
            input_values=batch["input_values"].to(torch_device),
            attention_mask=batch["attention_mask"].to(torch_device),
        ).logits

        self.assertEqual(logits.shape, (1, 1498, 32))

Patrick von Platen's avatar
Patrick von Platen committed
850
851
852
853
854
855
    @slow
    def test_model_from_pretrained(self):
        model = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")
        self.assertIsNotNone(model)


856
857
858
859
860
861
862
863
@require_torch
class Wav2Vec2UtilsTest(unittest.TestCase):
    def test_compute_mask_indices(self):
        batch_size = 4
        sequence_length = 60
        mask_prob = 0.5
        mask_length = 1

864
865
        mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)
        mask = torch.from_numpy(mask).to(torch_device)
866
867
868

        self.assertListEqual(mask.sum(axis=-1).tolist(), [mask_prob * sequence_length for _ in range(batch_size)])

869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
    def test_compute_mask_indices_low_prob(self):
        # with these settings num_masked_spans=0.5, which means probabilistic rounding
        # ensures that in 5 out of 10 method calls, num_masked_spans=0, and in
        # the other 5 out of 10, cases num_masked_spans=1
        n_trials = 100
        batch_size = 4
        sequence_length = 100
        mask_prob = 0.05
        mask_length = 10

        count_dimensions_masked = 0
        count_dimensions_not_masked = 0

        for _ in range(n_trials):
            mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)
            mask = torch.from_numpy(mask).to(torch_device)

            num_masks = torch.sum(mask).item()

            if num_masks > 0:
                count_dimensions_masked += 1
            else:
                count_dimensions_not_masked += 1

        # as we test for at least 10 masked dimension and at least
        # 10 non-masked dimension, this test could fail with probability:
        # P(100 coin flips, at most 9 heads) = 1.66e-18
        self.assertGreater(count_dimensions_masked, int(n_trials * 0.1))
        self.assertGreater(count_dimensions_not_masked, int(n_trials * 0.1))

899
900
    def test_compute_mask_indices_overlap(self):
        batch_size = 4
Anton Lozhkov's avatar
Anton Lozhkov committed
901
        sequence_length = 80
902
903
904
        mask_prob = 0.5
        mask_length = 4

905
906
        mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)
        mask = torch.from_numpy(mask).to(torch_device)
907

Anton Lozhkov's avatar
Anton Lozhkov committed
908
        # because of overlap mask don't have to add up exactly to `mask_prob * sequence_length`, but have to be smaller or equal
909
        for batch_sum in mask.sum(axis=-1):
Anton Lozhkov's avatar
Anton Lozhkov committed
910
911
            self.assertTrue(int(batch_sum) <= mask_prob * sequence_length)

912
913
914
915
916
917
918
919
920
921
    def test_compute_mask_indices_attn_mask_overlap(self):
        batch_size = 4
        sequence_length = 80
        mask_prob = 0.5
        mask_length = 4

        attention_mask = torch.ones((batch_size, sequence_length), dtype=torch.long, device=torch_device)
        attention_mask[:2, sequence_length // 2 :] = 0

        mask = _compute_mask_indices(
922
            (batch_size, sequence_length), mask_prob, mask_length, attention_mask=attention_mask
923
        )
924
        mask = torch.from_numpy(mask).to(torch_device)
925
926
927
928
929
930

        for batch_sum in mask.sum(axis=-1):
            self.assertTrue(int(batch_sum) <= mask_prob * sequence_length)

        self.assertTrue(mask[:2, sequence_length // 2 :].sum() == 0)

Anton Lozhkov's avatar
Anton Lozhkov committed
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
    def test_compute_perplexity(self):
        probs = torch.arange(100, device=torch_device).reshape(2, 5, 10) / 100

        ppl = Wav2Vec2GumbelVectorQuantizer._compute_perplexity(probs)
        self.assertTrue(abs(ppl.item() - 141.4291) < 1e-3)

        # mask half of the input
        mask = torch.ones((2,), device=torch_device, dtype=torch.bool)
        mask[0] = 0

        ppl = Wav2Vec2GumbelVectorQuantizer._compute_perplexity(probs, mask)
        self.assertTrue(abs(ppl.item() - 58.6757) < 1e-3)

    def test_sample_negatives(self):
        batch_size = 2
        sequence_length = 10
        hidden_size = 4
        num_negatives = 3

        features = (torch.arange(sequence_length * hidden_size, device=torch_device) // hidden_size).view(
            sequence_length, hidden_size
        )  # each value in vector consits of same value
        features = features[None, :].expand(batch_size, sequence_length, hidden_size).contiguous()

955
956
957
958
959
        # sample negative indices
        sampled_negative_indices = _sample_negative_indices((batch_size, sequence_length), num_negatives, None)
        sampled_negative_indices = torch.from_numpy(sampled_negative_indices).to(torch_device)
        negatives = features.view(-1, hidden_size)[sampled_negative_indices.long().view(-1)]
        negatives = negatives.view(batch_size, sequence_length, -1, hidden_size).permute(2, 0, 1, 3)
Anton Lozhkov's avatar
Anton Lozhkov committed
960
961
962
963
964
965
966
967
        self.assertTrue(negatives.shape == (num_negatives, batch_size, sequence_length, hidden_size))

        # make sure no negatively sampled vector is actually a positive one
        for negative in negatives:
            self.assertTrue(((negative - features) == 0).sum() == 0.0)

        # make sure that full vectors are sampled and not values of vectors => this means that `unique()` yields a single value for `hidden_size` dim
        self.assertTrue(negatives.unique(dim=-1).shape, (num_negatives, batch_size, sequence_length, 1))
968

969
    def test_sample_negatives_with_mask(self):
970
971
972
973
974
975
        batch_size = 2
        sequence_length = 10
        hidden_size = 4
        num_negatives = 3

        # second half of last input tensor is padded
976
977
        mask = torch.ones((batch_size, sequence_length), dtype=torch.long, device=torch_device)
        mask[-1, sequence_length // 2 :] = 0
978
979
980
981
982
983
984

        features = (torch.arange(sequence_length * hidden_size, device=torch_device) // hidden_size).view(
            sequence_length, hidden_size
        )  # each value in vector consits of same value
        features = features[None, :].expand(batch_size, sequence_length, hidden_size).contiguous()

        # replace masked feature vectors with -100 to test that those are not sampled
985
        features = torch.where(mask[:, :, None].expand(features.shape).bool(), features, -100)
986

987
988
989
990
991
992
993
        # sample negative indices
        sampled_negative_indices = _sample_negative_indices(
            (batch_size, sequence_length), num_negatives, mask.cpu().numpy()
        )
        sampled_negative_indices = torch.from_numpy(sampled_negative_indices).to(torch_device)
        negatives = features.view(-1, hidden_size)[sampled_negative_indices.long().view(-1)]
        negatives = negatives.view(batch_size, sequence_length, -1, hidden_size).permute(2, 0, 1, 3)
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005

        self.assertTrue((negatives >= 0).all().item())

        self.assertTrue(negatives.shape == (num_negatives, batch_size, sequence_length, hidden_size))

        # make sure no negatively sampled vector is actually a positive one
        for negative in negatives:
            self.assertTrue(((negative - features) == 0).sum() == 0.0)

        # make sure that full vectors are sampled and not values of vectors => this means that `unique()` yields a single value for `hidden_size` dim
        self.assertTrue(negatives.unique(dim=-1).shape, (num_negatives, batch_size, sequence_length, 1))

1006

Patrick von Platen's avatar
Patrick von Platen committed
1007
1008
1009
@require_torch
@require_datasets
@require_soundfile
Anton Lozhkov's avatar
Anton Lozhkov committed
1010
@slow
Patrick von Platen's avatar
Patrick von Platen committed
1011
1012
class Wav2Vec2ModelIntegrationTest(unittest.TestCase):
    def _load_datasamples(self, num_samples):
Patrick von Platen's avatar
Patrick von Platen committed
1013
        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
1014
1015
1016
1017
        # automatic decoding with librispeech
        speech_samples = ds.sort("id").filter(
            lambda x: x["id"] in [f"1272-141231-000{i}" for i in range(num_samples)]
        )[:num_samples]["audio"]
1018

1019
        return [x["array"] for x in speech_samples]
Patrick von Platen's avatar
Patrick von Platen committed
1020

1021
1022
1023
1024
1025
    def _load_superb(self, task, num_samples):
        ds = load_dataset("anton-l/superb_dummy", task, split="test")

        return ds[:num_samples]

1026
    def test_inference_ctc_normal(self):
1027
        model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
Patrick von Platen's avatar
Patrick von Platen committed
1028
        model.to(torch_device)
1029
        processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h", do_lower_case=True)
Patrick von Platen's avatar
Patrick von Platen committed
1030
1031
        input_speech = self._load_datasamples(1)

1032
        input_values = processor(input_speech, return_tensors="pt").input_values.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
1033
1034
1035
1036
1037

        with torch.no_grad():
            logits = model(input_values).logits

        predicted_ids = torch.argmax(logits, dim=-1)
1038
        predicted_trans = processor.batch_decode(predicted_ids)
Patrick von Platen's avatar
Patrick von Platen committed
1039
1040
1041
1042

        EXPECTED_TRANSCRIPTIONS = ["a man said to the universe sir i exist"]
        self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)

1043
    def test_inference_ctc_normal_batched(self):
1044
        model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
Patrick von Platen's avatar
Patrick von Platen committed
1045
        model.to(torch_device)
1046
        processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h", do_lower_case=True)
Patrick von Platen's avatar
Patrick von Platen committed
1047
1048
1049

        input_speech = self._load_datasamples(2)

1050
        inputs = processor(input_speech, return_tensors="pt", padding=True)
1051
1052

        input_values = inputs.input_values.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
1053
1054
1055
1056
1057

        with torch.no_grad():
            logits = model(input_values).logits

        predicted_ids = torch.argmax(logits, dim=-1)
1058
        predicted_trans = processor.batch_decode(predicted_ids)
Patrick von Platen's avatar
Patrick von Platen committed
1059
1060
1061
1062
1063
1064
1065

        EXPECTED_TRANSCRIPTIONS = [
            "a man said to the universe sir i exist",
            "sweat covered brion's body trickling into the tight lowing cloth that was the only garment he wore",
        ]
        self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)

1066
    def test_inference_ctc_robust_batched(self):
1067
        model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self").to(torch_device)
1068
        processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self", do_lower_case=True)
Patrick von Platen's avatar
Patrick von Platen committed
1069
1070
1071

        input_speech = self._load_datasamples(4)

1072
        inputs = processor(input_speech, return_tensors="pt", padding=True)
1073
1074
1075

        input_values = inputs.input_values.to(torch_device)
        attention_mask = inputs.attention_mask.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
1076
1077

        with torch.no_grad():
1078
            logits = model(input_values, attention_mask=attention_mask).logits
Patrick von Platen's avatar
Patrick von Platen committed
1079
1080

        predicted_ids = torch.argmax(logits, dim=-1)
1081
        predicted_trans = processor.batch_decode(predicted_ids)
Patrick von Platen's avatar
Patrick von Platen committed
1082
1083
1084
1085
1086
1087
1088
1089

        EXPECTED_TRANSCRIPTIONS = [
            "a man said to the universe sir i exist",
            "sweat covered brion's body trickling into the tight loin cloth that was the only garment he wore",
            "the cut on his chest still dripping blood the ache of his overstrained eyes even the soaring arena around him with the thousands of spectators were trivialities not worth thinking about",
            "his instant panic was followed by a small sharp blow high on his chest",
        ]
        self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)
Anton Lozhkov's avatar
Anton Lozhkov committed
1090

1091
    @unittest.skipIf(torch_device != "cpu", "cannot make deterministic on GPU")
Anton Lozhkov's avatar
Anton Lozhkov committed
1092
    def test_inference_integration(self):
1093
        model = Wav2Vec2ForPreTraining.from_pretrained("facebook/wav2vec2-base")
Anton Lozhkov's avatar
Anton Lozhkov committed
1094
        model.to(torch_device)
1095
        feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("facebook/wav2vec2-base")
Anton Lozhkov's avatar
Anton Lozhkov committed
1096
1097
1098
1099
1100
1101
1102
1103
1104
        input_speech = self._load_datasamples(2)

        inputs_dict = feature_extractor(input_speech, return_tensors="pt", padding=True)

        features_shape = (
            inputs_dict["input_values"].shape[0],
            model._get_feat_extract_output_lengths(torch.tensor(inputs_dict["input_values"].shape[1])),
        )

1105
        np.random.seed(4)
Anton Lozhkov's avatar
Anton Lozhkov committed
1106
1107
1108
1109
1110
        mask_time_indices = _compute_mask_indices(
            features_shape,
            model.config.mask_time_prob,
            model.config.mask_time_length,
            min_masks=2,
1111
1112
        )
        mask_time_indices = torch.from_numpy(mask_time_indices).to(torch_device)
Anton Lozhkov's avatar
Anton Lozhkov committed
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125

        with torch.no_grad():
            outputs = model(
                inputs_dict.input_values.to(torch_device),
                mask_time_indices=mask_time_indices,
            )

        # compute cosine similarity
        cosine_sim = torch.cosine_similarity(outputs.projected_states, outputs.projected_quantized_states, dim=-1)

        # retrieve cosine sim of masked features
        cosine_sim_masked = cosine_sim[mask_time_indices]

1126
1127
        # cosine similarity of model is all > 0.5 as model is
        # pre-trained on contrastive loss
Anton Lozhkov's avatar
Anton Lozhkov committed
1128
        # fmt: off
1129
1130
1131
1132
1133
1134
1135
        expected_cosine_sim_masked = torch.tensor([
            0.8523, 0.5860, 0.6905, 0.5557, 0.7456, 0.5249, 0.6639, 0.7654, 0.7565,
            0.8167, 0.8222, 0.7960, 0.8034, 0.8166, 0.8310, 0.8263, 0.8274, 0.8258,
            0.8179, 0.8412, 0.8536, 0.5098, 0.4728, 0.6461, 0.4498, 0.6002, 0.5774,
            0.6457, 0.7123, 0.5668, 0.6866, 0.4960, 0.6293, 0.7423, 0.7419, 0.7526,
            0.7768, 0.4898, 0.5393, 0.8183
        ], device=torch_device)
Anton Lozhkov's avatar
Anton Lozhkov committed
1136
1137
1138
1139
1140
        # fmt: on

        self.assertTrue(torch.allclose(cosine_sim_masked, expected_cosine_sim_masked, atol=1e-3))

    def test_inference_pretrained(self):
1141
        model = Wav2Vec2ForPreTraining.from_pretrained("facebook/wav2vec2-base")
Anton Lozhkov's avatar
Anton Lozhkov committed
1142
1143
        model.to(torch_device)
        feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
1144
            "facebook/wav2vec2-base", return_attention_mask=True
Anton Lozhkov's avatar
Anton Lozhkov committed
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
        )
        input_speech = self._load_datasamples(2)

        inputs_dict = feature_extractor(input_speech, return_tensors="pt", padding=True)

        features_shape = (
            inputs_dict["input_values"].shape[0],
            model._get_feat_extract_output_lengths(torch.tensor(inputs_dict["input_values"].shape[1])),
        )

        torch.manual_seed(0)
        mask_time_indices = _compute_mask_indices(
            features_shape,
            model.config.mask_time_prob,
            model.config.mask_time_length,
            min_masks=2,
1161
1162
        )
        mask_time_indices = torch.from_numpy(mask_time_indices).to(torch_device)
Anton Lozhkov's avatar
Anton Lozhkov committed
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178

        with torch.no_grad():
            outputs = model(
                inputs_dict.input_values.to(torch_device),
                attention_mask=inputs_dict.attention_mask.to(torch_device),
                mask_time_indices=mask_time_indices,
            )

        # compute cosine similarity
        cosine_sim = torch.cosine_similarity(outputs.projected_states, outputs.projected_quantized_states, dim=-1)

        # retrieve cosine sim of masked features
        cosine_sim_masked = cosine_sim[mask_time_indices]

        # ... now compare to randomly initialized model

1179
        config = Wav2Vec2Config.from_pretrained("facebook/wav2vec2-base")
Anton Lozhkov's avatar
Anton Lozhkov committed
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
        model_rand = Wav2Vec2ForPreTraining(config).to(torch_device).eval()

        with torch.no_grad():
            outputs_rand = model_rand(
                inputs_dict.input_values.to(torch_device),
                attention_mask=inputs_dict.attention_mask.to(torch_device),
                mask_time_indices=mask_time_indices,
            )

        # compute cosine similarity
        cosine_sim_rand = torch.cosine_similarity(
            outputs_rand.projected_states, outputs_rand.projected_quantized_states, dim=-1
        )

        # retrieve cosine sim of masked features
        cosine_sim_masked_rand = cosine_sim_rand[mask_time_indices]

        # a pretrained wav2vec2 model has learned to predict the quantized latent states
        # => the cosine similarity between quantized states and predicted states > 0.5
        # a random wav2vec2 model has not learned to predict the quantized latent states
        # => the cosine similarity between quantized states and predicted states is very likely < 0.1
        self.assertTrue(cosine_sim_masked.mean().item() - 5 * cosine_sim_masked_rand.mean().item() > 0)

1203
    @unittest.skipIf(torch_device != "cpu", "cannot make deterministic on GPU")
Anton Lozhkov's avatar
Anton Lozhkov committed
1204
1205
    def test_loss_pretraining(self):
        model = Wav2Vec2ForPreTraining.from_pretrained(
1206
            "facebook/wav2vec2-base",
Anton Lozhkov's avatar
Anton Lozhkov committed
1207
1208
1209
1210
1211
1212
1213
1214
            attention_dropout=0.0,
            feat_proj_dropout=0.0,
            hidden_dropout=0.0,
            layerdrop=0.0,
        )
        model.to(torch_device).train()

        feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
1215
            "facebook/wav2vec2-base", return_attention_mask=True
Anton Lozhkov's avatar
Anton Lozhkov committed
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
        )
        input_speech = self._load_datasamples(2)

        inputs_dict = feature_extractor(input_speech, return_tensors="pt", padding=True)

        features_shape = (
            inputs_dict["input_values"].shape[0],
            model._get_feat_extract_output_lengths(inputs_dict["input_values"].shape[1]),
        )

        torch.manual_seed(0)
1227
1228
        np.random.seed(0)

Anton Lozhkov's avatar
Anton Lozhkov committed
1229
1230
1231
1232
1233
        mask_time_indices = _compute_mask_indices(
            features_shape,
            model.config.mask_time_prob,
            model.config.mask_time_length,
            min_masks=2,
1234
1235
1236
1237
1238
1239
1240
        )
        sampled_negative_indices = _sample_negative_indices(
            mask_time_indices.shape, model.config.num_negatives, mask_time_indices
        )

        mask_time_indices = torch.from_numpy(mask_time_indices).to(torch_device)
        sampled_negative_indices = torch.from_numpy(sampled_negative_indices).to(torch_device)
Anton Lozhkov's avatar
Anton Lozhkov committed
1241
1242
1243
1244
1245
1246

        with torch.no_grad():
            outputs = model(
                inputs_dict.input_values.to(torch_device),
                attention_mask=inputs_dict.attention_mask.to(torch_device),
                mask_time_indices=mask_time_indices,
1247
                sampled_negative_indices=sampled_negative_indices,
Anton Lozhkov's avatar
Anton Lozhkov committed
1248
1249
1250
1251
1252
            )

        # check diversity loss
        num_codevectors = model.config.num_codevectors_per_group * model.config.num_codevector_groups
        diversity_loss = (num_codevectors - outputs.codevector_perplexity) / num_codevectors
1253
        self.assertTrue(abs(diversity_loss.item() - 0.9538) < 1e-3)
Anton Lozhkov's avatar
Anton Lozhkov committed
1254
1255

        # check overall loss (contrastive loss + diversity loss)
1256
        expected_loss = 116.7094
Anton Lozhkov's avatar
Anton Lozhkov committed
1257
1258

        self.assertTrue(abs(outputs.loss.item() - expected_loss) < 1e-3)
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347

    def test_inference_keyword_spotting(self):
        model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-ks").to(torch_device)
        processor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-ks")
        input_data = self._load_superb("ks", 4)
        inputs = processor(input_data["speech"], return_tensors="pt", padding=True)

        input_values = inputs.input_values.to(torch_device)
        attention_mask = inputs.attention_mask.to(torch_device)
        with torch.no_grad():
            outputs = model(input_values, attention_mask=attention_mask)
        predicted_logits, predicted_ids = torch.max(outputs.logits, dim=-1)

        expected_labels = [7, 6, 10, 9]
        # s3prl logits for the same batch
        expected_logits = torch.tensor([6.1186, 11.8961, 10.2931, 6.0898], device=torch_device)

        self.assertListEqual(predicted_ids.tolist(), expected_labels)
        self.assertTrue(torch.allclose(predicted_logits, expected_logits, atol=1e-2))

    def test_inference_intent_classification(self):
        model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-ic").to(torch_device)
        processor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-ic")
        input_data = self._load_superb("ic", 4)
        inputs = processor(input_data["speech"], return_tensors="pt", padding=True)

        input_values = inputs.input_values.to(torch_device)
        attention_mask = inputs.attention_mask.to(torch_device)
        with torch.no_grad():
            outputs = model(input_values, attention_mask=attention_mask)

        predicted_logits_action, predicted_ids_action = torch.max(outputs.logits[:, :6], dim=-1)
        predicted_logits_object, predicted_ids_object = torch.max(outputs.logits[:, 6:20], dim=-1)
        predicted_logits_location, predicted_ids_location = torch.max(outputs.logits[:, 20:24], dim=-1)

        expected_labels_action = [0, 0, 2, 3]
        expected_logits_action = torch.tensor([0.4568, 11.0848, 1.6621, 9.3841], device=torch_device)
        expected_labels_object = [3, 10, 3, 4]
        expected_logits_object = torch.tensor([1.5322, 10.7094, 5.2469, 22.1318], device=torch_device)
        expected_labels_location = [0, 0, 0, 1]
        expected_logits_location = torch.tensor([1.5335, 6.5096, 10.5704, 11.0569], device=torch_device)

        self.assertListEqual(predicted_ids_action.tolist(), expected_labels_action)
        self.assertListEqual(predicted_ids_object.tolist(), expected_labels_object)
        self.assertListEqual(predicted_ids_location.tolist(), expected_labels_location)

        self.assertTrue(torch.allclose(predicted_logits_action, expected_logits_action, atol=1e-2))
        self.assertTrue(torch.allclose(predicted_logits_object, expected_logits_object, atol=1e-2))
        self.assertTrue(torch.allclose(predicted_logits_location, expected_logits_location, atol=1e-2))

    def test_inference_speaker_identification(self):
        model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-sid").to(torch_device)
        processor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-sid")
        input_data = self._load_superb("si", 4)

        output_logits = []
        with torch.no_grad():
            for example in input_data["speech"]:
                input = processor(example, return_tensors="pt", padding=True)
                output = model(input.input_values.to(torch_device), attention_mask=None)
                output_logits.append(output.logits[0])
        output_logits = torch.stack(output_logits)
        predicted_logits, predicted_ids = torch.max(output_logits, dim=-1)

        expected_labels = [251, 1, 1, 3]
        # s3prl logits for the same batch
        expected_logits = torch.tensor([37.5627, 71.6362, 64.2419, 31.7778], device=torch_device)

        self.assertListEqual(predicted_ids.tolist(), expected_labels)
        self.assertTrue(torch.allclose(predicted_logits, expected_logits, atol=1e-2))

    def test_inference_emotion_recognition(self):
        model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-er").to(torch_device)
        processor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-er")
        input_data = self._load_superb("er", 4)
        inputs = processor(input_data["speech"], return_tensors="pt", padding=True)

        input_values = inputs.input_values.to(torch_device)
        attention_mask = inputs.attention_mask.to(torch_device)
        with torch.no_grad():
            outputs = model(input_values, attention_mask=attention_mask)
        predicted_logits, predicted_ids = torch.max(outputs.logits, dim=-1)

        expected_labels = [1, 1, 2, 2]
        # s3prl logits for the same batch
        expected_logits = torch.tensor([2.1722, 3.0779, 8.0287, 6.6797], device=torch_device)

        self.assertListEqual(predicted_ids.tolist(), expected_labels)
        self.assertTrue(torch.allclose(predicted_logits, expected_logits, atol=1e-2))
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371

    @require_pyctcdecode
    @require_torchaudio
    def test_wav2vec2_with_lm(self):
        ds = load_dataset("common_voice", "es", split="test", streaming=True)
        sample = next(iter(ds))

        resampled_audio = torchaudio.functional.resample(
            torch.tensor(sample["audio"]["array"]), 48_000, 16_000
        ).numpy()

        model = Wav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm").to(
            torch_device
        )
        processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")

        input_values = processor(resampled_audio, return_tensors="pt").input_values

        with torch.no_grad():
            logits = model(input_values.to(torch_device)).logits

        transcription = processor.batch_decode(logits.cpu().numpy()).text

        self.assertEqual(transcription[0], "bien y qu茅 regalo vas a abrir primero")