run_xnli.py 16.8 KB
Newer Older
1
#!/usr/bin/env python
VictorSanh's avatar
VictorSanh committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
17
""" Finetuning multi-lingual models on XNLI (e.g. Bert, DistilBERT, XLM).
18
    Adapted from `examples/text-classification/run_glue.py`"""
VictorSanh's avatar
VictorSanh committed
19
20
21
22

import logging
import os
import random
23
24
25
import sys
from dataclasses import dataclass, field
from typing import Optional
VictorSanh's avatar
VictorSanh committed
26

27
import datasets
VictorSanh's avatar
VictorSanh committed
28
import numpy as np
29
from datasets import load_dataset
VictorSanh's avatar
VictorSanh committed
30

31
import evaluate
32
import transformers
33
from transformers import (
34
35
36
    AutoConfig,
    AutoModelForSequenceClassification,
    AutoTokenizer,
37
38
39
40
41
42
43
    DataCollatorWithPadding,
    EvalPrediction,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
    default_data_collator,
    set_seed,
44
)
45
from transformers.trainer_utils import get_last_checkpoint
46
from transformers.utils import check_min_version, send_example_telemetry
47
from transformers.utils.versions import require_version
Aymeric Augustin's avatar
Aymeric Augustin committed
48

VictorSanh's avatar
VictorSanh committed
49

50
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Sylvain Gugger's avatar
Sylvain Gugger committed
51
check_min_version("4.27.0.dev0")
Lysandre's avatar
Lysandre committed
52

53
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
54

VictorSanh's avatar
VictorSanh committed
55
56
57
logger = logging.getLogger(__name__)


58
59
60
61
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
VictorSanh's avatar
VictorSanh committed
62

63
64
65
66
    Using `HfArgumentParser` we can turn this class
    into argparse arguments to be able to specify them on
    the command line.
    """
VictorSanh's avatar
VictorSanh committed
67

68
69
70
    max_seq_length: Optional[int] = field(
        default=128,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
71
72
73
74
            "help": (
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
75
76
        },
    )
77
78
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
79
    )
80
81
82
    pad_to_max_length: bool = field(
        default=True,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
83
84
85
86
            "help": (
                "Whether to pad all samples to `max_seq_length`. "
                "If False, will pad the samples dynamically when batching to the maximum length in the batch."
            )
87
        },
88
    )
89
90
91
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
92
93
94
95
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
96
97
        },
    )
98
    max_eval_samples: Optional[int] = field(
99
100
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
101
102
103
104
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
105
106
        },
    )
107
    max_predict_samples: Optional[int] = field(
108
109
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
110
111
112
113
            "help": (
                "For debugging purposes or quicker training, truncate the number of prediction examples to this "
                "value if set."
            )
114
115
        },
    )
VictorSanh's avatar
VictorSanh committed
116
117


118
119
120
121
122
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """
VictorSanh's avatar
VictorSanh committed
123

124
125
    model_name_or_path: str = field(
        default=None, metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
126
    )
127
128
    language: str = field(
        default=None, metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."}
129
    )
130
131
    train_language: Optional[str] = field(
        default=None, metadata={"help": "Train language if it is different from the evaluation language."}
132
    )
133
134
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
135
    )
136
137
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
138
    )
139
    cache_dir: Optional[str] = field(
140
        default=None,
141
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
142
    )
143
144
145
    do_lower_case: Optional[bool] = field(
        default=False,
        metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"},
146
    )
147
148
149
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
150
    )
151
152
153
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
154
    )
155
156
157
    use_auth_token: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
158
            "help": (
159
                "Will use the token generated when running `huggingface-cli login` (necessary to use this script "
Sylvain Gugger's avatar
Sylvain Gugger committed
160
161
                "with private models)."
            )
162
        },
163
    )
164
165
166
167
    ignore_mismatched_sizes: bool = field(
        default=False,
        metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
    )
168

169
170
171
172
173
174
175
176
177

def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()

178
179
180
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_xnli", model_args)
VictorSanh's avatar
VictorSanh committed
181
182

    # Setup logging
183
    logging.basicConfig(
184
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
185
        datefmt="%m/%d/%Y %H:%M:%S",
186
        handlers=[logging.StreamHandler(sys.stdout)],
187
    )
188
189
190
191
192
193
194

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
195
196

    # Log on each process the small summary:
197
    logger.warning(
198
199
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
200
    )
201
202
    logger.info(f"Training/evaluation parameters {training_args}")

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

218
219
220
221
222
223
    # Set seed before initializing model.
    set_seed(training_args.seed)

    # In distributed training, the load_dataset function guarantees that only one local process can concurrently
    # download the dataset.
    # Downloading and loading xnli dataset from the hub.
224
225
    if training_args.do_train:
        if model_args.train_language is None:
226
227
228
229
230
231
232
            train_dataset = load_dataset(
                "xnli",
                model_args.language,
                split="train",
                cache_dir=model_args.cache_dir,
                use_auth_token=True if model_args.use_auth_token else None,
            )
233
        else:
234
            train_dataset = load_dataset(
235
236
237
238
239
                "xnli",
                model_args.train_language,
                split="train",
                cache_dir=model_args.cache_dir,
                use_auth_token=True if model_args.use_auth_token else None,
240
            )
241
242
243
        label_list = train_dataset.features["label"].names

    if training_args.do_eval:
244
245
246
247
248
249
250
        eval_dataset = load_dataset(
            "xnli",
            model_args.language,
            split="validation",
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
251
252
253
        label_list = eval_dataset.features["label"].names

    if training_args.do_predict:
254
255
256
257
258
259
260
        predict_dataset = load_dataset(
            "xnli",
            model_args.language,
            split="test",
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
261
        label_list = predict_dataset.features["label"].names
262
263

    # Labels
VictorSanh's avatar
VictorSanh committed
264
265
266
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
267
268
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
269
    config = AutoConfig.from_pretrained(
270
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
271
        num_labels=num_labels,
272
273
274
275
        finetuning_task="xnli",
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
276
    )
277
    tokenizer = AutoTokenizer.from_pretrained(
278
279
280
281
282
283
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        do_lower_case=model_args.do_lower_case,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
284
    )
285
    model = AutoModelForSequenceClassification.from_pretrained(
286
287
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
288
        config=config,
289
290
291
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
292
        ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
293
    )
VictorSanh's avatar
VictorSanh committed
294

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
    # Preprocessing the datasets
    # Padding strategy
    if data_args.pad_to_max_length:
        padding = "max_length"
    else:
        # We will pad later, dynamically at batch creation, to the max sequence length in each batch
        padding = False

    def preprocess_function(examples):
        # Tokenize the texts
        return tokenizer(
            examples["premise"],
            examples["hypothesis"],
            padding=padding,
            max_length=data_args.max_seq_length,
            truncation=True,
        )
VictorSanh's avatar
VictorSanh committed
312

313
314
    if training_args.do_train:
        if data_args.max_train_samples is not None:
315
316
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
317
318
319
320
321
322
323
        with training_args.main_process_first(desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                preprocess_function,
                batched=True,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )
324
325
326
        # Log a few random samples from the training set:
        for index in random.sample(range(len(train_dataset)), 3):
            logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
327
328

    if training_args.do_eval:
329
        if data_args.max_eval_samples is not None:
330
331
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
332
333
334
335
336
337
338
        with training_args.main_process_first(desc="validation dataset map pre-processing"):
            eval_dataset = eval_dataset.map(
                preprocess_function,
                batched=True,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )
VictorSanh's avatar
VictorSanh committed
339

340
    if training_args.do_predict:
341
        if data_args.max_predict_samples is not None:
342
343
            max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
            predict_dataset = predict_dataset.select(range(max_predict_samples))
344
345
346
347
348
349
350
        with training_args.main_process_first(desc="prediction dataset map pre-processing"):
            predict_dataset = predict_dataset.map(
                preprocess_function,
                batched=True,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )
351
352

    # Get the metric function
353
    metric = evaluate.load("xnli")
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373

    # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
    # predictions and label_ids field) and has to return a dictionary string to float.
    def compute_metrics(p: EvalPrediction):
        preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
        preds = np.argmax(preds, axis=1)
        return metric.compute(predictions=preds, references=p.label_ids)

    # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
    if data_args.pad_to_max_length:
        data_collator = default_data_collator
    elif training_args.fp16:
        data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
    else:
        data_collator = None

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
374
        train_dataset=train_dataset if training_args.do_train else None,
375
376
377
378
379
        eval_dataset=eval_dataset if training_args.do_eval else None,
        compute_metrics=compute_metrics,
        tokenizer=tokenizer,
        data_collator=data_collator,
    )
VictorSanh's avatar
VictorSanh committed
380
381

    # Training
382
    if training_args.do_train:
383
        checkpoint = None
384
385
386
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
387
388
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
389
        metrics = train_result.metrics
390
391
392
393
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))
VictorSanh's avatar
VictorSanh committed
394

395
        trainer.save_model()  # Saves the tokenizer too for easy upload
396

397
398
399
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
VictorSanh's avatar
VictorSanh committed
400

401
402
403
    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")
404
405
        metrics = trainer.evaluate(eval_dataset=eval_dataset)

406
407
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
408

409
410
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
VictorSanh's avatar
VictorSanh committed
411

412
413
414
    # Prediction
    if training_args.do_predict:
        logger.info("*** Predict ***")
415
        predictions, labels, metrics = trainer.predict(predict_dataset, metric_key_prefix="predict")
416

417
418
419
420
        max_predict_samples = (
            data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
        )
        metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
421

422
423
        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)
424
425

        predictions = np.argmax(predictions, axis=1)
426
        output_predict_file = os.path.join(training_args.output_dir, "predictions.txt")
427
        if trainer.is_world_process_zero():
428
            with open(output_predict_file, "w") as writer:
429
430
431
432
433
                writer.write("index\tprediction\n")
                for index, item in enumerate(predictions):
                    item = label_list[item]
                    writer.write(f"{index}\t{item}\n")

VictorSanh's avatar
VictorSanh committed
434
435
436

if __name__ == "__main__":
    main()