test_modeling_tf_bert.py 13.9 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15
from __future__ import absolute_import, division, print_function
thomwolf's avatar
thomwolf committed
16

Aymeric Augustin's avatar
Aymeric Augustin committed
17
from transformers import BertConfig, is_tf_available
thomwolf's avatar
thomwolf committed
18

19
20
from .test_configuration_common import ConfigTester
from .test_modeling_tf_common import TFCommonTestCases, ids_tensor
21
from .utils import CACHE_DIR, require_tf, slow
thomwolf's avatar
thomwolf committed
22

thomwolf's avatar
thomwolf committed
23

thomwolf's avatar
thomwolf committed
24
if is_tf_available():
thomwolf's avatar
thomwolf committed
25
    import tensorflow as tf
26
27
28
29
30
31
32
33
34
35
    from transformers.modeling_tf_bert import (
        TFBertModel,
        TFBertForMaskedLM,
        TFBertForNextSentencePrediction,
        TFBertForPreTraining,
        TFBertForSequenceClassification,
        TFBertForMultipleChoice,
        TFBertForTokenClassification,
        TFBertForQuestionAnswering,
    )
thomwolf's avatar
thomwolf committed
36

thomwolf's avatar
thomwolf committed
37

38
@require_tf
thomwolf's avatar
thomwolf committed
39
40
class TFBertModelTest(TFCommonTestCases.TFCommonModelTester):

41
42
43
44
45
46
47
48
49
50
51
52
53
    all_model_classes = (
        (
            TFBertModel,
            TFBertForMaskedLM,
            TFBertForNextSentencePrediction,
            TFBertForPreTraining,
            TFBertForQuestionAnswering,
            TFBertForSequenceClassification,
            TFBertForTokenClassification,
        )
        if is_tf_available()
        else ()
    )
thomwolf's avatar
thomwolf committed
54
55

    class TFBertModelTester(object):
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            is_training=True,
            use_input_mask=True,
            use_token_type_ids=True,
            use_labels=True,
            vocab_size=99,
            hidden_size=32,
            num_hidden_layers=5,
            num_attention_heads=4,
            intermediate_size=37,
            hidden_act="gelu",
            hidden_dropout_prob=0.1,
            attention_probs_dropout_prob=0.1,
            max_position_embeddings=512,
            type_vocab_size=16,
            type_sequence_label_size=2,
            initializer_range=0.02,
            num_labels=3,
            num_choices=4,
            scope=None,
        ):
thomwolf's avatar
thomwolf committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_input_mask = use_input_mask
            self.use_token_type_ids = use_token_type_ids
            self.use_labels = use_labels
            self.vocab_size = vocab_size
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.intermediate_size = intermediate_size
            self.hidden_act = hidden_act
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.type_sequence_label_size = type_sequence_label_size
            self.initializer_range = initializer_range
            self.num_labels = num_labels
            self.num_choices = num_choices
            self.scope = scope

        def prepare_config_and_inputs(self):
            input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

            input_mask = None
            if self.use_input_mask:
                input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

            token_type_ids = None
            if self.use_token_type_ids:
                token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

            sequence_labels = None
            token_labels = None
            choice_labels = None
            if self.use_labels:
                sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
                choice_labels = ids_tensor([self.batch_size], self.num_choices)

            config = BertConfig(
thomwolf's avatar
thomwolf committed
124
                vocab_size=self.vocab_size,
thomwolf's avatar
thomwolf committed
125
126
127
128
129
130
131
132
133
                hidden_size=self.hidden_size,
                num_hidden_layers=self.num_hidden_layers,
                num_attention_heads=self.num_attention_heads,
                intermediate_size=self.intermediate_size,
                hidden_act=self.hidden_act,
                hidden_dropout_prob=self.hidden_dropout_prob,
                attention_probs_dropout_prob=self.attention_probs_dropout_prob,
                max_position_embeddings=self.max_position_embeddings,
                type_vocab_size=self.type_vocab_size,
134
135
                initializer_range=self.initializer_range,
            )
thomwolf's avatar
thomwolf committed
136
137
138

            return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

139
140
141
        def create_and_check_bert_model(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
142
            model = TFBertModel(config=config)
143
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
thomwolf's avatar
thomwolf committed
144
            sequence_output, pooled_output = model(inputs)
thomwolf's avatar
thomwolf committed
145
146
147
148
149
150
151
152
153
154
155

            inputs = [input_ids, input_mask]
            sequence_output, pooled_output = model(inputs)

            sequence_output, pooled_output = model(input_ids)

            result = {
                "sequence_output": sequence_output.numpy(),
                "pooled_output": pooled_output.numpy(),
            }
            self.parent.assertListEqual(
156
157
                list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
            )
thomwolf's avatar
thomwolf committed
158
159
            self.parent.assertListEqual(list(result["pooled_output"].shape), [self.batch_size, self.hidden_size])

160
161
162
        def create_and_check_bert_for_masked_lm(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
163
            model = TFBertForMaskedLM(config=config)
164
165
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
            (prediction_scores,) = model(inputs)
thomwolf's avatar
thomwolf committed
166
167
168
169
            result = {
                "prediction_scores": prediction_scores.numpy(),
            }
            self.parent.assertListEqual(
170
171
                list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size]
            )
thomwolf's avatar
thomwolf committed
172

173
174
175
        def create_and_check_bert_for_next_sequence_prediction(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
176
            model = TFBertForNextSentencePrediction(config=config)
177
178
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
            (seq_relationship_score,) = model(inputs)
thomwolf's avatar
thomwolf committed
179
180
181
            result = {
                "seq_relationship_score": seq_relationship_score.numpy(),
            }
182
            self.parent.assertListEqual(list(result["seq_relationship_score"].shape), [self.batch_size, 2])
thomwolf's avatar
thomwolf committed
183

184
185
186
        def create_and_check_bert_for_pretraining(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
187
            model = TFBertForPreTraining(config=config)
188
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
thomwolf's avatar
thomwolf committed
189
190
191
192
193
194
            prediction_scores, seq_relationship_score = model(inputs)
            result = {
                "prediction_scores": prediction_scores.numpy(),
                "seq_relationship_score": seq_relationship_score.numpy(),
            }
            self.parent.assertListEqual(
195
196
197
                list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size]
            )
            self.parent.assertListEqual(list(result["seq_relationship_score"].shape), [self.batch_size, 2])
thomwolf's avatar
thomwolf committed
198

199
200
201
        def create_and_check_bert_for_sequence_classification(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
202
203
            config.num_labels = self.num_labels
            model = TFBertForSequenceClassification(config=config)
204
205
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
            (logits,) = model(inputs)
thomwolf's avatar
thomwolf committed
206
207
208
            result = {
                "logits": logits.numpy(),
            }
209
            self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.num_labels])
thomwolf's avatar
thomwolf committed
210

211
212
213
        def create_and_check_bert_for_multiple_choice(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
214
215
216
217
218
            config.num_choices = self.num_choices
            model = TFBertForMultipleChoice(config=config)
            multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
            multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
            multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
219
220
221
222
223
224
            inputs = {
                "input_ids": multiple_choice_inputs_ids,
                "attention_mask": multiple_choice_input_mask,
                "token_type_ids": multiple_choice_token_type_ids,
            }
            (logits,) = model(inputs)
thomwolf's avatar
thomwolf committed
225
226
227
            result = {
                "logits": logits.numpy(),
            }
228
            self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.num_choices])
thomwolf's avatar
thomwolf committed
229

230
231
232
        def create_and_check_bert_for_token_classification(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
233
234
            config.num_labels = self.num_labels
            model = TFBertForTokenClassification(config=config)
235
236
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
            (logits,) = model(inputs)
thomwolf's avatar
thomwolf committed
237
238
239
240
            result = {
                "logits": logits.numpy(),
            }
            self.parent.assertListEqual(
241
242
                list(result["logits"].shape), [self.batch_size, self.seq_length, self.num_labels]
            )
thomwolf's avatar
thomwolf committed
243

244
245
246
        def create_and_check_bert_for_question_answering(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
247
            model = TFBertForQuestionAnswering(config=config)
248
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
thomwolf's avatar
thomwolf committed
249
250
251
252
253
            start_logits, end_logits = model(inputs)
            result = {
                "start_logits": start_logits.numpy(),
                "end_logits": end_logits.numpy(),
            }
254
255
            self.parent.assertListEqual(list(result["start_logits"].shape), [self.batch_size, self.seq_length])
            self.parent.assertListEqual(list(result["end_logits"].shape), [self.batch_size, self.seq_length])
thomwolf's avatar
thomwolf committed
256
257
258

        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
259
260
261
262
263
264
265
266
267
268
            (
                config,
                input_ids,
                token_type_ids,
                input_mask,
                sequence_labels,
                token_labels,
                choice_labels,
            ) = config_and_inputs
            inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
thomwolf's avatar
thomwolf committed
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
            return config, inputs_dict

    def setUp(self):
        self.model_tester = TFBertModelTest.TFBertModelTester(self)
        self.config_tester = ConfigTester(self, config_class=BertConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_bert_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_model(*config_and_inputs)

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_masked_lm(*config_and_inputs)

    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_multiple_choice(*config_and_inputs)

    def test_for_next_sequence_prediction(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_next_sequence_prediction(*config_and_inputs)

    def test_for_pretraining(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_pretraining(*config_and_inputs)

    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_question_answering(*config_and_inputs)

    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_sequence_classification(*config_and_inputs)

    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_token_classification(*config_and_inputs)

310
    @slow
thomwolf's avatar
thomwolf committed
311
    def test_model_from_pretrained(self):
312
        # for model_name in list(TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
313
        for model_name in ["bert-base-uncased"]:
314
            model = TFBertModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
thomwolf's avatar
thomwolf committed
315
            self.assertIsNotNone(model)