modeling_pegasus.py 77.6 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2021, Google and The HuggingFace Inc. team. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sylvain Gugger's avatar
Sylvain Gugger committed
15
""" PyTorch PEGASUS model."""
16

17
import copy
18
19
20
import math
import random
from typing import Optional, Tuple
21

22
23
import numpy as np
import torch
24
import torch.utils.checkpoint
25
26
from torch import nn
from torch.nn import CrossEntropyLoss
27

28
29
30
31
32
33
from ...activations import ACT2FN
from ...file_utils import (
    add_end_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    replace_return_docstrings,
34
)
35
36
37
from ...modeling_outputs import (
    BaseModelOutput,
    BaseModelOutputWithPastAndCrossAttentions,
38
    CausalLMOutputWithCrossAttentions,
39
40
41
42
43
44
45
46
47
48
    Seq2SeqLMOutput,
    Seq2SeqModelOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_pegasus import PegasusConfig


logger = logging.get_logger(__name__)

49
_CHECKPOINT_FOR_DOC = "google/pegasus-large"
50
51
52
53
54
55
56
57
58
59
60
61
_CONFIG_FOR_DOC = "PegasusConfig"
_TOKENIZER_FOR_DOC = "PegasusTokenizer"


PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "google/pegasus-large",
    # See all PEGASUS models at https://huggingface.co/models?filter=pegasus
]


# Copied from transformers.models.bart.modeling_bart.shift_tokens_right
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
62
    """
63
64
65
66
67
68
    Shift input ids one token to the right.
    """
    shifted_input_ids = input_ids.new_zeros(input_ids.shape)
    shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
    shifted_input_ids[:, 0] = decoder_start_token_id

69
70
    if pad_token_id is None:
        raise ValueError("self.model.config.pad_token_id has to be defined.")
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
    # replace possible -100 values in labels by `pad_token_id`
    shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)

    return shifted_input_ids


# Copied from transformers.models.bart.modeling_bart._make_causal_mask
def _make_causal_mask(input_ids_shape: torch.Size, dtype: torch.dtype, past_key_values_length: int = 0):
    """
    Make causal mask used for bi-directional self-attention.
    """
    bsz, tgt_len = input_ids_shape
    mask = torch.full((tgt_len, tgt_len), float("-inf"))
    mask_cond = torch.arange(mask.size(-1))
    mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
    mask = mask.to(dtype)

    if past_key_values_length > 0:
        mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype), mask], dim=-1)
    return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)


# Copied from transformers.models.bart.modeling_bart._expand_mask
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
    """
    Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
    """
    bsz, src_len = mask.size()
    tgt_len = tgt_len if tgt_len is not None else src_len

    expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)

    inverted_mask = 1.0 - expanded_mask

    return inverted_mask.masked_fill(inverted_mask.bool(), torch.finfo(dtype).min)


# Copied from transformers.models.marian.modeling_marian.MarianSinusoidalPositionalEmbedding with Marian->Pegasus
class PegasusSinusoidalPositionalEmbedding(nn.Embedding):
    """This module produces sinusoidal positional embeddings of any length."""

    def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None):
        super().__init__(num_positions, embedding_dim)
        self.weight = self._init_weight(self.weight)

    @staticmethod
    def _init_weight(out: nn.Parameter):
        """
        Identical to the XLM create_sinusoidal_embeddings except features are not interleaved. The cos features are in
        the 2nd half of the vector. [dim // 2:]
        """
        n_pos, dim = out.shape
        position_enc = np.array(
            [[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)]
        )
        out.requires_grad = False  # set early to avoid an error in pytorch-1.8+
        sentinel = dim // 2 if dim % 2 == 0 else (dim // 2) + 1
        out[:, 0:sentinel] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
        out[:, sentinel:] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
        out.detach_()
        return out

    @torch.no_grad()
    def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0):
        """`input_ids_shape` is expected to be [bsz x seqlen]."""
        bsz, seq_len = input_ids_shape[:2]
        positions = torch.arange(
            past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
        )
        return super().forward(positions)


# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->Pegasus
class PegasusAttention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(
        self,
        embed_dim: int,
        num_heads: int,
        dropout: float = 0.0,
        is_decoder: bool = False,
        bias: bool = True,
    ):
        super().__init__()
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.dropout = dropout
        self.head_dim = embed_dim // num_heads
160
161
162
163
164
165

        if (self.head_dim * num_heads) != self.embed_dim:
            raise ValueError(
                f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
                f" and `num_heads`: {num_heads})."
            )
166
        self.scaling = self.head_dim**-0.5
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
        self.is_decoder = is_decoder

        self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)

    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

    def forward(
        self,
        hidden_states: torch.Tensor,
        key_value_states: Optional[torch.Tensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        attention_mask: Optional[torch.Tensor] = None,
183
        layer_head_mask: Optional[torch.Tensor] = None,
184
185
186
187
188
189
190
        output_attentions: bool = False,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        """Input shape: Batch x Time x Channel"""

        # if key_value_states are provided this layer is used as a cross-attention layer
        # for the decoder
        is_cross_attention = key_value_states is not None
191
192

        bsz, tgt_len, _ = hidden_states.size()
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

        # get query proj
        query_states = self.q_proj(hidden_states) * self.scaling
        # get key, value proj
        if is_cross_attention and past_key_value is not None:
            # reuse k,v, cross_attentions
            key_states = past_key_value[0]
            value_states = past_key_value[1]
        elif is_cross_attention:
            # cross_attentions
            key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
            value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
        elif past_key_value is not None:
            # reuse k, v, self_attention
            key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
            value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
            key_states = torch.cat([past_key_value[0], key_states], dim=2)
            value_states = torch.cat([past_key_value[1], value_states], dim=2)
        else:
            # self_attention
            key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
            value_states = self._shape(self.v_proj(hidden_states), -1, bsz)

        if self.is_decoder:
            # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
            # Further calls to cross_attention layer can then reuse all cross-attention
            # key/value_states (first "if" case)
            # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
            # all previous decoder key/value_states. Further calls to uni-directional self-attention
            # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
            # if encoder bi-directional self-attention `past_key_value` is always `None`
            past_key_value = (key_states, value_states)

        proj_shape = (bsz * self.num_heads, -1, self.head_dim)
        query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
        key_states = key_states.view(*proj_shape)
        value_states = value_states.view(*proj_shape)

        src_len = key_states.size(1)
        attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))

234
235
236
237
        if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
            raise ValueError(
                f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {attn_weights.size()}"
            )
238
239

        if attention_mask is not None:
240
241
242
243
            if attention_mask.size() != (bsz, 1, tgt_len, src_len):
                raise ValueError(
                    f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
                )
244
245
246
            attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

247
        attn_weights = nn.functional.softmax(attn_weights, dim=-1)
248

249
        if layer_head_mask is not None:
250
251
252
253
            if layer_head_mask.size() != (self.num_heads,):
                raise ValueError(
                    f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}"
                )
254
255
256
            attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

257
        if output_attentions:
258
            # this operation is a bit awkward, but it's required to
259
            # make sure that attn_weights keeps its gradient.
260
            # In order to do so, attn_weights have to be reshaped
261
262
263
264
265
266
            # twice and have to be reused in the following
            attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
            attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
        else:
            attn_weights_reshaped = None

267
        attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
268
269
270

        attn_output = torch.bmm(attn_probs, value_states)

271
272
273
274
        if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {attn_output.size()}"
            )
275

276
277
        attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
        attn_output = attn_output.transpose(1, 2)
278
279
280
281

        # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
        # partitioned aross GPUs when using tensor-parallelism.
        attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

        attn_output = self.out_proj(attn_output)

        return attn_output, attn_weights_reshaped, past_key_value


# Copied from transformers.models.mbart.modeling_mbart.MBartEncoderLayer with MBart->Pegasus
class PegasusEncoderLayer(nn.Module):
    def __init__(self, config: PegasusConfig):
        super().__init__()
        self.embed_dim = config.d_model
        self.self_attn = PegasusAttention(
            embed_dim=self.embed_dim,
            num_heads=config.encoder_attention_heads,
            dropout=config.attention_dropout,
        )
        self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
        self.dropout = config.dropout
        self.activation_fn = ACT2FN[config.activation_function]
        self.activation_dropout = config.activation_dropout
        self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
        self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
        self.final_layer_norm = nn.LayerNorm(self.embed_dim)
305

306
307
308
309
310
311
312
    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: torch.Tensor,
        layer_head_mask: torch.Tensor,
        output_attentions: bool = False,
    ):
313
314
        """
        Args:
315
316
317
318
319
320
321
            hidden_states (`torch.FloatTensor`): input to the layer of shape *(seq_len, batch, embed_dim)*
            attention_mask (`torch.FloatTensor`): attention mask of size
                *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
            layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
                *(encoder_attention_heads,)*.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
322
323
324
325
326
                returned tensors for more detail.
        """
        residual = hidden_states
        hidden_states = self.self_attn_layer_norm(hidden_states)
        hidden_states, attn_weights, _ = self.self_attn(
327
328
329
330
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            layer_head_mask=layer_head_mask,
            output_attentions=output_attentions,
331
        )
332
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
333
334
335
336
337
        hidden_states = residual + hidden_states

        residual = hidden_states
        hidden_states = self.final_layer_norm(hidden_states)
        hidden_states = self.activation_fn(self.fc1(hidden_states))
338
        hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
339
        hidden_states = self.fc2(hidden_states)
340
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
341
342
        hidden_states = residual + hidden_states

343
344
345
        if hidden_states.dtype == torch.float16 and (
            torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
        ):
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
            clamp_value = torch.finfo(hidden_states.dtype).max - 1000
            hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (attn_weights,)

        return outputs


# Copied from transformers.models.mbart.modeling_mbart.MBartDecoderLayer with MBart->Pegasus
class PegasusDecoderLayer(nn.Module):
    def __init__(self, config: PegasusConfig):
        super().__init__()
        self.embed_dim = config.d_model

        self.self_attn = PegasusAttention(
            embed_dim=self.embed_dim,
            num_heads=config.decoder_attention_heads,
            dropout=config.attention_dropout,
            is_decoder=True,
        )
        self.dropout = config.dropout
        self.activation_fn = ACT2FN[config.activation_function]
        self.activation_dropout = config.activation_dropout

        self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
        self.encoder_attn = PegasusAttention(
            self.embed_dim,
            config.decoder_attention_heads,
            dropout=config.attention_dropout,
            is_decoder=True,
        )
        self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
        self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
        self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
        self.final_layer_norm = nn.LayerNorm(self.embed_dim)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
391
        layer_head_mask: Optional[torch.Tensor] = None,
392
        cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
393
394
395
396
397
398
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = True,
    ):
        """
        Args:
399
400
401
            hidden_states (`torch.FloatTensor`): input to the layer of shape *(seq_len, batch, embed_dim)*
            attention_mask (`torch.FloatTensor`): attention mask of size
                *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
Sylvain Gugger's avatar
Sylvain Gugger committed
402
403
            encoder_hidden_states (`torch.FloatTensor`):
                cross attention input to the layer of shape *(seq_len, batch, embed_dim)*
404
405
406
407
408
409
410
411
412
            encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
                *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
            layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
                *(encoder_attention_heads,)*.
            cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
                size *(decoder_attention_heads,)*.
            past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
413
414
415
416
417
418
419
420
421
422
423
424
425
                returned tensors for more detail.
        """
        residual = hidden_states
        hidden_states = self.self_attn_layer_norm(hidden_states)

        # Self Attention
        # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
        self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
        # add present self-attn cache to positions 1,2 of present_key_value tuple
        hidden_states, self_attn_weights, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            past_key_value=self_attn_past_key_value,
            attention_mask=attention_mask,
426
            layer_head_mask=layer_head_mask,
427
428
            output_attentions=output_attentions,
        )
429
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
        hidden_states = residual + hidden_states

        # Cross-Attention Block
        cross_attn_present_key_value = None
        cross_attn_weights = None
        if encoder_hidden_states is not None:
            residual = hidden_states
            hidden_states = self.encoder_attn_layer_norm(hidden_states)

            # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
            cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
            hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
                hidden_states=hidden_states,
                key_value_states=encoder_hidden_states,
                attention_mask=encoder_attention_mask,
445
                layer_head_mask=cross_attn_layer_head_mask,
446
447
448
                past_key_value=cross_attn_past_key_value,
                output_attentions=output_attentions,
            )
449
            hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
450
451
452
453
454
455
456
457
458
            hidden_states = residual + hidden_states

            # add cross-attn to positions 3,4 of present_key_value tuple
            present_key_value = present_key_value + cross_attn_present_key_value

        # Fully Connected
        residual = hidden_states
        hidden_states = self.final_layer_norm(hidden_states)
        hidden_states = self.activation_fn(self.fc1(hidden_states))
459
        hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
460
        hidden_states = self.fc2(hidden_states)
461
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
462
463
464
465
466
467
468
469
470
471
472
473
474
475
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights, cross_attn_weights)

        if use_cache:
            outputs += (present_key_value,)

        return outputs


class PegasusPreTrainedModel(PreTrainedModel):
476
    config_class = PegasusConfig
477
    base_model_prefix = "model"
478
    supports_gradient_checkpointing = True
479

480
481
482
483
484
485
486
487
488
489
490
491
    def _init_weights(self, module):
        std = self.config.init_std
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, PegasusSinusoidalPositionalEmbedding):
            pass
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
492

493
494
495
496
    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, (PegasusDecoder, PegasusEncoder)):
            module.gradient_checkpointing = value

497

498
PEGASUS_START_DOCSTRING = r"""
Sylvain Gugger's avatar
Sylvain Gugger committed
499
500
501
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)
502

Sylvain Gugger's avatar
Sylvain Gugger committed
503
504
505
    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.
506
507

    Parameters:
508
        config ([`PegasusConfig`]):
509
510
            Model configuration class with all the parameters of the model. Initializing with a config file does not
            load the weights associated with the model, only the configuration. Check out the
511
            [`~PreTrainedModel.from_pretrained`] method to load the model weights.
512
513
514
"""

PEGASUS_GENERATION_EXAMPLE = r"""
515
    Summarization example:
516

517
518
    ```python
    >>> from transformers import PegasusTokenizer, PegasusForConditionalGeneration
519

520
521
    >>> model = PegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum")
    >>> tokenizer = PegasusTokenizer.from_pretrained("google/pegasus-xsum")
522

523
524
525
526
527
528
    >>> ARTICLE_TO_SUMMARIZE = (
    ...     "PG&E stated it scheduled the blackouts in response to forecasts for high winds "
    ...     "amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were "
    ...     "scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow."
    ... )
    >>> inputs = tokenizer(ARTICLE_TO_SUMMARIZE, max_length=1024, return_tensors="pt")
529

530
531
532
533
    >>> # Generate Summary
    >>> summary_ids = model.generate(inputs["input_ids"])
    >>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False))
    ```
534
535
536
537
"""

PEGASUS_INPUTS_DOCSTRING = r"""
    Args:
538
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
539
540
541
            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
            it.

Sylvain Gugger's avatar
Sylvain Gugger committed
542
543
            Indices can be obtained using [`PegasusTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.
544

545
546
547
            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
548
549
550
551

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

552
553
            [What are attention masks?](../glossary#attention-mask)
        decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
554
555
            Indices of decoder input sequence tokens in the vocabulary.

Sylvain Gugger's avatar
Sylvain Gugger committed
556
557
            Indices can be obtained using [`PegasusTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.
558

559
            [What are decoder input IDs?](../glossary#decoder-input-ids)
560

561
562
563
564
            Pegasus uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If
            `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
            `past_key_values`).
        decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
565
566
            Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
            be used by default.
567
568
        head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
            Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
569
570

            - 1 indicates the head is **not masked**,
571
            - 0 indicates the head is **masked**.
572

573
574
        decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
            Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
575
576
577
578

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

579
        cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
580
581
            Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0,
            1]`:
582
583
584
585

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

586
        encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
587
588
589
            Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
            `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
            hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
590
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Sylvain Gugger's avatar
Sylvain Gugger committed
591
592
593
            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
            `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
594
595

            Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
596
597
            blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.

Sylvain Gugger's avatar
Sylvain Gugger committed
598
599
600
601
602
603
604
            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
            ``decoder_input_ids``` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of
            shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids`
            you can choose to directly pass an embedded representation. This is useful if you want more control over
            how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup
            matrix.
605
606
        decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
Sylvain Gugger's avatar
Sylvain Gugger committed
607
608
            representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
            input (see `past_key_values`). This is useful if you want more control over how to convert
609
610
            `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.

Sylvain Gugger's avatar
Sylvain Gugger committed
611
612
            If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
            of `inputs_embeds`.
613
        use_cache (`bool`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
614
615
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
616
617
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
618
            tensors for more detail.
619
620
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
621
            more detail.
622
623
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
624
625
626
627
"""


class PegasusEncoder(PegasusPreTrainedModel):
628
    """
629
    Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
630
    [`PegasusEncoderLayer`].
631
632
633

    Args:
        config: PegasusConfig
634
        embed_tokens (nn.Embedding): output embedding
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
    """

    def __init__(self, config: PegasusConfig, embed_tokens: Optional[nn.Embedding] = None):
        super().__init__(config)

        self.dropout = config.dropout
        self.layerdrop = config.encoder_layerdrop

        embed_dim = config.d_model
        self.padding_idx = config.pad_token_id
        self.max_source_positions = config.max_position_embeddings
        self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0

        if embed_tokens is not None:
            self.embed_tokens = embed_tokens
        else:
            self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)

        self.embed_positions = PegasusSinusoidalPositionalEmbedding(
            config.max_position_embeddings,
            embed_dim,
            self.padding_idx,
        )
        self.layers = nn.ModuleList([PegasusEncoderLayer(config) for _ in range(config.encoder_layers)])
        self.layer_norm = nn.LayerNorm(config.d_model)

661
        self.gradient_checkpointing = False
662
663
        # Initialize weights and apply final processing
        self.post_init()
664

665
666
    def resize_position_embeddings(self, new_num_position_embeddings: int):
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
667
668
        Resizes position embeddings matrix of the model if `new_num_position_embeddings !=
        config.max_position_embeddings`.
669
670

        Arguments:
671
            new_num_position_embeddings (`int`):
672
673
674
675
676
677
678
679
680
681
682
683
684
685
                The number of new position embeddings. If position embeddings are learned, increasing the size will add
                newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If
                position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will
                add correct vectors at the end following the position encoding algorithm, whereas reducing the size
                will remove vectors from the end.
        """
        logger.info(f"Setting `config.max_position_embeddings={new_num_position_embeddings}`...")
        self.config.max_position_embeddings = new_num_position_embeddings

        self.embed_positions = PegasusSinusoidalPositionalEmbedding(
            self.config.max_position_embeddings,
            self.config.d_model,
            self.padding_idx,
        )
Patrick von Platen's avatar
Patrick von Platen committed
686
        self.embed_positions.to(self.device)
687
688
689
690
691
692
693

    def get_position_embeddings(self) -> nn.Embedding:
        """
        Returns the position embeddings matrix
        """
        return self.embed_positions

694
695
696
697
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
698
        head_mask=None,
699
700
701
702
703
704
705
        inputs_embeds=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        Args:
706
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
707
708
709
                Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
                provide it.

Sylvain Gugger's avatar
Sylvain Gugger committed
710
711
                Indices can be obtained using [`PegasusTokenizer`]. See [`PreTrainedTokenizer.encode`] and
                [`PreTrainedTokenizer.__call__`] for details.
712

713
714
715
                [What are input IDs?](../glossary#input-ids)
            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
716
717
718
719

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

720
721
722
                [What are attention masks?](../glossary#attention-mask)
            head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
                Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
723
724

                - 1 indicates the head is **not masked**,
725
                - 0 indicates the head is **masked**.
726

727
            inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
728
729
730
                Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
                This is useful if you want more control over how to convert `input_ids` indices into associated vectors
                than the model's internal embedding lookup matrix.
731
732
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
733
                returned tensors for more detail.
734
735
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
736
                for more detail.
737
738
            return_dict (`bool`, *optional*):
                Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # retrieve input_ids and inputs_embeds
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
            input_ids = input_ids.view(-1, input_shape[-1])
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale

        embed_pos = self.embed_positions(input_shape)

        hidden_states = inputs_embeds + embed_pos

764
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
765
766
767
768
769
770
771
772

        # expand attention_mask
        if attention_mask is not None:
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype)

        encoder_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None
773
774
775
776
777
778
779

        # check if head_mask has a correct number of layers specified if desired
        if head_mask is not None:
            assert head_mask.size()[0] == (
                len(self.layers)
            ), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
        for idx, encoder_layer in enumerate(self.layers):
780
781
782
783
784
785
786
            if output_hidden_states:
                encoder_states = encoder_states + (hidden_states,)
            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
            dropout_probability = random.uniform(0, 1)
            if self.training and (dropout_probability < self.layerdrop):  # skip the layer
                layer_outputs = (None, None)
            else:
787
                if self.gradient_checkpointing and self.training:
788
789
790
791
792
793
794
795
796
797
798

                    def create_custom_forward(module):
                        def custom_forward(*inputs):
                            return module(*inputs, output_attentions)

                        return custom_forward

                    layer_outputs = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(encoder_layer),
                        hidden_states,
                        attention_mask,
799
                        (head_mask[idx] if head_mask is not None else None),
800
801
                    )
                else:
802
803
804
805
806
807
                    layer_outputs = encoder_layer(
                        hidden_states,
                        attention_mask,
                        layer_head_mask=(head_mask[idx] if head_mask is not None else None),
                        output_attentions=output_attentions,
                    )
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827

                hidden_states = layer_outputs[0]

            if output_attentions:
                all_attentions = all_attentions + (layer_outputs[1],)

        hidden_states = self.layer_norm(hidden_states)

        if output_hidden_states:
            encoder_states = encoder_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
        return BaseModelOutput(
            last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
        )


class PegasusDecoder(PegasusPreTrainedModel):
    """
828
    Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`PegasusDecoderLayer`]
829
830
831

    Args:
        config: PegasusConfig
832
        embed_tokens (nn.Embedding): output embedding
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
    """

    def __init__(self, config: PegasusConfig, embed_tokens: Optional[nn.Embedding] = None):
        super().__init__(config)
        self.dropout = config.dropout
        self.layerdrop = config.decoder_layerdrop
        self.padding_idx = config.pad_token_id
        self.max_target_positions = config.max_position_embeddings
        self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0

        if embed_tokens is not None:
            self.embed_tokens = embed_tokens
        else:
            self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)

        self.embed_positions = PegasusSinusoidalPositionalEmbedding(
            config.max_position_embeddings,
            config.d_model,
            self.padding_idx,
        )
        self.layers = nn.ModuleList([PegasusDecoderLayer(config) for _ in range(config.decoder_layers)])
        self.layer_norm = nn.LayerNorm(config.d_model)

856
        self.gradient_checkpointing = False
857
858
        # Initialize weights and apply final processing
        self.post_init()
859

860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
    def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
        # create causal mask
        # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
        combined_attention_mask = None
        if input_shape[-1] > 1:
            combined_attention_mask = _make_causal_mask(
                input_shape, inputs_embeds.dtype, past_key_values_length=past_key_values_length
            ).to(self.device)

        if attention_mask is not None:
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1])
            combined_attention_mask = (
                expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
            )

        return combined_attention_mask

885
886
    def resize_position_embeddings(self, new_num_position_embeddings: int):
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
887
888
        Resizes position embeddings matrix of the model if `new_num_position_embeddings !=
        config.max_position_embeddings`.
889
890

        Arguments:
891
            new_num_position_embeddings (`int`):
892
893
894
895
896
897
898
899
900
901
902
903
904
905
                The number of new position embeddings. If position embeddings are learned, increasing the size will add
                newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If
                position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will
                add correct vectors at the end following the position encoding algorithm, whereas reducing the size
                will remove vectors from the end.
        """
        logger.info(f"Setting `config.max_position_embeddings={new_num_position_embeddings}`...")
        self.config.max_position_embeddings = new_num_position_embeddings

        self.embed_positions = PegasusSinusoidalPositionalEmbedding(
            self.config.max_position_embeddings,
            self.config.d_model,
            self.padding_idx,
        )
Patrick von Platen's avatar
Patrick von Platen committed
906
        self.embed_positions.to(self.device)
907
908
909
910
911
912
913

    def get_position_embeddings(self) -> nn.Embedding:
        """
        Returns the position embeddings matrix
        """
        return self.embed_positions

914
915
916
917
918
919
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
920
        head_mask=None,
921
        cross_attn_head_mask=None,
922
923
924
925
926
927
928
929
930
        past_key_values=None,
        inputs_embeds=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        Args:
931
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
932
933
934
                Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
                provide it.

Sylvain Gugger's avatar
Sylvain Gugger committed
935
936
                Indices can be obtained using [`PegasusTokenizer`]. See [`PreTrainedTokenizer.encode`] and
                [`PreTrainedTokenizer.__call__`] for details.
937

938
939
940
                [What are input IDs?](../glossary#input-ids)
            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
941
942
943
944

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

945
946
                [What are attention masks?](../glossary#attention-mask)
            encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
947
948
                Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
                of the decoder.
949
            encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
950
                Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
951
                selected in `[0, 1]`:
952
953
954
955

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

956
957
958
                [What are attention masks?](../glossary#attention-mask)
            head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
                Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
959
960

                - 1 indicates the head is **not masked**,
961
                - 0 indicates the head is **masked**.
962

963
            cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
964
                Mask to nullify selected heads of the cross-attention modules in decoder to avoid performing
965
                cross-attention on hidden heads. Mask values selected in `[0, 1]`:
966
967

                - 1 indicates the head is **not masked**,
968
                - 0 indicates the head is **masked**.
969

970
            past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Sylvain Gugger's avatar
Sylvain Gugger committed
971
972
973
                Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
                shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
                shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
974
975

                Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
Sylvain Gugger's avatar
Sylvain Gugger committed
976
977
978
979
980
981
982
983
984
                cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.

                If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
                that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
                all ``decoder_input_ids``` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor`
                of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing
                `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more
                control over how to convert `input_ids` indices into associated vectors than the model's internal
                embedding lookup matrix.
985
986
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
987
                returned tensors for more detail.
988
989
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
990
                for more detail.
991
992
            return_dict (`bool`, *optional*):
                Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # retrieve input_ids and inputs_embeds
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
            input_ids = input_ids.view(-1, input_shape[-1])
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")

        # past_key_values_length
        past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale

1018
1019
1020
        attention_mask = self._prepare_decoder_attention_mask(
            attention_mask, input_shape, inputs_embeds, past_key_values_length
        )
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031

        # expand encoder attention mask
        if encoder_hidden_states is not None and encoder_attention_mask is not None:
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            encoder_attention_mask = _expand_mask(encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1])

        # embed positions
        positions = self.embed_positions(input_shape, past_key_values_length)

        hidden_states = inputs_embeds + positions

1032
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
1033
1034
1035
1036

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
1037
        all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
1038
        next_decoder_cache = () if use_cache else None
1039

1040
1041
1042
1043
1044
1045
        # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
        for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
            if attn_mask is not None:
                assert attn_mask.size()[0] == (
                    len(self.layers)
                ), f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
        for idx, decoder_layer in enumerate(self.layers):
            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
            if output_hidden_states:
                all_hidden_states += (hidden_states,)
            dropout_probability = random.uniform(0, 1)
            if self.training and (dropout_probability < self.layerdrop):
                continue

            past_key_value = past_key_values[idx] if past_key_values is not None else None

1056
            if self.gradient_checkpointing and self.training:
1057

1058
                if use_cache:
1059
                    logger.warning(
1060
                        "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
1061
                    )
1062
                    use_cache = False
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        # None for past_key_value
                        return module(*inputs, output_attentions, use_cache)

                    return custom_forward

                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(decoder_layer),
                    hidden_states,
1074
                    attention_mask,
1075
1076
                    encoder_hidden_states,
                    encoder_attention_mask,
1077
                    head_mask[idx] if head_mask is not None else None,
1078
                    cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
1079
1080
1081
1082
1083
1084
                    None,
                )
            else:

                layer_outputs = decoder_layer(
                    hidden_states,
1085
                    attention_mask=attention_mask,
1086
1087
                    encoder_hidden_states=encoder_hidden_states,
                    encoder_attention_mask=encoder_attention_mask,
1088
                    layer_head_mask=(head_mask[idx] if head_mask is not None else None),
1089
1090
1091
                    cross_attn_layer_head_mask=(
                        cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
                    ),
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
                    past_key_value=past_key_value,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                )
            hidden_states = layer_outputs[0]

            if use_cache:
                next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)

            if output_attentions:
                all_self_attns += (layer_outputs[1],)
1103
1104
1105

                if encoder_hidden_states is not None:
                    all_cross_attentions += (layer_outputs[2],)
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142

        hidden_states = self.layer_norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = next_decoder_cache if use_cache else None
        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
                if v is not None
            )
        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
            cross_attentions=all_cross_attentions,
        )


@add_start_docstrings(
    "The bare PEGASUS Model outputting raw hidden-states without any specific head on top.",
    PEGASUS_START_DOCSTRING,
)
class PegasusModel(PegasusPreTrainedModel):
    def __init__(self, config: PegasusConfig):
        super().__init__(config)

        padding_idx, vocab_size = config.pad_token_id, config.vocab_size
        self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)

        self.encoder = PegasusEncoder(config, self.shared)
        self.decoder = PegasusDecoder(config, self.shared)

1143
1144
        # Initialize weights and apply final processing
        self.post_init()
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159

    def get_input_embeddings(self):
        return self.shared

    def set_input_embeddings(self, value):
        self.shared = value
        self.encoder.embed_tokens = self.shared
        self.decoder.embed_tokens = self.shared

    def get_encoder(self):
        return self.encoder

    def get_decoder(self):
        return self.decoder

1160
1161
    def resize_position_embeddings(self, new_num_position_embeddings: int):
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
1162
1163
        Resizes position embeddings matrix of the model if `new_num_position_embeddings !=
        config.max_position_embeddings`.
1164
1165

        Arguments:
1166
            new_num_position_embeddings (`int`):
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
                The number of new position embeddings. If position embeddings are learned, increasing the size will add
                newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If
                position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will
                add correct vectors at the end following the position encoding algorithm, whereas reducing the size
                will remove vectors from the end.
        """
        self.config.max_position_embeddings = new_num_position_embeddings
        self.encoder.resize_position_embeddings(new_num_position_embeddings)
        self.decoder.resize_position_embeddings(new_num_position_embeddings)

    def get_position_embeddings(self) -> Tuple[nn.Embedding]:
        """
        Returns the position embeddings matrix
        """
        return (self.encoder.get_position_embeddings(), self.decoder.get_position_embeddings())

1183
1184
1185
1186
1187
1188
1189
1190
    @add_start_docstrings_to_model_forward(PEGASUS_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        decoder_input_ids=None,
        decoder_attention_mask=None,
1191
1192
        head_mask=None,
        decoder_head_mask=None,
1193
        cross_attn_head_mask=None,
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
        encoder_outputs=None,
        past_key_values=None,
        inputs_embeds=None,
        decoder_inputs_embeds=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        Returns:

1206
        Example:
1207

1208
1209
        ```python
        >>> from transformers import PegasusTokenizer, PegasusModel
1210

1211
1212
        >>> tokenizer = PegasusTokenizer.from_pretrained("google/pegasus-large")
        >>> model = PegasusModel.from_pretrained("google/pegasus-large")
1213

Sylvain Gugger's avatar
Sylvain Gugger committed
1214
1215
1216
        >>> input_ids = tokenizer(
        ...     "Studies have been shown that owning a dog is good for you", return_tensors="pt"
        >>> ).input_ids  # Batch size 1
1217
1218
        >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids  # Batch size 1
        >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
1219

1220
1221
        >>> last_hidden_states = outputs.last_hidden_state
        ```"""
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if encoder_outputs is None:
            encoder_outputs = self.encoder(
                input_ids=input_ids,
                attention_mask=attention_mask,
1234
                head_mask=head_mask,
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
                inputs_embeds=inputs_embeds,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )
        # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
        elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
            encoder_outputs = BaseModelOutput(
                last_hidden_state=encoder_outputs[0],
                hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
                attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
            )

        # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
        decoder_outputs = self.decoder(
            input_ids=decoder_input_ids,
            attention_mask=decoder_attention_mask,
            encoder_hidden_states=encoder_outputs[0],
            encoder_attention_mask=attention_mask,
1254
            head_mask=decoder_head_mask,
1255
            cross_attn_head_mask=cross_attn_head_mask,
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
            past_key_values=past_key_values,
            inputs_embeds=decoder_inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        if not return_dict:
            return decoder_outputs + encoder_outputs

        return Seq2SeqModelOutput(
            last_hidden_state=decoder_outputs.last_hidden_state,
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
        )


@add_start_docstrings(
    "The PEGASUS Model with a language modeling head. Can be used for summarization.", PEGASUS_START_DOCSTRING
)
class PegasusForConditionalGeneration(PegasusPreTrainedModel):
    base_model_prefix = "model"
1284
    _keys_to_ignore_on_load_missing = [
1285
1286
1287
        r"final_logits_bias",
        r"encoder\.version",
        r"decoder\.version",
1288
1289
        r"lm_head\.weight",
        r"embed_positions\.weight",
1290
    ]
1291
1292
1293
1294
1295
1296
1297

    def __init__(self, config: PegasusConfig):
        super().__init__(config)
        self.model = PegasusModel(config)
        self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)))
        self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)

1298
1299
        # Initialize weights and apply final processing
        self.post_init()
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326

    def get_encoder(self):
        return self.model.get_encoder()

    def get_decoder(self):
        return self.model.get_decoder()

    def resize_token_embeddings(self, new_num_tokens: int) -> nn.Embedding:
        new_embeddings = super().resize_token_embeddings(new_num_tokens)
        self._resize_final_logits_bias(new_num_tokens)
        return new_embeddings

    def _resize_final_logits_bias(self, new_num_tokens: int) -> None:
        old_num_tokens = self.final_logits_bias.shape[-1]
        if new_num_tokens <= old_num_tokens:
            new_bias = self.final_logits_bias[:, :new_num_tokens]
        else:
            extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device)
            new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
        self.register_buffer("final_logits_bias", new_bias)

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

1327
1328
    def resize_position_embeddings(self, new_num_position_embeddings: int):
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
1329
1330
        Resizes position embeddings matrix of the model if `new_num_position_embeddings !=
        config.max_position_embeddings`.
1331
1332

        Arguments:
1333
            new_num_position_embeddings (`int`):
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
                The number of new position embeddings. If position embeddings are learned, increasing the size will add
                newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If
                position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will
                add correct vectors at the end following the position encoding algorithm, whereas reducing the size
                will remove vectors from the end.
        """
        self.config.max_position_embeddings = new_num_position_embeddings
        self.model.encoder.resize_position_embeddings(new_num_position_embeddings)
        self.model.decoder.resize_position_embeddings(new_num_position_embeddings)

    def get_position_embeddings(self) -> Tuple[nn.Embedding]:
        """
        Returns the position embeddings matrix
        """
        return (self.model.encoder.get_position_embeddings(), self.model.decoder.get_position_embeddings())

1350
1351
1352
1353
1354
1355
1356
1357
1358
    @add_start_docstrings_to_model_forward(PEGASUS_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
    @add_end_docstrings(PEGASUS_GENERATION_EXAMPLE)
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        decoder_input_ids=None,
        decoder_attention_mask=None,
1359
1360
        head_mask=None,
        decoder_head_mask=None,
1361
        cross_attn_head_mask=None,
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
        encoder_outputs=None,
        past_key_values=None,
        inputs_embeds=None,
        decoder_inputs_embeds=None,
        labels=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
1373
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1374
1375
            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1376
            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1377
1378
1379
1380
1381
1382
1383

        Returns:

        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if labels is not None:
1384
1385
1386
            if use_cache:
                logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
            use_cache = False
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
            if decoder_input_ids is None:
                decoder_input_ids = shift_tokens_right(
                    labels, self.config.pad_token_id, self.config.decoder_start_token_id
                )

        outputs = self.model(
            input_ids,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            encoder_outputs=encoder_outputs,
            decoder_attention_mask=decoder_attention_mask,
1398
1399
            head_mask=head_mask,
            decoder_head_mask=decoder_head_mask,
1400
            cross_attn_head_mask=cross_attn_head_mask,
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            decoder_inputs_embeds=decoder_inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias

        masked_lm_loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))

        if not return_dict:
            output = (lm_logits,) + outputs[1:]
            return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output

        return Seq2SeqLMOutput(
            loss=masked_lm_loss,
            logits=lm_logits,
            past_key_values=outputs.past_key_values,
            decoder_hidden_states=outputs.decoder_hidden_states,
            decoder_attentions=outputs.decoder_attentions,
            cross_attentions=outputs.cross_attentions,
            encoder_last_hidden_state=outputs.encoder_last_hidden_state,
            encoder_hidden_states=outputs.encoder_hidden_states,
            encoder_attentions=outputs.encoder_attentions,
        )

    def prepare_inputs_for_generation(
1433
1434
1435
1436
1437
        self,
        decoder_input_ids,
        past=None,
        attention_mask=None,
        head_mask=None,
1438
1439
        decoder_head_mask=None,
        cross_attn_head_mask=None,
1440
1441
1442
        use_cache=None,
        encoder_outputs=None,
        **kwargs
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
    ):
        # cut decoder_input_ids if past is used
        if past is not None:
            decoder_input_ids = decoder_input_ids[:, -1:]

        return {
            "input_ids": None,  # encoder_outputs is defined. input_ids not needed
            "encoder_outputs": encoder_outputs,
            "past_key_values": past,
            "decoder_input_ids": decoder_input_ids,
            "attention_mask": attention_mask,
1454
            "head_mask": head_mask,
1455
1456
            "decoder_head_mask": decoder_head_mask,
            "cross_attn_head_mask": cross_attn_head_mask,
1457
1458
1459
            "use_cache": use_cache,  # change this to avoid caching (presumably for debugging)
        }

1460
1461
1462
    def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
        return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)

1463
1464
1465
1466
1467
1468
1469
1470
1471
    @staticmethod
    def _reorder_cache(past, beam_idx):
        reordered_past = ()
        for layer_past in past:
            # cached cross_attention states don't have to be reordered -> they are always the same
            reordered_past += (
                tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:],
            )
        return reordered_past
1472
1473
1474
1475
1476
1477


# Copied from transformers.models.bart.modeling_bart.BartDecoderWrapper with Bart->Pegasus
class PegasusDecoderWrapper(PegasusPreTrainedModel):
    """
    This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is
1478
    used in combination with the [`EncoderDecoderModel`] framework.
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
    """

    def __init__(self, config):
        super().__init__(config)
        self.decoder = PegasusDecoder(config)

    def forward(self, *args, **kwargs):
        return self.decoder(*args, **kwargs)


class PegasusForCausalLM(PegasusPreTrainedModel):
    def __init__(self, config):
        config = copy.deepcopy(config)
        config.is_decoder = True
        config.is_encoder_decoder = False
1494
        super().__init__(config)
1495
1496
1497
1498
        self.model = PegasusDecoderWrapper(config)

        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

1499
1500
        # Initialize weights and apply final processing
        self.post_init()
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519

    def get_input_embeddings(self):
        return self.model.decoder.embed_tokens

    def set_input_embeddings(self, value):
        self.model.decoder.embed_tokens = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.model.decoder = decoder

    def get_decoder(self):
        return self.model.decoder

1520
1521
1522
1523
1524
1525
1526
1527
    def get_position_embeddings(self) -> nn.Embedding:
        """
        Returns the position embeddings matrix
        """
        return self.model.decoder.get_position_embeddings()

    def resize_position_embeddings(self, new_num_position_embeddings: int):
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
1528
1529
        Resizes position embeddings matrix of the model if `new_num_position_embeddings !=
        config.max_position_embeddings`.
1530
1531

        Arguments:
1532
            new_num_position_embeddings (`int`):
1533
1534
1535
1536
1537
1538
1539
1540
1541
                The number of new position embeddings. If position embeddings are learned, increasing the size will add
                newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If
                position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will
                add correct vectors at the end following the position encoding algorithm, whereas reducing the size
                will remove vectors from the end.
        """
        self.config.max_position_embeddings = new_num_position_embeddings
        self.model.decoder.resize_position_embeddings(new_num_position_embeddings)

1542
    @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
1543
    # Copied from transformers.models.bart.modeling_bart.BartForCausalLM.forward with Bart->Pegasus, facebook/bart-large->google/pegasus-large
1544
1545
1546
1547
1548
1549
1550
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        head_mask=None,
1551
        cross_attn_head_mask=None,
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
        past_key_values=None,
        inputs_embeds=None,
        labels=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        Args:
1562
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1563
1564
1565
                Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
                provide it.

Sylvain Gugger's avatar
Sylvain Gugger committed
1566
1567
                Indices can be obtained using [`PegasusTokenizer`]. See [`PreTrainedTokenizer.encode`] and
                [`PreTrainedTokenizer.__call__`] for details.
1568

1569
1570
1571
                [What are input IDs?](../glossary#input-ids)
            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1572
1573
1574
1575

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

1576
1577
                [What are attention masks?](../glossary#attention-mask)
            encoder_hidden_states  (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1578
1579
                Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
                if the model is configured as a decoder.
1580
            encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
1581
                Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used
1582
1583
1584
                in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
            head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
                Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
1585
1586

                - 1 indicates the head is **not masked**,
1587
                - 0 indicates the head is **masked**.
1588

1589
1590
            cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
                Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
1591
1592

                - 1 indicates the head is **not masked**,
1593
                - 0 indicates the head is **masked**.
1594

1595
            past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1596
1597
1598
1599
                Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
                shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
                shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
                tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
1600
1601

                Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
Sylvain Gugger's avatar
Sylvain Gugger committed
1602
                cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
1603

Sylvain Gugger's avatar
Sylvain Gugger committed
1604
1605
1606
                If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
                that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
                all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
1607
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1608
1609
1610
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1611
            use_cache (`bool`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1612
1613
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
1614
1615
1616

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.
1617
1618
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
1619
                returned tensors for more detail.
1620
1621
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
1622
                for more detail.
1623
1624
            return_dict (`bool`, *optional*):
                Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
1625
1626
1627

        Returns:

1628
        Example:
1629

1630
1631
        ```python
        >>> from transformers import PegasusTokenizer, PegasusForCausalLM
1632

1633
1634
        >>> tokenizer = PegasusTokenizer.from_pretrained("google/pegasus-large")
        >>> model = PegasusForCausalLM.from_pretrained("google/pegasus-large", add_cross_attention=False)
1635
1636
1637
        >>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
        >>> outputs = model(**inputs)
1638

1639
1640
        >>> logits = outputs.logits
        ```"""
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.model.decoder(
            input_ids=input_ids,
            attention_mask=attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            head_mask=head_mask,
1655
            cross_attn_head_mask=cross_attn_head_mask,
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        logits = self.lm_head(outputs[0])

        loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithCrossAttentions(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            cross_attentions=outputs.cross_attentions,
        )

    def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, use_cache=None, **kwargs):
        # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
        if attention_mask is None:
            attention_mask = input_ids.new_ones(input_ids.shape)

        if past:
            input_ids = input_ids[:, -1:]
        # first step, decoder_cached_states are empty
        return {
            "input_ids": input_ids,  # encoder_outputs is defined. input_ids not needed
            "attention_mask": attention_mask,
            "past_key_values": past,
            "use_cache": use_cache,
        }

    @staticmethod
    def _reorder_cache(past, beam_idx):
        reordered_past = ()
        for layer_past in past:
            reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
        return reordered_past