test_modeling_tf_bert.py 12.7 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
18
import unittest

Aymeric Augustin's avatar
Aymeric Augustin committed
19
from transformers import BertConfig, is_tf_available
20
from transformers.testing_utils import require_tf, slow
thomwolf's avatar
thomwolf committed
21

22
from .test_configuration_common import ConfigTester
23
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
thomwolf's avatar
thomwolf committed
24

thomwolf's avatar
thomwolf committed
25

thomwolf's avatar
thomwolf committed
26
if is_tf_available():
thomwolf's avatar
thomwolf committed
27
    import tensorflow as tf
28
29
    from transformers.modeling_tf_bert import (
        TFBertModel,
30
        TFBertLMHeadModel,
31
32
33
34
35
36
37
38
        TFBertForMaskedLM,
        TFBertForNextSentencePrediction,
        TFBertForPreTraining,
        TFBertForSequenceClassification,
        TFBertForMultipleChoice,
        TFBertForTokenClassification,
        TFBertForQuestionAnswering,
    )
thomwolf's avatar
thomwolf committed
39

thomwolf's avatar
thomwolf committed
40

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
class TFBertModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_token_type_ids=True,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_mask = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None
thomwolf's avatar
thomwolf committed
89

90
91
92
93
94
95
    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
thomwolf's avatar
thomwolf committed
96

97
98
99
        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
thomwolf's avatar
thomwolf committed
100

101
102
103
104
105
106
107
        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)
thomwolf's avatar
thomwolf committed
108

109
110
111
112
113
114
115
116
117
118
119
120
        config = BertConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
Sylvain Gugger's avatar
Sylvain Gugger committed
121
            return_dict=True,
122
        )
thomwolf's avatar
thomwolf committed
123

124
        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
thomwolf's avatar
thomwolf committed
125

126
127
128
129
130
131
    def create_and_check_bert_model(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFBertModel(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
        sequence_output, pooled_output = model(inputs)
thomwolf's avatar
thomwolf committed
132

133
        inputs = [input_ids, input_mask]
Sylvain Gugger's avatar
Sylvain Gugger committed
134
        result = model(inputs)
thomwolf's avatar
thomwolf committed
135

Sylvain Gugger's avatar
Sylvain Gugger committed
136
        result = model(input_ids)
thomwolf's avatar
thomwolf committed
137

138
139
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
thomwolf's avatar
thomwolf committed
140

141
142
143
144
145
146
147
148
149
150
    def create_and_check_bert_lm_head(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.is_decoder = True
        model = TFBertLMHeadModel(config=config)
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
151
        prediction_scores = model(inputs)["logits"]
152
153
154
155
        self.parent.assertListEqual(
            list(prediction_scores.numpy().shape), [self.batch_size, self.seq_length, self.vocab_size]
        )

156
157
158
159
    def create_and_check_bert_for_masked_lm(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFBertForMaskedLM(config=config)
160
161
162
163
164
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
165
        result = model(inputs)
166
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
thomwolf's avatar
thomwolf committed
167

168
169
170
171
172
    def create_and_check_bert_for_next_sequence_prediction(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFBertForNextSentencePrediction(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
173
        result = model(inputs)
174
        self.parent.assertEqual(result.logits.shape, (self.batch_size, 2))
thomwolf's avatar
thomwolf committed
175

176
177
178
179
180
    def create_and_check_bert_for_pretraining(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFBertForPreTraining(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
181
        result = model(inputs)
182
183
        self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
        self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2))
thomwolf's avatar
thomwolf committed
184

185
186
187
188
189
    def create_and_check_bert_for_sequence_classification(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = TFBertForSequenceClassification(config=config)
190
191
192
193
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
194
        }
195

Sylvain Gugger's avatar
Sylvain Gugger committed
196
        result = model(inputs)
197
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
thomwolf's avatar
thomwolf committed
198

199
200
201
202
203
204
205
206
207
208
209
210
211
    def create_and_check_bert_for_multiple_choice(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_choices = self.num_choices
        model = TFBertForMultipleChoice(config=config)
        multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
        multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
        multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
        inputs = {
            "input_ids": multiple_choice_inputs_ids,
            "attention_mask": multiple_choice_input_mask,
            "token_type_ids": multiple_choice_token_type_ids,
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
212
        result = model(inputs)
213
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
thomwolf's avatar
thomwolf committed
214

215
216
217
218
219
    def create_and_check_bert_for_token_classification(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = TFBertForTokenClassification(config=config)
220
221
222
223
224
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
225
        result = model(inputs)
226
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
thomwolf's avatar
thomwolf committed
227

228
229
230
231
    def create_and_check_bert_for_question_answering(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFBertForQuestionAnswering(config=config)
232
233
234
235
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
236
        }
237

Sylvain Gugger's avatar
Sylvain Gugger committed
238
        result = model(inputs)
239
240
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
thomwolf's avatar
thomwolf committed
241

242
243
244
245
246
247
248
249
250
251
252
253
254
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict
thomwolf's avatar
thomwolf committed
255
256


257
258
@require_tf
class TFBertModelTest(TFModelTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
259

260
261
262
263
    all_model_classes = (
        (
            TFBertModel,
            TFBertForMaskedLM,
Lysandre Debut's avatar
Lysandre Debut committed
264
            TFBertLMHeadModel,
265
266
267
268
269
270
271
272
273
274
            TFBertForNextSentencePrediction,
            TFBertForPreTraining,
            TFBertForQuestionAnswering,
            TFBertForSequenceClassification,
            TFBertForTokenClassification,
            TFBertForMultipleChoice,
        )
        if is_tf_available()
        else ()
    )
thomwolf's avatar
thomwolf committed
275
276

    def setUp(self):
277
        self.model_tester = TFBertModelTester(self)
thomwolf's avatar
thomwolf committed
278
279
280
281
282
283
284
285
286
287
288
289
290
        self.config_tester = ConfigTester(self, config_class=BertConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_bert_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_model(*config_and_inputs)

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_masked_lm(*config_and_inputs)

291
292
293
294
    def test_for_causal_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_lm_head(*config_and_inputs)

thomwolf's avatar
thomwolf committed
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_multiple_choice(*config_and_inputs)

    def test_for_next_sequence_prediction(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_next_sequence_prediction(*config_and_inputs)

    def test_for_pretraining(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_pretraining(*config_and_inputs)

    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_question_answering(*config_and_inputs)

    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_sequence_classification(*config_and_inputs)

    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_token_classification(*config_and_inputs)

319
    @slow
thomwolf's avatar
thomwolf committed
320
    def test_model_from_pretrained(self):
321
        # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
322
        for model_name in ["bert-base-uncased"]:
323
            model = TFBertModel.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
324
            self.assertIsNotNone(model)