test_modeling_tf_bert.py 12.8 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
18
import unittest

Aymeric Augustin's avatar
Aymeric Augustin committed
19
from transformers import BertConfig, is_tf_available
20
from transformers.testing_utils import require_tf, slow
thomwolf's avatar
thomwolf committed
21

22
from .test_configuration_common import ConfigTester
23
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
thomwolf's avatar
thomwolf committed
24

thomwolf's avatar
thomwolf committed
25

thomwolf's avatar
thomwolf committed
26
if is_tf_available():
thomwolf's avatar
thomwolf committed
27
    import tensorflow as tf
28
29
30
31
32
33
34
35
36
37
    from transformers.modeling_tf_bert import (
        TFBertModel,
        TFBertForMaskedLM,
        TFBertForNextSentencePrediction,
        TFBertForPreTraining,
        TFBertForSequenceClassification,
        TFBertForMultipleChoice,
        TFBertForTokenClassification,
        TFBertForQuestionAnswering,
    )
thomwolf's avatar
thomwolf committed
38

thomwolf's avatar
thomwolf committed
39

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
class TFBertModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_token_type_ids=True,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_mask = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None
thomwolf's avatar
thomwolf committed
88

89
90
91
92
93
94
    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
thomwolf's avatar
thomwolf committed
95

96
97
98
        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
thomwolf's avatar
thomwolf committed
99

100
101
102
103
104
105
106
        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)
thomwolf's avatar
thomwolf committed
107

108
109
110
111
112
113
114
115
116
117
118
119
120
        config = BertConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
        )
thomwolf's avatar
thomwolf committed
121

122
        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
thomwolf's avatar
thomwolf committed
123

124
125
126
127
128
129
    def create_and_check_bert_model(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFBertModel(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
        sequence_output, pooled_output = model(inputs)
thomwolf's avatar
thomwolf committed
130

131
132
        inputs = [input_ids, input_mask]
        sequence_output, pooled_output = model(inputs)
thomwolf's avatar
thomwolf committed
133

134
        sequence_output, pooled_output = model(input_ids)
thomwolf's avatar
thomwolf committed
135

136
137
138
139
140
141
142
143
        result = {
            "sequence_output": sequence_output.numpy(),
            "pooled_output": pooled_output.numpy(),
        }
        self.parent.assertListEqual(
            list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
        )
        self.parent.assertListEqual(list(result["pooled_output"].shape), [self.batch_size, self.hidden_size])
thomwolf's avatar
thomwolf committed
144

145
146
147
148
149
150
151
152
153
154
155
156
    def create_and_check_bert_for_masked_lm(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFBertForMaskedLM(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
        (prediction_scores,) = model(inputs)
        result = {
            "prediction_scores": prediction_scores.numpy(),
        }
        self.parent.assertListEqual(
            list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size]
        )
thomwolf's avatar
thomwolf committed
157

158
159
160
161
162
163
164
165
166
167
    def create_and_check_bert_for_next_sequence_prediction(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFBertForNextSentencePrediction(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
        (seq_relationship_score,) = model(inputs)
        result = {
            "seq_relationship_score": seq_relationship_score.numpy(),
        }
        self.parent.assertListEqual(list(result["seq_relationship_score"].shape), [self.batch_size, 2])
thomwolf's avatar
thomwolf committed
168

169
170
171
172
173
174
175
176
177
178
179
180
181
182
    def create_and_check_bert_for_pretraining(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFBertForPreTraining(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
        prediction_scores, seq_relationship_score = model(inputs)
        result = {
            "prediction_scores": prediction_scores.numpy(),
            "seq_relationship_score": seq_relationship_score.numpy(),
        }
        self.parent.assertListEqual(
            list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size]
        )
        self.parent.assertListEqual(list(result["seq_relationship_score"].shape), [self.batch_size, 2])
thomwolf's avatar
thomwolf committed
183

184
185
186
187
188
189
190
191
192
193
194
    def create_and_check_bert_for_sequence_classification(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = TFBertForSequenceClassification(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
        (logits,) = model(inputs)
        result = {
            "logits": logits.numpy(),
        }
        self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.num_labels])
thomwolf's avatar
thomwolf committed
195

196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
    def create_and_check_bert_for_multiple_choice(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_choices = self.num_choices
        model = TFBertForMultipleChoice(config=config)
        multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
        multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
        multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
        inputs = {
            "input_ids": multiple_choice_inputs_ids,
            "attention_mask": multiple_choice_input_mask,
            "token_type_ids": multiple_choice_token_type_ids,
        }
        (logits,) = model(inputs)
        result = {
            "logits": logits.numpy(),
        }
        self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.num_choices])
thomwolf's avatar
thomwolf committed
214

215
216
217
218
219
220
221
222
223
224
225
    def create_and_check_bert_for_token_classification(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = TFBertForTokenClassification(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
        (logits,) = model(inputs)
        result = {
            "logits": logits.numpy(),
        }
        self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.seq_length, self.num_labels])
thomwolf's avatar
thomwolf committed
226

227
228
229
230
231
232
233
234
235
236
237
238
    def create_and_check_bert_for_question_answering(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFBertForQuestionAnswering(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
        start_logits, end_logits = model(inputs)
        result = {
            "start_logits": start_logits.numpy(),
            "end_logits": end_logits.numpy(),
        }
        self.parent.assertListEqual(list(result["start_logits"].shape), [self.batch_size, self.seq_length])
        self.parent.assertListEqual(list(result["end_logits"].shape), [self.batch_size, self.seq_length])
thomwolf's avatar
thomwolf committed
239

240
241
242
243
244
245
246
247
248
249
250
251
252
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict
thomwolf's avatar
thomwolf committed
253
254


255
256
@require_tf
class TFBertModelTest(TFModelTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
257

258
259
260
261
262
263
264
265
266
267
268
269
270
271
    all_model_classes = (
        (
            TFBertModel,
            TFBertForMaskedLM,
            TFBertForNextSentencePrediction,
            TFBertForPreTraining,
            TFBertForQuestionAnswering,
            TFBertForSequenceClassification,
            TFBertForTokenClassification,
            TFBertForMultipleChoice,
        )
        if is_tf_available()
        else ()
    )
thomwolf's avatar
thomwolf committed
272
273

    def setUp(self):
274
        self.model_tester = TFBertModelTester(self)
thomwolf's avatar
thomwolf committed
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
        self.config_tester = ConfigTester(self, config_class=BertConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_bert_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_model(*config_and_inputs)

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_masked_lm(*config_and_inputs)

    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_multiple_choice(*config_and_inputs)

    def test_for_next_sequence_prediction(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_next_sequence_prediction(*config_and_inputs)

    def test_for_pretraining(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_pretraining(*config_and_inputs)

    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_question_answering(*config_and_inputs)

    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_sequence_classification(*config_and_inputs)

    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_token_classification(*config_and_inputs)

312
    @slow
thomwolf's avatar
thomwolf committed
313
    def test_model_from_pretrained(self):
314
        # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
315
        for model_name in ["bert-base-uncased"]:
316
            model = TFBertModel.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
317
            self.assertIsNotNone(model)