"sgl-router/src/vscode:/vscode.git/clone" did not exist on "88bb627d0d224ad4195cc068cdca30f0b3634b48"
test_modeling_tf_bert.py 16 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
18
import unittest

Aymeric Augustin's avatar
Aymeric Augustin committed
19
from transformers import BertConfig, is_tf_available
20
from transformers.models.auto import get_values
21
from transformers.testing_utils import require_tf, slow
thomwolf's avatar
thomwolf committed
22

23
from .test_configuration_common import ConfigTester
24
from .test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
thomwolf's avatar
thomwolf committed
25

thomwolf's avatar
thomwolf committed
26

thomwolf's avatar
thomwolf committed
27
if is_tf_available():
thomwolf's avatar
thomwolf committed
28
    import tensorflow as tf
29

30
    from transformers import TF_MODEL_FOR_PRETRAINING_MAPPING
Sylvain Gugger's avatar
Sylvain Gugger committed
31
    from transformers.models.bert.modeling_tf_bert import (
32
        TFBertForMaskedLM,
33
        TFBertForMultipleChoice,
34
35
        TFBertForNextSentencePrediction,
        TFBertForPreTraining,
36
        TFBertForQuestionAnswering,
37
38
        TFBertForSequenceClassification,
        TFBertForTokenClassification,
39
40
        TFBertLMHeadModel,
        TFBertModel,
41
    )
thomwolf's avatar
thomwolf committed
42

thomwolf's avatar
thomwolf committed
43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
class TFBertModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_token_type_ids=True,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_mask = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None
thomwolf's avatar
thomwolf committed
92

93
94
95
96
97
98
    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
thomwolf's avatar
thomwolf committed
99

100
101
102
        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
thomwolf's avatar
thomwolf committed
103

104
105
106
107
108
109
110
        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)
thomwolf's avatar
thomwolf committed
111

112
113
114
115
116
117
118
119
120
121
122
123
124
        config = BertConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
        )
thomwolf's avatar
thomwolf committed
125

126
        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
thomwolf's avatar
thomwolf committed
127

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
    def prepare_config_and_inputs_for_decoder(self):
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = self.prepare_config_and_inputs()

        config.is_decoder = True
        encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
        encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        return (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        )

155
156
157
158
159
160
    def create_and_check_bert_model(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFBertModel(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
        sequence_output, pooled_output = model(inputs)
thomwolf's avatar
thomwolf committed
161

162
        inputs = [input_ids, input_mask]
Sylvain Gugger's avatar
Sylvain Gugger committed
163
        result = model(inputs)
thomwolf's avatar
thomwolf committed
164

Sylvain Gugger's avatar
Sylvain Gugger committed
165
        result = model(input_ids)
thomwolf's avatar
thomwolf committed
166

167
168
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
thomwolf's avatar
thomwolf committed
169

170
171
172
173
174
175
176
177
178
179
    def create_and_check_bert_lm_head(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.is_decoder = True
        model = TFBertLMHeadModel(config=config)
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
180
        prediction_scores = model(inputs)["logits"]
181
182
183
184
        self.parent.assertListEqual(
            list(prediction_scores.numpy().shape), [self.batch_size, self.seq_length, self.vocab_size]
        )

185
186
187
188
    def create_and_check_bert_for_masked_lm(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFBertForMaskedLM(config=config)
189
190
191
192
193
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
194
        result = model(inputs)
195
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
thomwolf's avatar
thomwolf committed
196

197
198
199
200
201
    def create_and_check_bert_for_next_sequence_prediction(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFBertForNextSentencePrediction(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
202
        result = model(inputs)
203
        self.parent.assertEqual(result.logits.shape, (self.batch_size, 2))
thomwolf's avatar
thomwolf committed
204

205
206
207
208
209
    def create_and_check_bert_for_pretraining(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFBertForPreTraining(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
210
        result = model(inputs)
211
212
        self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
        self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2))
thomwolf's avatar
thomwolf committed
213

214
215
216
217
218
    def create_and_check_bert_for_sequence_classification(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = TFBertForSequenceClassification(config=config)
219
220
221
222
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
223
        }
224

Sylvain Gugger's avatar
Sylvain Gugger committed
225
        result = model(inputs)
226
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
thomwolf's avatar
thomwolf committed
227

228
229
230
231
232
233
234
235
236
237
238
239
240
    def create_and_check_bert_for_multiple_choice(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_choices = self.num_choices
        model = TFBertForMultipleChoice(config=config)
        multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
        multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
        multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
        inputs = {
            "input_ids": multiple_choice_inputs_ids,
            "attention_mask": multiple_choice_input_mask,
            "token_type_ids": multiple_choice_token_type_ids,
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
241
        result = model(inputs)
242
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
thomwolf's avatar
thomwolf committed
243

244
245
246
247
248
    def create_and_check_bert_for_token_classification(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = TFBertForTokenClassification(config=config)
249
250
251
252
253
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
254
        result = model(inputs)
255
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
thomwolf's avatar
thomwolf committed
256

257
258
259
260
    def create_and_check_bert_for_question_answering(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFBertForQuestionAnswering(config=config)
261
262
263
264
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
265
        }
266

Sylvain Gugger's avatar
Sylvain Gugger committed
267
        result = model(inputs)
268
269
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
thomwolf's avatar
thomwolf committed
270

271
272
273
274
275
276
277
278
279
280
281
282
283
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict
thomwolf's avatar
thomwolf committed
284
285


286
287
@require_tf
class TFBertModelTest(TFModelTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
288

289
290
291
292
    all_model_classes = (
        (
            TFBertModel,
            TFBertForMaskedLM,
Lysandre Debut's avatar
Lysandre Debut committed
293
            TFBertLMHeadModel,
294
295
296
297
298
299
300
301
302
303
            TFBertForNextSentencePrediction,
            TFBertForPreTraining,
            TFBertForQuestionAnswering,
            TFBertForSequenceClassification,
            TFBertForTokenClassification,
            TFBertForMultipleChoice,
        )
        if is_tf_available()
        else ()
    )
304
    test_head_masking = False
305
306
    test_onnx = True
    onnx_min_opset = 10
thomwolf's avatar
thomwolf committed
307

308
309
310
311
312
    # special case for ForPreTraining model
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)

        if return_labels:
313
            if model_class in get_values(TF_MODEL_FOR_PRETRAINING_MAPPING):
314
315
316
317
                inputs_dict["next_sentence_label"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)

        return inputs_dict

thomwolf's avatar
thomwolf committed
318
    def setUp(self):
319
        self.model_tester = TFBertModelTester(self)
thomwolf's avatar
thomwolf committed
320
321
322
323
324
325
326
327
328
329
330
331
332
        self.config_tester = ConfigTester(self, config_class=BertConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_bert_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_model(*config_and_inputs)

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_masked_lm(*config_and_inputs)

333
334
335
336
    def test_for_causal_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_lm_head(*config_and_inputs)

thomwolf's avatar
thomwolf committed
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_multiple_choice(*config_and_inputs)

    def test_for_next_sequence_prediction(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_next_sequence_prediction(*config_and_inputs)

    def test_for_pretraining(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_pretraining(*config_and_inputs)

    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_question_answering(*config_and_inputs)

    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_sequence_classification(*config_and_inputs)

    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_token_classification(*config_and_inputs)

    def test_model_from_pretrained(self):
Julien Plu's avatar
Julien Plu committed
362
363
364
        model = TFBertModel.from_pretrained("jplu/tiny-tf-bert-random")
        self.assertIsNotNone(model)

365
366
367
368
369
370
371
372
373
    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        list_lm_models = [TFBertForMaskedLM, TFBertForPreTraining, TFBertLMHeadModel]

        for model_class in self.all_model_classes:
            model = model_class(config)
            assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)

            if model_class in list_lm_models:
374
                x = model.get_output_embeddings()
375
                assert isinstance(x, tf.keras.layers.Layer)
376
377
378
379
                name = model.get_bias()
                assert isinstance(name, dict)
                for k, v in name.items():
                    assert isinstance(v, tf.Variable)
380
            else:
381
                x = model.get_output_embeddings()
382
                assert x is None
383
384
                name = model.get_bias()
                assert name is None
385

Julien Plu's avatar
Julien Plu committed
386
387
    def test_custom_load_tf_weights(self):
        model, output_loading_info = TFBertForTokenClassification.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
388
            "jplu/tiny-tf-bert-random", output_loading_info=True
Julien Plu's avatar
Julien Plu committed
389
        )
Julien Plu's avatar
Julien Plu committed
390
        self.assertEqual(sorted(output_loading_info["unexpected_keys"]), [])
Julien Plu's avatar
Julien Plu committed
391
392
        for layer in output_loading_info["missing_keys"]:
            self.assertTrue(layer.split("_")[0] in ["dropout", "classifier"])
393
394


395
@require_tf
396
397
398
399
400
401
402
class TFBertModelIntegrationTest(unittest.TestCase):
    @slow
    def test_inference_masked_lm(self):
        model = TFBertForPreTraining.from_pretrained("lysandre/tiny-bert-random")
        input_ids = tf.constant([[0, 1, 2, 3, 4, 5]])
        output = model(input_ids)[0]

LysandreJik's avatar
LysandreJik committed
403
        expected_shape = [1, 6, 32000]
404
405
406
407
408
409
410
        self.assertEqual(output.shape, expected_shape)

        print(output[:, :3, :3])

        expected_slice = tf.constant(
            [
                [
LysandreJik's avatar
LysandreJik committed
411
412
413
                    [-0.05243197, -0.04498899, 0.05512108],
                    [-0.07444685, -0.01064632, 0.04352357],
                    [-0.05020351, 0.05530146, 0.00700043],
414
415
416
417
                ]
            ]
        )
        tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-4)