run_squad.py 32.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
""" Finetuning the library models for question-answering on SQuAD (DistilBERT, Bert, XLM, XLNet)."""
17
18
19
20

from __future__ import absolute_import, division, print_function

import argparse
Aymeric Augustin's avatar
Aymeric Augustin committed
21
import glob
22
23
24
import logging
import os
import random
25
import timeit
Aymeric Augustin's avatar
Aymeric Augustin committed
26

27
28
import numpy as np
import torch
29
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
30
from torch.utils.data.distributed import DistributedSampler
31
from tqdm import tqdm, trange
32

33
34
from transformers import (
    WEIGHTS_NAME,
Aymeric Augustin's avatar
Aymeric Augustin committed
35
36
37
38
    AdamW,
    AlbertConfig,
    AlbertForQuestionAnswering,
    AlbertTokenizer,
39
40
41
    BertConfig,
    BertForQuestionAnswering,
    BertTokenizer,
Aymeric Augustin's avatar
Aymeric Augustin committed
42
43
44
45
    DistilBertConfig,
    DistilBertForQuestionAnswering,
    DistilBertTokenizer,
    RobertaConfig,
46
47
48
49
50
51
52
53
    RobertaForQuestionAnswering,
    RobertaTokenizer,
    XLMConfig,
    XLMForQuestionAnswering,
    XLMTokenizer,
    XLNetConfig,
    XLNetForQuestionAnswering,
    XLNetTokenizer,
Aymeric Augustin's avatar
Aymeric Augustin committed
54
55
    get_linear_schedule_with_warmup,
    squad_convert_examples_to_features,
56
)
Aymeric Augustin's avatar
Aymeric Augustin committed
57
58
59
60
61
62
63
64
65
66
from transformers.data.metrics.squad_metrics import (
    compute_predictions_log_probs,
    compute_predictions_logits,
    squad_evaluate,
)
from transformers.data.processors.squad import SquadResult, SquadV1Processor, SquadV2Processor


try:
    from torch.utils.tensorboard import SummaryWriter
67
except ImportError:
Aymeric Augustin's avatar
Aymeric Augustin committed
68
    from tensorboardX import SummaryWriter
thomwolf's avatar
thomwolf committed
69

70
71
72

logger = logging.getLogger(__name__)

73
74
75
76
ALL_MODELS = sum(
    (tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, RobertaConfig, XLNetConfig, XLMConfig)),
    (),
)
thomwolf's avatar
thomwolf committed
77
78

MODEL_CLASSES = {
79
80
81
82
83
84
    "bert": (BertConfig, BertForQuestionAnswering, BertTokenizer),
    "roberta": (RobertaConfig, RobertaForQuestionAnswering, RobertaTokenizer),
    "xlnet": (XLNetConfig, XLNetForQuestionAnswering, XLNetTokenizer),
    "xlm": (XLMConfig, XLMForQuestionAnswering, XLMTokenizer),
    "distilbert": (DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer),
    "albert": (AlbertConfig, AlbertForQuestionAnswering, AlbertTokenizer),
thomwolf's avatar
thomwolf committed
85
86
}

87

thomwolf's avatar
thomwolf committed
88
89
90
91
92
93
94
def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

95

96
97
def to_list(tensor):
    return tensor.detach().cpu().tolist()
thomwolf's avatar
thomwolf committed
98

99

100
def train(args, train_dataset, model, tokenizer):
thomwolf's avatar
thomwolf committed
101
102
103
104
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

105
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
106
107
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
thomwolf's avatar
thomwolf committed
108
109

    if args.max_steps > 0:
110
        t_total = args.max_steps
111
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
thomwolf's avatar
thomwolf committed
112
    else:
113
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
thomwolf's avatar
thomwolf committed
114

115
    # Prepare optimizer and schedule (linear warmup and decay)
116
    no_decay = ["bias", "LayerNorm.weight"]
thomwolf's avatar
thomwolf committed
117
    optimizer_grouped_parameters = [
118
119
120
121
122
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
LysandreJik's avatar
Cleanup  
LysandreJik committed
123
    ]
124
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
125
    scheduler = get_linear_schedule_with_warmup(
126
127
        optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
    )
128
129

    # Check if saved optimizer or scheduler states exist
130
131
132
    if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
        os.path.join(args.model_name_or_path, "scheduler.pt")
    ):
133
        # Load in optimizer and scheduler states
134
135
        optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
        scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
LysandreJik's avatar
Cleanup  
LysandreJik committed
136

thomwolf's avatar
thomwolf committed
137
138
139
140
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
141
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
142

143
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
thomwolf's avatar
thomwolf committed
144

145
146
147
148
    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
149
150
    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
151
152
153
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
        )
thomwolf's avatar
thomwolf committed
154

thomwolf's avatar
thomwolf committed
155
156
157
158
    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
159
160
161
162
163
164
165
166
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size
        * args.gradient_accumulation_steps
        * (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
167
    logger.info("  Total optimization steps = %d", t_total)
thomwolf's avatar
thomwolf committed
168

Lysandre's avatar
Lysandre committed
169
    global_step = 1
170
171
172
173
174
    epochs_trained = 0
    steps_trained_in_current_epoch = 0
    # Check if continuing training from a checkpoint
    if os.path.exists(args.model_name_or_path):
        # set global_step to gobal_step of last saved checkpoint from model path
175
176
177
178
179
        global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0])
        epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
        steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)

        logger.info("  Continuing training from checkpoint, will skip to saved global_step")
180
181
        logger.info("  Continuing training from epoch %d", epochs_trained)
        logger.info("  Continuing training from global step %d", global_step)
182
        logger.info("  Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
183

thomwolf's avatar
thomwolf committed
184
    tr_loss, logging_loss = 0.0, 0.0
185
    model.zero_grad()
186
187
188
    train_iterator = trange(
        epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]
    )
189
190
191
    # Added here for reproductibility (even between python 2 and 3)
    set_seed(args)

192
    for _ in train_iterator:
193
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
194
        for step, batch in enumerate(epoch_iterator):
195
196
197
198
199
200

            # Skip past any already trained steps if resuming training
            if steps_trained_in_current_epoch > 0:
                steps_trained_in_current_epoch -= 1
                continue

201
            model.train()
thomwolf's avatar
thomwolf committed
202
            batch = tuple(t.to(args.device) for t in batch)
LysandreJik's avatar
Cleanup  
LysandreJik committed
203
204

            inputs = {
205
206
207
208
209
                "input_ids": batch[0],
                "attention_mask": batch[1],
                "token_type_ids": None if args.model_type in ["xlm", "roberta", "distilbert"] else batch[2],
                "start_positions": batch[3],
                "end_positions": batch[4],
LysandreJik's avatar
Cleanup  
LysandreJik committed
210
211
            }

212
213
            if args.model_type in ["xlnet", "xlm"]:
                inputs.update({"cls_index": batch[5], "p_mask": batch[6]})
214
                if args.version_2_with_negative:
215
                    inputs.update({"is_impossible": batch[7]})
Peiqin Lin's avatar
typos  
Peiqin Lin committed
216
            outputs = model(**inputs)
217
218
            # model outputs are always tuple in transformers (see doc)
            loss = outputs[0]
thomwolf's avatar
thomwolf committed
219

220
            if args.n_gpu > 1:
221
                loss = loss.mean()  # mean() to average on multi-gpu parallel (not distributed) training
222
223
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps
thomwolf's avatar
thomwolf committed
224

225
226
227
228
229
230
231
232
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
233
                if args.fp16:
234
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
235
                else:
236
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
237

238
                optimizer.step()
239
                scheduler.step()  # Update learning rate schedule
240
241
242
                model.zero_grad()
                global_step += 1

LysandreJik's avatar
Cleanup  
LysandreJik committed
243
                # Log metrics
244
                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
245
246
                    # Only evaluate when single GPU otherwise metrics may not average well
                    if args.local_rank == -1 and args.evaluate_during_training:
247
248
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
249
250
251
                            tb_writer.add_scalar("eval_{}".format(key), value, global_step)
                    tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
252
253
                    logging_loss = tr_loss

LysandreJik's avatar
Cleanup  
LysandreJik committed
254
                # Save model checkpoint
255
                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
256
                    output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
257
258
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
259
                    # Take care of distributed/parallel training
260
                    model_to_save = model.module if hasattr(model, "module") else model
261
                    model_to_save.save_pretrained(output_dir)
262
263
                    tokenizer.save_pretrained(output_dir)

264
                    torch.save(args, os.path.join(output_dir, "training_args.bin"))
265
266
                    logger.info("Saving model checkpoint to %s", output_dir)

267
268
269
                    torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                    torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
                    logger.info("Saving optimizer and scheduler states to %s", output_dir)
270

271
272
273
274
275
276
277
            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

thomwolf's avatar
thomwolf committed
278
279
280
    if args.local_rank in [-1, 0]:
        tb_writer.close()

281
282
283
284
    return global_step, tr_loss / global_step


def evaluate(args, model, tokenizer, prefix=""):
285
    dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True)
286
287
288
289
290

    if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(args.output_dir)

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
LysandreJik's avatar
Cleanup  
LysandreJik committed
291

292
    # Note that DistributedSampler samples randomly
293
    eval_sampler = SequentialSampler(dataset)
294
    eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
295

ronakice's avatar
ronakice committed
296
    # multi-gpu evaluate
297
    if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel):
ronakice's avatar
ronakice committed
298
299
        model = torch.nn.DataParallel(model)

300
301
302
303
    # Eval!
    logger.info("***** Running evaluation {} *****".format(prefix))
    logger.info("  Num examples = %d", len(dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
LysandreJik's avatar
Cleanup  
LysandreJik committed
304

305
    all_results = []
306
    start_time = timeit.default_timer()
LysandreJik's avatar
Cleanup  
LysandreJik committed
307

308
309
310
    for batch in tqdm(eval_dataloader, desc="Evaluating"):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
LysandreJik's avatar
Cleanup  
LysandreJik committed
311

312
        with torch.no_grad():
LysandreJik's avatar
LysandreJik committed
313
            inputs = {
314
315
316
                "input_ids": batch[0],
                "attention_mask": batch[1],
                "token_type_ids": None if args.model_type in ["xlm", "roberta", "distilbert"] else batch[2],
LysandreJik's avatar
LysandreJik committed
317
            }
318
            example_indices = batch[3]
319

LysandreJik's avatar
Cleanup  
LysandreJik committed
320
            # XLNet and XLM use more arguments for their predictions
321
322
            if args.model_type in ["xlnet", "xlm"]:
                inputs.update({"cls_index": batch[4], "p_mask": batch[5]})
LysandreJik's avatar
Cleanup  
LysandreJik committed
323

324
325
326
327
328
            outputs = model(**inputs)

        for i, example_index in enumerate(example_indices):
            eval_feature = features[example_index.item()]
            unique_id = int(eval_feature.unique_id)
LysandreJik's avatar
LysandreJik committed
329

LysandreJik's avatar
LysandreJik committed
330
331
            output = [to_list(output[i]) for output in outputs]

LysandreJik's avatar
Cleanup  
LysandreJik committed
332
333
            # Some models (XLNet, XLM) use 5 arguments for their predictions, while the other "simpler"
            # models only use two.
LysandreJik's avatar
LysandreJik committed
334
335
336
337
            if len(output) >= 5:
                start_logits = output[0]
                start_top_index = output[1]
                end_logits = output[2]
LysandreJik's avatar
Cleanup  
LysandreJik committed
338
                end_top_index = output[3]
LysandreJik's avatar
LysandreJik committed
339
340
341
                cls_logits = output[4]

                result = SquadResult(
342
343
344
                    unique_id,
                    start_logits,
                    end_logits,
345
346
                    start_top_index=start_top_index,
                    end_top_index=end_top_index,
347
                    cls_logits=cls_logits,
LysandreJik's avatar
LysandreJik committed
348
349
350
351
                )

            else:
                start_logits, end_logits = output
352
                result = SquadResult(unique_id, start_logits, end_logits)
LysandreJik's avatar
LysandreJik committed
353

354
            all_results.append(result)
355

356
    evalTime = timeit.default_timer() - start_time
357
    logger.info("  Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(dataset))
358

thomwolf's avatar
thomwolf committed
359
    # Compute predictions
360
361
    output_prediction_file = os.path.join(args.output_dir, "predictions_{}.json".format(prefix))
    output_nbest_file = os.path.join(args.output_dir, "nbest_predictions_{}.json".format(prefix))
LysandreJik's avatar
Cleanup  
LysandreJik committed
362

363
    if args.version_2_with_negative:
364
        output_null_log_odds_file = os.path.join(args.output_dir, "null_odds_{}.json".format(prefix))
365
366
    else:
        output_null_log_odds_file = None
367

LysandreJik's avatar
Cleanup  
LysandreJik committed
368
    # XLNet and XLM use a more complex post-processing procedure
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
    if args.model_type in ["xlnet", "xlm"]:
        start_n_top = model.config.start_n_top if hasattr(model, "config") else model.module.config.start_n_top
        end_n_top = model.config.end_n_top if hasattr(model, "config") else model.module.config.end_n_top

        predictions = compute_predictions_log_probs(
            examples,
            features,
            all_results,
            args.n_best_size,
            args.max_answer_length,
            output_prediction_file,
            output_nbest_file,
            output_null_log_odds_file,
            start_n_top,
            end_n_top,
            args.version_2_with_negative,
            tokenizer,
            args.verbose_logging,
        )
388
    else:
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
        predictions = compute_predictions_logits(
            examples,
            features,
            all_results,
            args.n_best_size,
            args.max_answer_length,
            args.do_lower_case,
            output_prediction_file,
            output_nbest_file,
            output_null_log_odds_file,
            args.verbose_logging,
            args.version_2_with_negative,
            args.null_score_diff_threshold,
            tokenizer,
        )
404

LysandreJik's avatar
Cleanup  
LysandreJik committed
405
    # Compute the F1 and exact scores.
LysandreJik's avatar
LysandreJik committed
406
    results = squad_evaluate(examples, predictions)
407
408
    return results

409

410
def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False):
VictorSanh's avatar
VictorSanh committed
411
    if args.local_rank not in [-1, 0] and not evaluate:
412
413
        # Make sure only the first process in distributed training process the dataset, and the others will use the cache
        torch.distributed.barrier()
thomwolf's avatar
thomwolf committed
414

415
    # Load data features from cache or dataset file
LysandreJik's avatar
Cleanup  
LysandreJik committed
416
    input_dir = args.data_dir if args.data_dir else "."
417
418
419
420
421
422
423
    cached_features_file = os.path.join(
        input_dir,
        "cached_{}_{}_{}".format(
            "dev" if evaluate else "train",
            list(filter(None, args.model_name_or_path.split("/"))).pop(),
            str(args.max_seq_length),
        ),
LysandreJik's avatar
Cleanup  
LysandreJik committed
424
425
426
    )

    # Init features and dataset from cache if it exists
427
    if os.path.exists(cached_features_file) and not args.overwrite_cache and not output_examples:
428
        logger.info("Loading features from cached file %s", cached_features_file)
429
430
        features_and_dataset = torch.load(cached_features_file)
        features, dataset = features_and_dataset["features"], features_and_dataset["dataset"]
thomwolf's avatar
thomwolf committed
431
    else:
LysandreJik's avatar
Cleanup  
LysandreJik committed
432
        logger.info("Creating features from dataset file at %s", input_dir)
Lysandre's avatar
Lysandre committed
433

434
        if not args.data_dir and ((evaluate and not args.predict_file) or (not evaluate and not args.train_file)):
LysandreJik's avatar
Cleanup  
LysandreJik committed
435
436
437
            try:
                import tensorflow_datasets as tfds
            except ImportError:
438
                raise ImportError("If not data_dir is specified, tensorflow_datasets needs to be installed.")
LysandreJik's avatar
Cleanup  
LysandreJik committed
439
440

            if args.version_2_with_negative:
441
                logger.warn("tensorflow_datasets does not handle version 2 of SQuAD.")
LysandreJik's avatar
Cleanup  
LysandreJik committed
442
443

            tfds_examples = tfds.load("squad")
444
            examples = SquadV1Processor().get_examples_from_dataset(tfds_examples, evaluate=evaluate)
LysandreJik's avatar
Cleanup  
LysandreJik committed
445
446
        else:
            processor = SquadV2Processor() if args.version_2_with_negative else SquadV1Processor()
447
448
449
450
            if evaluate:
                examples = processor.get_dev_examples(args.data_dir, filename=args.predict_file)
            else:
                examples = processor.get_train_examples(args.data_dir, filename=args.train_file)
LysandreJik's avatar
LysandreJik committed
451

452
        features, dataset = squad_convert_examples_to_features(
Lysandre's avatar
Lysandre committed
453
454
455
456
457
458
            examples=examples,
            tokenizer=tokenizer,
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
            is_training=not evaluate,
459
            return_dataset="pt",
erenup's avatar
erenup committed
460
            threads=args.threads,
Lysandre's avatar
Lysandre committed
461
462
        )

thomwolf's avatar
thomwolf committed
463
        if args.local_rank in [-1, 0]:
464
465
            logger.info("Saving features into cached file %s", cached_features_file)
            torch.save({"features": features, "dataset": dataset}, cached_features_file)
thomwolf's avatar
thomwolf committed
466

VictorSanh's avatar
VictorSanh committed
467
    if args.local_rank == 0 and not evaluate:
468
469
        # Make sure only the first process in distributed training process the dataset, and the others will use the cache
        torch.distributed.barrier()
thomwolf's avatar
thomwolf committed
470

471
472
    if output_examples:
        return dataset, examples, features
thomwolf's avatar
thomwolf committed
473
474
    return dataset

475
476
477
478

def main():
    parser = argparse.ArgumentParser()

479
    # Required parameters
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
    parser.add_argument(
        "--model_type",
        default=None,
        type=str,
        required=True,
        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()),
    )
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS),
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model checkpoints and predictions will be written.",
    )
501

502
    # Other parameters
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        help="The input data dir. Should contain the .json files for the task."
        + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
    )
    parser.add_argument(
        "--train_file",
        default=None,
        type=str,
        help="The input training file. If a data dir is specified, will look for the file there"
        + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
    )
    parser.add_argument(
        "--predict_file",
        default=None,
        type=str,
        help="The input evaluation file. If a data dir is specified, will look for the file there"
        + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
    )
    parser.add_argument(
        "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
    )
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help="Where do you want to store the pre-trained models downloaded from s3",
    )

    parser.add_argument(
        "--version_2_with_negative",
        action="store_true",
        help="If true, the SQuAD examples contain some that do not have an answer.",
    )
    parser.add_argument(
        "--null_score_diff_threshold",
        type=float,
        default=0.0,
        help="If null_score - best_non_null is greater than the threshold predict null.",
    )

    parser.add_argument(
        "--max_seq_length",
        default=384,
        type=int,
        help="The maximum total input sequence length after WordPiece tokenization. Sequences "
        "longer than this will be truncated, and sequences shorter than this will be padded.",
    )
    parser.add_argument(
        "--doc_stride",
        default=128,
        type=int,
        help="When splitting up a long document into chunks, how much stride to take between chunks.",
    )
    parser.add_argument(
        "--max_query_length",
        default=64,
        type=int,
        help="The maximum number of tokens for the question. Questions longer than this will "
        "be truncated to this length.",
    )
    parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
    parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step."
    )
    parser.add_argument(
        "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model."
    )

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
    parser.add_argument(
        "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation."
    )
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument(
        "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform."
    )
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )
    parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
    parser.add_argument(
        "--n_best_size",
        default=20,
        type=int,
        help="The total number of n-best predictions to generate in the nbest_predictions.json output file.",
    )
    parser.add_argument(
        "--max_answer_length",
        default=30,
        type=int,
        help="The maximum length of an answer that can be generated. This is needed because the start "
        "and end predictions are not conditioned on one another.",
    )
    parser.add_argument(
        "--verbose_logging",
        action="store_true",
        help="If true, all of the warnings related to data processing will be printed. "
        "A number of warnings are expected for a normal SQuAD evaluation.",
    )

    parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.")
    parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.")
    parser.add_argument(
        "--eval_all_checkpoints",
        action="store_true",
        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
    )
    parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available")
    parser.add_argument(
        "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
    )
    parser.add_argument(
        "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
    )
    parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")

    parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus")
    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )
    parser.add_argument(
        "--fp16_opt_level",
        type=str,
        default="O1",
        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html",
    )
    parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.")
    parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.")

    parser.add_argument("--threads", type=int, default=1, help="multiple threads for converting example to features")
658
659
    args = parser.parse_args()

660
661
662
663
664
665
    if (
        os.path.exists(args.output_dir)
        and os.listdir(args.output_dir)
        and args.do_train
        and not args.overwrite_output_dir
    ):
666
        raise ValueError(
667
668
669
670
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
                args.output_dir
            )
        )
thomwolf's avatar
thomwolf committed
671

672
    # Setup distant debugging if needed
673
674
675
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
676

677
        print("Waiting for debugger attach")
678
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
679
680
        ptvsd.wait_for_attach()

thomwolf's avatar
thomwolf committed
681
    # Setup CUDA, GPU & distributed training
682
    if args.local_rank == -1 or args.no_cuda:
683
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
thomwolf's avatar
thomwolf committed
684
685
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
686
687
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
688
        torch.distributed.init_process_group(backend="nccl")
thomwolf's avatar
thomwolf committed
689
690
        args.n_gpu = 1
    args.device = device
691

thomwolf's avatar
thomwolf committed
692
    # Setup logging
693
694
695
696
697
698
699
700
701
702
703
704
705
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
        args.fp16,
    )
706

707
708
    # Set seed
    set_seed(args)
709

thomwolf's avatar
thomwolf committed
710
    # Load pretrained model and tokenizer
711
    if args.local_rank not in [-1, 0]:
712
713
        # Make sure only the first process in distributed training will download model & vocab
        torch.distributed.barrier()
714

715
    args.model_type = args.model_type.lower()
716
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
    config = config_class.from_pretrained(
        args.config_name if args.config_name else args.model_name_or_path,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    tokenizer = tokenizer_class.from_pretrained(
        args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
        do_lower_case=args.do_lower_case,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    model = model_class.from_pretrained(
        args.model_name_or_path,
        from_tf=bool(".ckpt" in args.model_name_or_path),
        config=config,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
732
733

    if args.local_rank == 0:
734
735
        # Make sure only the first process in distributed training will download model & vocab
        torch.distributed.barrier()
736

thomwolf's avatar
thomwolf committed
737
    model.to(args.device)
738

739
740
    logger.info("Training/evaluation parameters %s", args)

Simon Layton's avatar
Simon Layton committed
741
742
743
744
745
746
    # Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum if args.fp16 is set.
    # Otherwise it'll default to "promote" mode, and we'll get fp32 operations. Note that running `--fp16_opt_level="O2"` will
    # remove the need for this code, but it is still valid.
    if args.fp16:
        try:
            import apex
747
748

            apex.amp.register_half_function(torch, "einsum")
Simon Layton's avatar
Simon Layton committed
749
        except ImportError:
750
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
Simon Layton's avatar
Simon Layton committed
751

thomwolf's avatar
thomwolf committed
752
    # Training
753
    if args.do_train:
754
        train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False)
755
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
756
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
757

thomwolf's avatar
thomwolf committed
758
    # Save the trained model and the tokenizer
Peng Qi's avatar
Peng Qi committed
759
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
760
761
762
763
764
765
766
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
767
        # Take care of distributed/parallel training
768
        model_to_save = model.module if hasattr(model, "module") else model
769
770
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)
771
772

        # Good practice: save your training arguments together with the trained model
773
        torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
774

775
        # Load a trained model and vocabulary that you have fine-tuned
776
777
        model = model_class.from_pretrained(args.output_dir, force_download=True)
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
778
779
        model.to(args.device)

thomwolf's avatar
thomwolf committed
780
    # Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
781
782
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
783
784
785
786
        if args.do_train:
            logger.info("Loading checkpoints saved during training for evaluation")
            checkpoints = [args.output_dir]
            if args.eval_all_checkpoints:
787
788
789
790
                checkpoints = list(
                    os.path.dirname(c)
                    for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
                )
791
792
793
794
                logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce model loading logs
        else:
            logger.info("Loading checkpoint %s for evaluation", args.model_name_or_path)
            checkpoints = [args.model_name_or_path]
thomwolf's avatar
thomwolf committed
795

796
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
thomwolf's avatar
thomwolf committed
797

798
        for checkpoint in checkpoints:
thomwolf's avatar
thomwolf committed
799
            # Reload the model
800
801
            global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
            model = model_class.from_pretrained(checkpoint, force_download=True)
802
            model.to(args.device)
thomwolf's avatar
thomwolf committed
803
804

            # Evaluate
805
            result = evaluate(args, model, tokenizer, prefix=global_step)
thomwolf's avatar
thomwolf committed
806

807
            result = dict((k + ("_{}".format(global_step) if global_step else ""), v) for k, v in result.items())
808
            results.update(result)
thomwolf's avatar
thomwolf committed
809

810
    logger.info("Results: {}".format(results))
thomwolf's avatar
thomwolf committed
811

812
    return results
813
814
815
816


if __name__ == "__main__":
    main()