run_ner.py 25.9 KB
Newer Older
1
#!/usr/bin/env python
2
# coding=utf-8
3
# Copyright 2020 The HuggingFace Team All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
17
18
"""
Fine-tuning the library models for token classification.
"""
Sylvain Gugger's avatar
Sylvain Gugger committed
19
20
# You can also adapt this script on your own token classification task and datasets. Pointers for this are left as
# comments.
21

22
23
import logging
import os
24
import sys
Julien Chaumond's avatar
Julien Chaumond committed
25
from dataclasses import dataclass, field
26
from typing import Optional
27

28
import datasets
29
import numpy as np
30
from datasets import ClassLabel, load_dataset, load_metric
Aymeric Augustin's avatar
Aymeric Augustin committed
31

32
import transformers
Aymeric Augustin's avatar
Aymeric Augustin committed
33
from transformers import (
34
35
36
    AutoConfig,
    AutoModelForTokenClassification,
    AutoTokenizer,
37
    DataCollatorForTokenClassification,
Julien Chaumond's avatar
Julien Chaumond committed
38
    HfArgumentParser,
39
    PretrainedConfig,
40
    PreTrainedTokenizerFast,
Julien Chaumond's avatar
Julien Chaumond committed
41
42
43
    Trainer,
    TrainingArguments,
    set_seed,
Aymeric Augustin's avatar
Aymeric Augustin committed
44
)
45
from transformers.trainer_utils import get_last_checkpoint
46
from transformers.utils import check_min_version, send_example_telemetry
47
from transformers.utils.versions import require_version
Aymeric Augustin's avatar
Aymeric Augustin committed
48
49


50
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Sylvain Gugger's avatar
Sylvain Gugger committed
51
check_min_version("4.21.0.dev0")
Sylvain Gugger's avatar
Sylvain Gugger committed
52

53
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt")
54

55
56
57
logger = logging.getLogger(__name__)


Julien Chaumond's avatar
Julien Chaumond committed
58
59
60
61
62
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """
63

Julien Chaumond's avatar
Julien Chaumond committed
64
65
    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
66
    )
Julien Chaumond's avatar
Julien Chaumond committed
67
68
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
69
    )
Julien Chaumond's avatar
Julien Chaumond committed
70
71
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
72
    )
Julien Chaumond's avatar
Julien Chaumond committed
73
    cache_dir: Optional[str] = field(
74
75
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
76
    )
77
78
79
80
81
82
83
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
84
85
86
87
            "help": (
                "Will use the token generated when running `transformers-cli login` (necessary to use this script "
                "with private models)."
            )
88
89
        },
    )
90
91
92
93
    ignore_mismatched_sizes: bool = field(
        default=False,
        metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
    )
94
95


Julien Chaumond's avatar
Julien Chaumond committed
96
97
98
99
100
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """
101

102
103
104
105
106
107
    task_name: Optional[str] = field(default="ner", metadata={"help": "The name of the task (ner, pos...)."})
    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
108
    )
109
110
111
112
    train_file: Optional[str] = field(
        default=None, metadata={"help": "The input training data file (a csv or JSON file)."}
    )
    validation_file: Optional[str] = field(
113
        default=None,
114
        metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."},
115
    )
116
117
118
    test_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input test data file to predict on (a csv or JSON file)."},
119
    )
120
121
122
123
124
125
    text_column_name: Optional[str] = field(
        default=None, metadata={"help": "The column name of text to input in the file (a csv or JSON file)."}
    )
    label_column_name: Optional[str] = field(
        default=None, metadata={"help": "The column name of label to input in the file (a csv or JSON file)."}
    )
Julien Chaumond's avatar
Julien Chaumond committed
126
127
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
128
    )
129
130
131
132
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
133
134
135
    max_seq_length: int = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
136
137
138
139
            "help": (
                "The maximum total input sequence length after tokenization. If set, sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
140
141
        },
    )
142
143
144
    pad_to_max_length: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
145
146
147
148
149
            "help": (
                "Whether to pad all samples to model maximum sentence length. "
                "If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
                "efficient on GPU but very bad for TPU."
            )
150
151
        },
    )
152
153
154
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
155
156
157
158
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
159
160
        },
    )
161
    max_eval_samples: Optional[int] = field(
162
163
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
164
165
166
167
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
168
169
        },
    )
170
    max_predict_samples: Optional[int] = field(
171
172
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
173
174
175
176
            "help": (
                "For debugging purposes or quicker training, truncate the number of prediction examples to this "
                "value if set."
            )
177
178
        },
    )
179
180
181
    label_all_tokens: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
182
183
184
185
            "help": (
                "Whether to put the label for one word on all tokens of generated by that word or just on the "
                "one (in which case the other tokens will have a padding index)."
            )
186
187
        },
    )
188
189
190
191
    return_entity_level_metrics: bool = field(
        default=False,
        metadata={"help": "Whether to return all the entity levels during evaluation or just the overall ones."},
    )
192
193
194
195
196
197
198
199
200
201
202
203

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
        self.task_name = self.task_name.lower()
204

Julien Chaumond's avatar
Julien Chaumond committed
205
206
207
208
209
210
211

def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
212
213
214
215
216
217
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()
218

219
220
221
222
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_ner", model_args, data_args)

223
    # Setup logging
224
    logging.basicConfig(
225
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
226
        datefmt="%m/%d/%Y %H:%M:%S",
227
        handlers=[logging.StreamHandler(sys.stdout)],
228
    )
229
230
231
232
233
234
235

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
236
237

    # Log on each process the small summary:
238
    logger.warning(
239
240
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
241
    )
242
    logger.info(f"Training/evaluation parameters {training_args}")
243

244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

259
    # Set seed before initializing model.
Julien Chaumond's avatar
Julien Chaumond committed
260
    set_seed(training_args.seed)
261

262
263
264
265
266
267
268
269
270
271
272
    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
273
        raw_datasets = load_dataset(
274
275
276
277
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
278
        )
279
280
281
282
283
284
285
286
287
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
        extension = data_args.train_file.split(".")[-1]
288
        raw_datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
289
290
291
292
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    if training_args.do_train:
293
294
        column_names = raw_datasets["train"].column_names
        features = raw_datasets["train"].features
295
    else:
296
297
        column_names = raw_datasets["validation"].column_names
        features = raw_datasets["validation"].features
298
299
300
301
302
303
304
305
306
307
308
309
310
311

    if data_args.text_column_name is not None:
        text_column_name = data_args.text_column_name
    elif "tokens" in column_names:
        text_column_name = "tokens"
    else:
        text_column_name = column_names[0]

    if data_args.label_column_name is not None:
        label_column_name = data_args.label_column_name
    elif f"{data_args.task_name}_tags" in column_names:
        label_column_name = f"{data_args.task_name}_tags"
    else:
        label_column_name = column_names[1]
312

Sylvain Gugger's avatar
Sylvain Gugger committed
313
314
    # In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
    # unique labels.
315
316
317
318
319
320
321
322
    def get_label_list(labels):
        unique_labels = set()
        for label in labels:
            unique_labels = unique_labels | set(label)
        label_list = list(unique_labels)
        label_list.sort()
        return label_list

323
324
325
326
    # If the labels are of type ClassLabel, they are already integers and we have the map stored somewhere.
    # Otherwise, we have to get the list of labels manually.
    labels_are_int = isinstance(features[label_column_name].feature, ClassLabel)
    if labels_are_int:
Sylvain Gugger's avatar
Sylvain Gugger committed
327
        label_list = features[label_column_name].feature.names
328
        label_to_id = {i: i for i in range(len(label_list))}
Sylvain Gugger's avatar
Sylvain Gugger committed
329
    else:
330
        label_list = get_label_list(raw_datasets["train"][label_column_name])
331
        label_to_id = {l: i for i, l in enumerate(label_list)}
332

333
    num_labels = len(label_list)
334

335
    # Load pretrained model and tokenizer
Julien Chaumond's avatar
Julien Chaumond committed
336
337
338
339
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
340
    config = AutoConfig.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
341
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
342
        num_labels=num_labels,
343
        finetuning_task=data_args.task_name,
Julien Chaumond's avatar
Julien Chaumond committed
344
        cache_dir=model_args.cache_dir,
345
346
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
347
    )
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367

    tokenizer_name_or_path = model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path
    if config.model_type in {"gpt2", "roberta"}:
        tokenizer = AutoTokenizer.from_pretrained(
            tokenizer_name_or_path,
            cache_dir=model_args.cache_dir,
            use_fast=True,
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
            add_prefix_space=True,
        )
    else:
        tokenizer = AutoTokenizer.from_pretrained(
            tokenizer_name_or_path,
            cache_dir=model_args.cache_dir,
            use_fast=True,
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
        )

368
    model = AutoModelForTokenClassification.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
369
370
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
371
        config=config,
Julien Chaumond's avatar
Julien Chaumond committed
372
        cache_dir=model_args.cache_dir,
373
374
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
375
        ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
376
    )
377

378
379
380
    # Tokenizer check: this script requires a fast tokenizer.
    if not isinstance(tokenizer, PreTrainedTokenizerFast):
        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
381
382
383
            "This example script only works for models that have a fast tokenizer. Checkout the big table of models at"
            " https://huggingface.co/transformers/index.html#supported-frameworks to find the model types that meet"
            " this requirement"
384
385
        )

386
    # Model has labels -> use them.
387
    if model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id:
388
389
390
391
392
393
394
395
        if list(sorted(model.config.label2id.keys())) == list(sorted(label_list)):
            # Reorganize `label_list` to match the ordering of the model.
            if labels_are_int:
                label_to_id = {i: int(model.config.label2id[l]) for i, l in enumerate(label_list)}
                label_list = [model.config.id2label[i] for i in range(num_labels)]
            else:
                label_list = [model.config.id2label[i] for i in range(num_labels)]
                label_to_id = {l: i for i, l in enumerate(label_list)}
396
397
398
        else:
            logger.warning(
                "Your model seems to have been trained with labels, but they don't match the dataset: ",
Sylvain Gugger's avatar
Sylvain Gugger committed
399
400
                f"model labels: {list(sorted(model.config.label2id.keys()))}, dataset labels:"
                f" {list(sorted(label_list))}.\nIgnoring the model labels as a result.",
401
402
            )

403
404
405
    # Set the correspondences label/ID inside the model config
    model.config.label2id = {l: i for i, l in enumerate(label_list)}
    model.config.id2label = {i: l for i, l in enumerate(label_list)}
406
407
408
409
410
411
412
413
414

    # Map that sends B-Xxx label to its I-Xxx counterpart
    b_to_i_label = []
    for idx, label in enumerate(label_list):
        if label.startswith("B-") and label.replace("B-", "I-") in label_list:
            b_to_i_label.append(label_list.index(label.replace("B-", "I-")))
        else:
            b_to_i_label.append(idx)

415
416
417
418
419
420
421
422
423
424
    # Preprocessing the dataset
    # Padding strategy
    padding = "max_length" if data_args.pad_to_max_length else False

    # Tokenize all texts and align the labels with them.
    def tokenize_and_align_labels(examples):
        tokenized_inputs = tokenizer(
            examples[text_column_name],
            padding=padding,
            truncation=True,
425
            max_length=data_args.max_seq_length,
426
427
            # We use this argument because the texts in our dataset are lists of words (with a label for each word).
            is_split_into_words=True,
Julien Chaumond's avatar
Julien Chaumond committed
428
        )
429
        labels = []
430
431
432
        for i, label in enumerate(examples[label_column_name]):
            word_ids = tokenized_inputs.word_ids(batch_index=i)
            previous_word_idx = None
433
            label_ids = []
434
435
436
437
            for word_idx in word_ids:
                # Special tokens have a word id that is None. We set the label to -100 so they are automatically
                # ignored in the loss function.
                if word_idx is None:
438
                    label_ids.append(-100)
439
440
441
                # We set the label for the first token of each word.
                elif word_idx != previous_word_idx:
                    label_ids.append(label_to_id[label[word_idx]])
442
443
444
                # For the other tokens in a word, we set the label to either the current label or -100, depending on
                # the label_all_tokens flag.
                else:
445
446
447
448
                    if data_args.label_all_tokens:
                        label_ids.append(b_to_i_label[label_to_id[label[word_idx]]])
                    else:
                        label_ids.append(-100)
449
                previous_word_idx = word_idx
450
451
452
453
454

            labels.append(label_ids)
        tokenized_inputs["labels"] = labels
        return tokenized_inputs

455
    if training_args.do_train:
456
        if "train" not in raw_datasets:
457
            raise ValueError("--do_train requires a train dataset")
458
        train_dataset = raw_datasets["train"]
459
        if data_args.max_train_samples is not None:
460
461
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
462
463
464
465
466
467
468
469
        with training_args.main_process_first(desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                tokenize_and_align_labels,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )
470
471

    if training_args.do_eval:
472
        if "validation" not in raw_datasets:
473
            raise ValueError("--do_eval requires a validation dataset")
474
        eval_dataset = raw_datasets["validation"]
475
        if data_args.max_eval_samples is not None:
476
477
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
478
479
480
481
482
483
484
485
        with training_args.main_process_first(desc="validation dataset map pre-processing"):
            eval_dataset = eval_dataset.map(
                tokenize_and_align_labels,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )
486
487

    if training_args.do_predict:
488
        if "test" not in raw_datasets:
489
            raise ValueError("--do_predict requires a test dataset")
490
        predict_dataset = raw_datasets["test"]
491
        if data_args.max_predict_samples is not None:
492
493
            max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
            predict_dataset = predict_dataset.select(range(max_predict_samples))
494
495
496
497
498
499
500
501
        with training_args.main_process_first(desc="prediction dataset map pre-processing"):
            predict_dataset = predict_dataset.map(
                tokenize_and_align_labels,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )
Julien Chaumond's avatar
Julien Chaumond committed
502

503
    # Data collator
504
    data_collator = DataCollatorForTokenClassification(tokenizer, pad_to_multiple_of=8 if training_args.fp16 else None)
Julien Chaumond's avatar
Julien Chaumond committed
505

506
    # Metrics
507
508
    metric = load_metric("seqeval")

509
510
511
    def compute_metrics(p):
        predictions, labels = p
        predictions = np.argmax(predictions, axis=2)
Julien Chaumond's avatar
Julien Chaumond committed
512

513
514
515
516
517
518
519
520
521
        # Remove ignored index (special tokens)
        true_predictions = [
            [label_list[p] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
        true_labels = [
            [label_list[l] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
Julien Chaumond's avatar
Julien Chaumond committed
522

523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
        results = metric.compute(predictions=true_predictions, references=true_labels)
        if data_args.return_entity_level_metrics:
            # Unpack nested dictionaries
            final_results = {}
            for key, value in results.items():
                if isinstance(value, dict):
                    for n, v in value.items():
                        final_results[f"{key}_{n}"] = v
                else:
                    final_results[key] = value
            return final_results
        else:
            return {
                "precision": results["overall_precision"],
                "recall": results["overall_recall"],
                "f1": results["overall_f1"],
                "accuracy": results["overall_accuracy"],
            }
Julien Chaumond's avatar
Julien Chaumond committed
541
542
543
544
545

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
546
547
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
548
549
        tokenizer=tokenizer,
        data_collator=data_collator,
Julien Chaumond's avatar
Julien Chaumond committed
550
551
        compute_metrics=compute_metrics,
    )
552
553

    # Training
Julien Chaumond's avatar
Julien Chaumond committed
554
    if training_args.do_train:
555
556
557
558
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
559
560
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
561
        metrics = train_result.metrics
562
        trainer.save_model()  # Saves the tokenizer too for easy upload
563

564
565
566
567
568
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

569
570
571
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
572

573
    # Evaluation
574
    if training_args.do_eval:
Julien Chaumond's avatar
Julien Chaumond committed
575
576
        logger.info("*** Evaluate ***")

577
578
        metrics = trainer.evaluate()

579
580
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
Julien Chaumond's avatar
Julien Chaumond committed
581

582
583
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
Julien Chaumond's avatar
Julien Chaumond committed
584
585

    # Predict
586
    if training_args.do_predict:
587
588
        logger.info("*** Predict ***")

589
        predictions, labels, metrics = trainer.predict(predict_dataset, metric_key_prefix="predict")
590
        predictions = np.argmax(predictions, axis=2)
Julien Chaumond's avatar
Julien Chaumond committed
591

592
593
594
595
596
        # Remove ignored index (special tokens)
        true_predictions = [
            [label_list[p] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
Julien Chaumond's avatar
Julien Chaumond committed
597

598
599
        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)
Julien Chaumond's avatar
Julien Chaumond committed
600

601
        # Save predictions
602
        output_predictions_file = os.path.join(training_args.output_dir, "predictions.txt")
603
        if trainer.is_world_process_zero():
604
            with open(output_predictions_file, "w") as writer:
605
606
                for prediction in true_predictions:
                    writer.write(" ".join(prediction) + "\n")
607

608
609
610
611
612
613
614
615
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "token-classification"}
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name
Sylvain Gugger's avatar
Sylvain Gugger committed
616

617
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
618
        trainer.push_to_hub(**kwargs)
619
620
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
621

622

623
624
625
626
627
def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


628
629
if __name__ == "__main__":
    main()