test_modeling_wav2vec2.py 34.7 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Wav2Vec2 model. """


import math
import unittest

21
22
import pytest

23
from tests.test_modeling_common import floats_tensor, ids_tensor, random_attention_mask
Patrick von Platen's avatar
Patrick von Platen committed
24
25
26
27
28
29
30
31
32
33
from transformers import is_torch_available
from transformers.testing_utils import require_datasets, require_soundfile, require_torch, slow, torch_device

from .test_configuration_common import ConfigTester
from .test_modeling_common import ModelTesterMixin, _config_zero_init


if is_torch_available():
    import torch

Anton Lozhkov's avatar
Anton Lozhkov committed
34
35
36
37
38
39
40
41
42
43
    from transformers import (
        Wav2Vec2Config,
        Wav2Vec2FeatureExtractor,
        Wav2Vec2ForCTC,
        Wav2Vec2ForMaskedLM,
        Wav2Vec2ForPreTraining,
        Wav2Vec2Model,
        Wav2Vec2Processor,
    )
    from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2GumbelVectorQuantizer, _compute_mask_indices
Patrick von Platen's avatar
Patrick von Platen committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106


class Wav2Vec2ModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=1024,  # speech is longer
        is_training=False,
        hidden_size=16,
        feat_extract_norm="group",
        feat_extract_dropout=0.0,
        feat_extract_activation="gelu",
        conv_dim=(32, 32, 32),
        conv_stride=(4, 4, 4),
        conv_kernel=(8, 8, 8),
        conv_bias=False,
        num_conv_pos_embeddings=16,
        num_conv_pos_embedding_groups=2,
        num_hidden_layers=4,
        num_attention_heads=2,
        hidden_dropout_prob=0.1,  # this is most likely not correctly set yet
        intermediate_size=20,
        layer_norm_eps=1e-5,
        hidden_act="gelu",
        initializer_range=0.02,
        vocab_size=32,
        do_stable_layer_norm=False,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.hidden_size = hidden_size
        self.feat_extract_norm = feat_extract_norm
        self.feat_extract_dropout = feat_extract_dropout
        self.feat_extract_activation = feat_extract_activation
        self.conv_dim = conv_dim
        self.conv_stride = conv_stride
        self.conv_kernel = conv_kernel
        self.conv_bias = conv_bias
        self.num_conv_pos_embeddings = num_conv_pos_embeddings
        self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.hidden_dropout_prob = hidden_dropout_prob
        self.intermediate_size = intermediate_size
        self.layer_norm_eps = layer_norm_eps
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.vocab_size = vocab_size
        self.do_stable_layer_norm = do_stable_layer_norm
        self.scope = scope

        output_seq_length = self.seq_length
        for kernel, stride in zip(self.conv_kernel, self.conv_stride):
            output_seq_length = (output_seq_length - (kernel - 1)) / stride
        self.output_seq_length = int(math.ceil(output_seq_length))
        self.encoder_seq_length = self.output_seq_length

    def prepare_config_and_inputs(self):
        input_values = floats_tensor([self.batch_size, self.seq_length], self.vocab_size)
107
        attention_mask = random_attention_mask([self.batch_size, self.seq_length])
Patrick von Platen's avatar
Patrick von Platen committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

        config = Wav2Vec2Config(
            hidden_size=self.hidden_size,
            feat_extract_norm=self.feat_extract_norm,
            feat_extract_dropout=self.feat_extract_dropout,
            feat_extract_activation=self.feat_extract_activation,
            conv_dim=self.conv_dim,
            conv_stride=self.conv_stride,
            conv_kernel=self.conv_kernel,
            conv_bias=self.conv_bias,
            num_conv_pos_embeddings=self.num_conv_pos_embeddings,
            num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            hidden_dropout_prob=self.hidden_dropout_prob,
            intermediate_size=self.intermediate_size,
            layer_norm_eps=self.layer_norm_eps,
            hidden_act=self.hidden_act,
            initializer_range=self.initializer_range,
            vocab_size=self.vocab_size,
        )

130
        return config, input_values, attention_mask
Patrick von Platen's avatar
Patrick von Platen committed
131

132
    def create_and_check_model(self, config, input_values, attention_mask):
Patrick von Platen's avatar
Patrick von Platen committed
133
134
135
        model = Wav2Vec2Model(config=config)
        model.to(torch_device)
        model.eval()
136
        result = model(input_values, attention_mask=attention_mask)
Patrick von Platen's avatar
Patrick von Platen committed
137
138
139
140
        self.parent.assertEqual(
            result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size)
        )

141
    def create_and_check_batch_inference(self, config, input_values, *args):
142
        # test does not pass for models making use of `group_norm`
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
        # check: https://github.com/pytorch/fairseq/issues/3227
        model = Wav2Vec2Model(config=config)
        model.to(torch_device)
        model.eval()

        input_values = input_values[:3]
        attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.bool)

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0
            attention_mask[i, input_lengths[i] :] = 0.0

        batch_outputs = model(input_values, attention_mask=attention_mask).last_hidden_state

        for i in range(input_values.shape[0]):
            input_slice = input_values[i : i + 1, : input_lengths[i]]
            output = model(input_slice).last_hidden_state

            batch_output = batch_outputs[i : i + 1, : output.shape[1]]
            self.parent.assertTrue(torch.allclose(output, batch_output, atol=1e-3))

167
168
169
170
171
172
173
174
    def check_ctc_loss(self, config, input_values, *args):
        model = Wav2Vec2ForCTC(config=config)
        model.to(torch_device)

        # make sure that dropout is disabled
        model.eval()

        input_values = input_values[:3]
175
        attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long)
176
177
178
179
180
181
182
183

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
        labels = ids_tensor((input_values.shape[0], min(max_length_labels) - 1), model.config.vocab_size)

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0
184
            attention_mask[i, input_lengths[i] :] = 0
185
186

        model.config.ctc_loss_reduction = "sum"
187
        sum_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()
188
189

        model.config.ctc_loss_reduction = "mean"
190
        mean_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()
191

192
193
        self.parent.assertTrue(isinstance(sum_loss, float))
        self.parent.assertTrue(isinstance(mean_loss, float))
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

    def check_training(self, config, input_values, *args):
        config.ctc_zero_infinity = True
        model = Wav2Vec2ForCTC(config=config)
        model.to(torch_device)
        model.train()

        # freeze feature encoder
        model.freeze_feature_extractor()

        input_values = input_values[:3]

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
        labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size)

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0

            if max_length_labels[i] < labels.shape[-1]:
                # it's important that we make sure that target lenghts are at least
                # one shorter than logit lenghts to prevent -inf
                labels[i, max_length_labels[i] - 1 :] = -100

        loss = model(input_values, labels=labels).loss
        self.parent.assertFalse(torch.isinf(loss).item())

        loss.backward()

224
225
226
227
228
229
230
231
232
233
234
235
236
237
    def check_labels_out_of_vocab(self, config, input_values, *args):
        model = Wav2Vec2ForCTC(config)
        model.to(torch_device)
        model.train()

        input_values = input_values[:3]

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
        labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size + 100)

        with pytest.raises(ValueError):
            model(input_values, labels=labels)

Patrick von Platen's avatar
Patrick von Platen committed
238
    def prepare_config_and_inputs_for_common(self):
239
240
        config, input_values, attention_mask = self.prepare_config_and_inputs()
        inputs_dict = {"input_values": input_values, "attention_mask": attention_mask}
Patrick von Platen's avatar
Patrick von Platen committed
241
242
243
244
245
246
        return config, inputs_dict


@require_torch
class Wav2Vec2ModelTest(ModelTesterMixin, unittest.TestCase):
    all_model_classes = (
Anton Lozhkov's avatar
Anton Lozhkov committed
247
        (Wav2Vec2ForCTC, Wav2Vec2Model, Wav2Vec2ForMaskedLM, Wav2Vec2ForPreTraining) if is_torch_available() else ()
Patrick von Platen's avatar
Patrick von Platen committed
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
    )
    test_pruning = False
    test_headmasking = False
    test_torchscript = False

    def setUp(self):
        self.model_tester = Wav2Vec2ModelTester(self)
        self.config_tester = ConfigTester(self, config_class=Wav2Vec2Config, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

264
265
266
267
268
269
270
271
    def test_ctc_loss_inference(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_ctc_loss(*config_and_inputs)

    def test_train(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_training(*config_and_inputs)

272
273
274
275
    def test_labels_out_of_vocab(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_labels_out_of_vocab(*config_and_inputs)

Patrick von Platen's avatar
Patrick von Platen committed
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
    # Wav2Vec2 has no inputs_embeds
    def test_inputs_embeds(self):
        pass

    # `input_ids` is renamed to `input_values`
    def test_forward_signature(self):
        pass

    # Wav2Vec2 cannot resize token embeddings
    # since it has no tokens embeddings
    def test_resize_tokens_embeddings(self):
        pass

    # Wav2Vec2 has no inputs_embeds
    # and thus the `get_input_embeddings` fn
    # is not implemented
    def test_model_common_attributes(self):
        pass

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        config.output_attentions = True

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        # set layer drop to 0
        model.config.layerdrop = 0.0

        input_values = inputs_dict["input_values"]

        input_lengths = torch.tensor(
            [input_values.shape[1] for _ in range(input_values.shape[0])], dtype=torch.long, device=torch_device
        )
        output_lengths = model._get_feat_extract_output_lengths(input_lengths)

        labels = ids_tensor((input_values.shape[0], output_lengths[0] - 2), self.model_tester.vocab_size)
        inputs_dict["attention_mask"] = torch.ones_like(inputs_dict["attention_mask"])
        inputs_dict["labels"] = labels

        outputs = model(**inputs_dict)

        output = outputs[0]

        # Encoder-/Decoder-only models
        hidden_states = outputs.hidden_states[0]
        attentions = outputs.attentions[0]

        hidden_states.retain_grad()
        attentions.retain_grad()

        output.flatten()[0].backward(retain_graph=True)

        self.assertIsNotNone(hidden_states.grad)
        self.assertIsNotNone(attentions.grad)

Patrick von Platen's avatar
Patrick von Platen committed
335
336
337
338
339
340
341
    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
Anton Lozhkov's avatar
Anton Lozhkov committed
342
343
344
345
346
347
                uniform_init_parms = [
                    "conv.weight",
                    "masked_spec_embed",
                    "codevectors",
                    "quantizer.weight_proj.weight",
                ]
Patrick von Platen's avatar
Patrick von Platen committed
348
                if param.requires_grad:
Anton Lozhkov's avatar
Anton Lozhkov committed
349
                    if any([x in name for x in uniform_init_parms]):
Patrick von Platen's avatar
Patrick von Platen committed
350
351
                        self.assertTrue(
                            -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
352
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
Patrick von Platen's avatar
Patrick von Platen committed
353
354
355
356
357
                        )
                    else:
                        self.assertIn(
                            ((param.data.mean() * 1e9).round() / 1e9).item(),
                            [0.0, 1.0],
358
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
Patrick von Platen's avatar
Patrick von Platen committed
359
360
                        )

361
362
363
364
    # overwrite from test_modeling_common
    def _mock_init_weights(self, module):
        if hasattr(module, "weight") and module.weight is not None:
            module.weight.data.fill_(3)
Anton Lozhkov's avatar
Anton Lozhkov committed
365
        if hasattr(module, "weight_g") and module.weight_g is not None:
366
            module.weight_g.data.fill_(3)
Anton Lozhkov's avatar
Anton Lozhkov committed
367
368
        if hasattr(module, "weight_v") and module.weight_v is not None:
            module.weight_v.data.fill_(3)
369
370
        if hasattr(module, "bias") and module.bias is not None:
            module.bias.data.fill_(3)
Anton Lozhkov's avatar
Anton Lozhkov committed
371
372
        if hasattr(module, "codevectors") and module.codevectors is not None:
            module.codevectors.data.fill_(3)
373
374
        if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None:
            module.masked_spec_embed.data.fill_(3)
375

Patrick von Platen's avatar
Patrick von Platen committed
376
377
378
379
380
381
382
383
    @slow
    def test_model_from_pretrained(self):
        model = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")
        self.assertIsNotNone(model)


@require_torch
class Wav2Vec2RobustModelTest(ModelTesterMixin, unittest.TestCase):
Anton Lozhkov's avatar
Anton Lozhkov committed
384
385
386
    all_model_classes = (
        (Wav2Vec2ForCTC, Wav2Vec2Model, Wav2Vec2ForMaskedLM, Wav2Vec2ForPreTraining) if is_torch_available() else ()
    )
Patrick von Platen's avatar
Patrick von Platen committed
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
    test_pruning = False
    test_headmasking = False
    test_torchscript = False

    def setUp(self):
        self.model_tester = Wav2Vec2ModelTester(
            self, conv_stride=(3, 3, 3), feat_extract_norm="layer", do_stable_layer_norm=True
        )
        self.config_tester = ConfigTester(self, config_class=Wav2Vec2Config, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

404
405
406
407
    def test_batched_inference(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_batch_inference(*config_and_inputs)

408
409
410
411
412
413
414
415
    def test_ctc_loss_inference(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_ctc_loss(*config_and_inputs)

    def test_train(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_training(*config_and_inputs)

416
417
418
419
    def test_labels_out_of_vocab(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_labels_out_of_vocab(*config_and_inputs)

Patrick von Platen's avatar
Patrick von Platen committed
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
    # Wav2Vec2 has no inputs_embeds
    def test_inputs_embeds(self):
        pass

    # `input_ids` is renamed to `input_values`
    def test_forward_signature(self):
        pass

    # Wav2Vec2 cannot resize token embeddings
    # since it has no tokens embeddings
    def test_resize_tokens_embeddings(self):
        pass

    # Wav2Vec2 has no inputs_embeds
    # and thus the `get_input_embeddings` fn
    # is not implemented
    def test_model_common_attributes(self):
        pass

439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        config.output_attentions = True

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        # set layer drop to 0
        model.config.layerdrop = 0.0

        input_values = inputs_dict["input_values"]

        input_lengths = torch.tensor(
            [input_values.shape[1] for _ in range(input_values.shape[0])], dtype=torch.long, device=torch_device
        )
        output_lengths = model._get_feat_extract_output_lengths(input_lengths)

        labels = ids_tensor((input_values.shape[0], output_lengths[0] - 2), self.model_tester.vocab_size)
        inputs_dict["attention_mask"] = torch.ones_like(inputs_dict["attention_mask"])
        inputs_dict["labels"] = labels

        outputs = model(**inputs_dict)

        output = outputs[0]

        # Encoder-/Decoder-only models
        hidden_states = outputs.hidden_states[0]
        attentions = outputs.attentions[0]

        hidden_states.retain_grad()
        attentions.retain_grad()

        output.flatten()[0].backward(retain_graph=True)

        self.assertIsNotNone(hidden_states.grad)
        self.assertIsNotNone(attentions.grad)

Patrick von Platen's avatar
Patrick von Platen committed
479
480
481
482
483
484
485
    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
Anton Lozhkov's avatar
Anton Lozhkov committed
486
487
488
489
490
491
                uniform_init_parms = [
                    "conv.weight",
                    "masked_spec_embed",
                    "codevectors",
                    "quantizer.weight_proj.weight",
                ]
Patrick von Platen's avatar
Patrick von Platen committed
492
                if param.requires_grad:
Anton Lozhkov's avatar
Anton Lozhkov committed
493
                    if any([x in name for x in uniform_init_parms]):
Patrick von Platen's avatar
Patrick von Platen committed
494
495
                        self.assertTrue(
                            -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
496
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
Patrick von Platen's avatar
Patrick von Platen committed
497
498
499
500
501
                        )
                    else:
                        self.assertIn(
                            ((param.data.mean() * 1e9).round() / 1e9).item(),
                            [0.0, 1.0],
502
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
Patrick von Platen's avatar
Patrick von Platen committed
503
504
                        )

505
506
507
508
    # overwrite from test_modeling_common
    def _mock_init_weights(self, module):
        if hasattr(module, "weight") and module.weight is not None:
            module.weight.data.fill_(3)
Anton Lozhkov's avatar
Anton Lozhkov committed
509
        if hasattr(module, "weight_g") and module.weight_g is not None:
510
            module.weight_g.data.fill_(3)
Anton Lozhkov's avatar
Anton Lozhkov committed
511
512
        if hasattr(module, "weight_v") and module.weight_v is not None:
            module.weight_v.data.fill_(3)
513
514
        if hasattr(module, "bias") and module.bias is not None:
            module.bias.data.fill_(3)
Anton Lozhkov's avatar
Anton Lozhkov committed
515
516
        if hasattr(module, "codevectors") and module.codevectors is not None:
            module.codevectors.data.fill_(3)
517
518
        if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None:
            module.masked_spec_embed.data.fill_(3)
Anton Lozhkov's avatar
Anton Lozhkov committed
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551

    def test_model_for_pretraining(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        model = Wav2Vec2ForPreTraining(config).to(torch_device)

        features_shape = (
            inputs_dict["input_values"].shape[0],
            model._get_feat_extract_output_lengths(torch.tensor(inputs_dict["input_values"].shape[1])),
        )

        mask_time_indices = _compute_mask_indices(
            features_shape,
            model.config.mask_time_prob,
            model.config.mask_time_length,
            device=inputs_dict["input_values"].device,
            min_masks=2,
        ).to(torch_device)

        loss = model(
            inputs_dict["input_values"],
            attention_mask=inputs_dict["attention_mask"],
            mask_time_indices=mask_time_indices,
        ).loss

        mask_time_indices[:, : mask_time_indices.shape[-1] // 2] = True
        loss_more_masked = model(
            inputs_dict["input_values"],
            attention_mask=inputs_dict["attention_mask"],
            mask_time_indices=mask_time_indices,
        ).loss

        # loss_more_masked has to be bigger or equal loss since more masked inputs have to be predicted
        self.assertTrue(loss.detach().item() <= loss_more_masked.detach().item())
552

Patrick von Platen's avatar
Patrick von Platen committed
553
554
555
556
557
558
    @slow
    def test_model_from_pretrained(self):
        model = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")
        self.assertIsNotNone(model)


559
560
561
562
563
564
565
566
@require_torch
class Wav2Vec2UtilsTest(unittest.TestCase):
    def test_compute_mask_indices(self):
        batch_size = 4
        sequence_length = 60
        mask_prob = 0.5
        mask_length = 1

567
        mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length, torch_device)
568
569
570
571
572

        self.assertListEqual(mask.sum(axis=-1).tolist(), [mask_prob * sequence_length for _ in range(batch_size)])

    def test_compute_mask_indices_overlap(self):
        batch_size = 4
Anton Lozhkov's avatar
Anton Lozhkov committed
573
        sequence_length = 80
574
575
576
        mask_prob = 0.5
        mask_length = 4

577
        mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length, torch_device)
578

Anton Lozhkov's avatar
Anton Lozhkov committed
579
        # because of overlap mask don't have to add up exactly to `mask_prob * sequence_length`, but have to be smaller or equal
580
        for batch_sum in mask.sum(axis=-1):
Anton Lozhkov's avatar
Anton Lozhkov committed
581
582
            self.assertTrue(int(batch_sum) <= mask_prob * sequence_length)

583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
    def test_compute_mask_indices_attn_mask_overlap(self):
        batch_size = 4
        sequence_length = 80
        mask_prob = 0.5
        mask_length = 4

        attention_mask = torch.ones((batch_size, sequence_length), dtype=torch.long, device=torch_device)
        attention_mask[:2, sequence_length // 2 :] = 0

        mask = _compute_mask_indices(
            (batch_size, sequence_length), mask_prob, mask_length, device=torch_device, attention_mask=attention_mask
        )

        for batch_sum in mask.sum(axis=-1):
            self.assertTrue(int(batch_sum) <= mask_prob * sequence_length)

        self.assertTrue(mask[:2, sequence_length // 2 :].sum() == 0)

Anton Lozhkov's avatar
Anton Lozhkov committed
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
    def test_compute_perplexity(self):
        probs = torch.arange(100, device=torch_device).reshape(2, 5, 10) / 100

        ppl = Wav2Vec2GumbelVectorQuantizer._compute_perplexity(probs)
        self.assertTrue(abs(ppl.item() - 141.4291) < 1e-3)

        # mask half of the input
        mask = torch.ones((2,), device=torch_device, dtype=torch.bool)
        mask[0] = 0

        ppl = Wav2Vec2GumbelVectorQuantizer._compute_perplexity(probs, mask)
        self.assertTrue(abs(ppl.item() - 58.6757) < 1e-3)

    def test_sample_negatives(self):
        batch_size = 2
        sequence_length = 10
        hidden_size = 4
        num_negatives = 3

        features = (torch.arange(sequence_length * hidden_size, device=torch_device) // hidden_size).view(
            sequence_length, hidden_size
        )  # each value in vector consits of same value
        features = features[None, :].expand(batch_size, sequence_length, hidden_size).contiguous()

        negatives = Wav2Vec2ForPreTraining._sample_negatives(features, num_negatives)

        self.assertTrue(negatives.shape == (num_negatives, batch_size, sequence_length, hidden_size))

        # make sure no negatively sampled vector is actually a positive one
        for negative in negatives:
            self.assertTrue(((negative - features) == 0).sum() == 0.0)

        # make sure that full vectors are sampled and not values of vectors => this means that `unique()` yields a single value for `hidden_size` dim
        self.assertTrue(negatives.unique(dim=-1).shape, (num_negatives, batch_size, sequence_length, 1))
635
636


Patrick von Platen's avatar
Patrick von Platen committed
637
638
639
@require_torch
@require_datasets
@require_soundfile
Anton Lozhkov's avatar
Anton Lozhkov committed
640
@slow
Patrick von Platen's avatar
Patrick von Platen committed
641
642
643
644
645
646
class Wav2Vec2ModelIntegrationTest(unittest.TestCase):
    def _load_datasamples(self, num_samples):
        from datasets import load_dataset

        import soundfile as sf

647
648
        ids = [f"1272-141231-000{i}" for i in range(num_samples)]

Patrick von Platen's avatar
Patrick von Platen committed
649
650
651
652
653
654
655
        # map files to raw
        def map_to_array(batch):
            speech, _ = sf.read(batch["file"])
            batch["speech"] = speech
            return batch

        ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
656
657

        ds = ds.filter(lambda x: x["id"] in ids).sort("id").map(map_to_array)
Patrick von Platen's avatar
Patrick von Platen committed
658
659
660

        return ds["speech"][:num_samples]

661
    def test_inference_ctc_normal(self):
662
        model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
Patrick von Platen's avatar
Patrick von Platen committed
663
        model.to(torch_device)
664
        processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h", do_lower_case=True)
Patrick von Platen's avatar
Patrick von Platen committed
665
666
        input_speech = self._load_datasamples(1)

667
        input_values = processor(input_speech, return_tensors="pt").input_values.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
668
669
670
671
672

        with torch.no_grad():
            logits = model(input_values).logits

        predicted_ids = torch.argmax(logits, dim=-1)
673
        predicted_trans = processor.batch_decode(predicted_ids)
Patrick von Platen's avatar
Patrick von Platen committed
674
675
676
677

        EXPECTED_TRANSCRIPTIONS = ["a man said to the universe sir i exist"]
        self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)

678
    def test_inference_ctc_normal_batched(self):
679
        model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
Patrick von Platen's avatar
Patrick von Platen committed
680
        model.to(torch_device)
681
        processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h", do_lower_case=True)
Patrick von Platen's avatar
Patrick von Platen committed
682
683
684

        input_speech = self._load_datasamples(2)

685
        inputs = processor(input_speech, return_tensors="pt", padding=True, truncation=True)
686
687

        input_values = inputs.input_values.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
688
689
690
691
692

        with torch.no_grad():
            logits = model(input_values).logits

        predicted_ids = torch.argmax(logits, dim=-1)
693
        predicted_trans = processor.batch_decode(predicted_ids)
Patrick von Platen's avatar
Patrick von Platen committed
694
695
696
697
698
699
700

        EXPECTED_TRANSCRIPTIONS = [
            "a man said to the universe sir i exist",
            "sweat covered brion's body trickling into the tight lowing cloth that was the only garment he wore",
        ]
        self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)

701
    def test_inference_ctc_robust_batched(self):
702
        model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self").to(torch_device)
703
        processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self", do_lower_case=True)
Patrick von Platen's avatar
Patrick von Platen committed
704
705
706

        input_speech = self._load_datasamples(4)

707
        inputs = processor(input_speech, return_tensors="pt", padding=True, truncation=True)
708
709
710

        input_values = inputs.input_values.to(torch_device)
        attention_mask = inputs.attention_mask.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
711
712

        with torch.no_grad():
713
            logits = model(input_values, attention_mask=attention_mask).logits
Patrick von Platen's avatar
Patrick von Platen committed
714
715

        predicted_ids = torch.argmax(logits, dim=-1)
716
        predicted_trans = processor.batch_decode(predicted_ids)
Patrick von Platen's avatar
Patrick von Platen committed
717
718
719
720
721
722
723
724

        EXPECTED_TRANSCRIPTIONS = [
            "a man said to the universe sir i exist",
            "sweat covered brion's body trickling into the tight loin cloth that was the only garment he wore",
            "the cut on his chest still dripping blood the ache of his overstrained eyes even the soaring arena around him with the thousands of spectators were trivialities not worth thinking about",
            "his instant panic was followed by a small sharp blow high on his chest",
        ]
        self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)
Anton Lozhkov's avatar
Anton Lozhkov committed
725
726

    def test_inference_integration(self):
727
        model = Wav2Vec2ForPreTraining.from_pretrained("facebook/wav2vec2-base")
Anton Lozhkov's avatar
Anton Lozhkov committed
728
729
        model.to(torch_device)
        feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
730
            "facebook/wav2vec2-base", return_attention_mask=True
Anton Lozhkov's avatar
Anton Lozhkov committed
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
        )
        input_speech = self._load_datasamples(2)

        inputs_dict = feature_extractor(input_speech, return_tensors="pt", padding=True)

        features_shape = (
            inputs_dict["input_values"].shape[0],
            model._get_feat_extract_output_lengths(torch.tensor(inputs_dict["input_values"].shape[1])),
        )

        torch.manual_seed(0)
        mask_time_indices = _compute_mask_indices(
            features_shape,
            model.config.mask_time_prob,
            model.config.mask_time_length,
            device=inputs_dict["input_values"].device,
            min_masks=2,
        ).to(torch_device)

        with torch.no_grad():
            outputs = model(
                inputs_dict.input_values.to(torch_device),
                attention_mask=inputs_dict.attention_mask.to(torch_device),
                mask_time_indices=mask_time_indices,
            )

        # compute cosine similarity
        cosine_sim = torch.cosine_similarity(outputs.projected_states, outputs.projected_quantized_states, dim=-1)

        # retrieve cosine sim of masked features
        cosine_sim_masked = cosine_sim[mask_time_indices]

        # fmt: off
        expected_cosine_sim_masked = torch.tensor(
            [0.7458, 0.7188, 0.6418, 0.3729, 0.3741, 0.3694, 0.3110, 0.2257, 0.4403, 0.5415, 0.3950, 0.3701, 0.8831, 0.8613, 0.5229, 0.6696, 0.7206, 0.7877, 0.6758, 0.8746, 0.6596, 0.6282, 0.6178, 0.5839, 0.5926, 0.6651, 0.4635, 0.6332, 0.6572, 0.8776, 0.4999, 0.7001, 0.7257, 0.5098, 0.6229, 0.4566, 0.5261, 0.6363, 0.5371, 0.6997],
            device=torch_device,
        )
        # fmt: on

        self.assertTrue(torch.allclose(cosine_sim_masked, expected_cosine_sim_masked, atol=1e-3))

    def test_inference_pretrained(self):
773
        model = Wav2Vec2ForPreTraining.from_pretrained("facebook/wav2vec2-base")
Anton Lozhkov's avatar
Anton Lozhkov committed
774
775
        model.to(torch_device)
        feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
776
            "facebook/wav2vec2-base", return_attention_mask=True
Anton Lozhkov's avatar
Anton Lozhkov committed
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
        )
        input_speech = self._load_datasamples(2)

        inputs_dict = feature_extractor(input_speech, return_tensors="pt", padding=True)

        features_shape = (
            inputs_dict["input_values"].shape[0],
            model._get_feat_extract_output_lengths(torch.tensor(inputs_dict["input_values"].shape[1])),
        )

        torch.manual_seed(0)
        mask_time_indices = _compute_mask_indices(
            features_shape,
            model.config.mask_time_prob,
            model.config.mask_time_length,
            device=inputs_dict["input_values"].device,
            min_masks=2,
        ).to(torch_device)

        with torch.no_grad():
            outputs = model(
                inputs_dict.input_values.to(torch_device),
                attention_mask=inputs_dict.attention_mask.to(torch_device),
                mask_time_indices=mask_time_indices,
            )

        # compute cosine similarity
        cosine_sim = torch.cosine_similarity(outputs.projected_states, outputs.projected_quantized_states, dim=-1)

        # retrieve cosine sim of masked features
        cosine_sim_masked = cosine_sim[mask_time_indices]

        # ... now compare to randomly initialized model

811
        config = Wav2Vec2Config.from_pretrained("facebook/wav2vec2-base")
Anton Lozhkov's avatar
Anton Lozhkov committed
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
        model_rand = Wav2Vec2ForPreTraining(config).to(torch_device).eval()

        with torch.no_grad():
            outputs_rand = model_rand(
                inputs_dict.input_values.to(torch_device),
                attention_mask=inputs_dict.attention_mask.to(torch_device),
                mask_time_indices=mask_time_indices,
            )

        # compute cosine similarity
        cosine_sim_rand = torch.cosine_similarity(
            outputs_rand.projected_states, outputs_rand.projected_quantized_states, dim=-1
        )

        # retrieve cosine sim of masked features
        cosine_sim_masked_rand = cosine_sim_rand[mask_time_indices]

        # a pretrained wav2vec2 model has learned to predict the quantized latent states
        # => the cosine similarity between quantized states and predicted states > 0.5
        # a random wav2vec2 model has not learned to predict the quantized latent states
        # => the cosine similarity between quantized states and predicted states is very likely < 0.1
        self.assertTrue(cosine_sim_masked.mean().item() - 5 * cosine_sim_masked_rand.mean().item() > 0)

835
    @unittest.skipIf(torch_device != "cpu", "cannot make deterministic on GPU")
Anton Lozhkov's avatar
Anton Lozhkov committed
836
837
    def test_loss_pretraining(self):
        model = Wav2Vec2ForPreTraining.from_pretrained(
838
            "facebook/wav2vec2-base",
Anton Lozhkov's avatar
Anton Lozhkov committed
839
840
841
842
843
844
845
846
            attention_dropout=0.0,
            feat_proj_dropout=0.0,
            hidden_dropout=0.0,
            layerdrop=0.0,
        )
        model.to(torch_device).train()

        feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
847
            "facebook/wav2vec2-base", return_attention_mask=True
Anton Lozhkov's avatar
Anton Lozhkov committed
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
        )
        input_speech = self._load_datasamples(2)

        inputs_dict = feature_extractor(input_speech, return_tensors="pt", padding=True)

        features_shape = (
            inputs_dict["input_values"].shape[0],
            model._get_feat_extract_output_lengths(inputs_dict["input_values"].shape[1]),
        )

        torch.manual_seed(0)
        mask_time_indices = _compute_mask_indices(
            features_shape,
            model.config.mask_time_prob,
            model.config.mask_time_length,
            device=inputs_dict["input_values"].device,
            min_masks=2,
        ).to(torch_device)

        with torch.no_grad():
            outputs = model(
                inputs_dict.input_values.to(torch_device),
                attention_mask=inputs_dict.attention_mask.to(torch_device),
                mask_time_indices=mask_time_indices,
            )

        # check diversity loss
        num_codevectors = model.config.num_codevectors_per_group * model.config.num_codevector_groups
        diversity_loss = (num_codevectors - outputs.codevector_perplexity) / num_codevectors
        self.assertTrue(abs(diversity_loss.item() - 0.8859) < 1e-3)

        # check overall loss (contrastive loss + diversity loss)
880
        expected_loss = 62.5170
Anton Lozhkov's avatar
Anton Lozhkov committed
881
882

        self.assertTrue(abs(outputs.loss.item() - expected_loss) < 1e-3)