modeling_auto.py 68.8 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Auto Model class. """


import logging
Julien Chaumond's avatar
Julien Chaumond committed
19
from collections import OrderedDict
thomwolf's avatar
thomwolf committed
20

21
22
from .configuration_auto import (
    AlbertConfig,
23
    AutoConfig,
24
25
26
27
28
29
30
    BertConfig,
    CamembertConfig,
    CTRLConfig,
    DistilBertConfig,
    GPT2Config,
    OpenAIGPTConfig,
    RobertaConfig,
31
    T5Config,
32
33
34
    TransfoXLConfig,
    XLMConfig,
    XLMRobertaConfig,
Aymeric Augustin's avatar
Aymeric Augustin committed
35
36
    XLNetConfig,
)
37
from .configuration_utils import PretrainedConfig
Aymeric Augustin's avatar
Aymeric Augustin committed
38
39
40
41
42
43
from .modeling_albert import (
    ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP,
    AlbertForMaskedLM,
    AlbertForQuestionAnswering,
    AlbertForSequenceClassification,
    AlbertModel,
44
45
)
from .modeling_bert import (
Aymeric Augustin's avatar
Aymeric Augustin committed
46
    BERT_PRETRAINED_MODEL_ARCHIVE_MAP,
47
    BertForMaskedLM,
thomwolf's avatar
thomwolf committed
48
    BertForPreTraining,
49
    BertForQuestionAnswering,
Aymeric Augustin's avatar
Aymeric Augustin committed
50
    BertForSequenceClassification,
51
    BertForTokenClassification,
Aymeric Augustin's avatar
Aymeric Augustin committed
52
    BertModel,
53
)
Aymeric Augustin's avatar
Aymeric Augustin committed
54
55
56
57
58
59
from .modeling_camembert import (
    CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_MAP,
    CamembertForMaskedLM,
    CamembertForSequenceClassification,
    CamembertForTokenClassification,
    CamembertModel,
60
)
Aymeric Augustin's avatar
Aymeric Augustin committed
61
from .modeling_ctrl import CTRL_PRETRAINED_MODEL_ARCHIVE_MAP, CTRLLMHeadModel, CTRLModel
62
from .modeling_distilbert import (
Aymeric Augustin's avatar
Aymeric Augustin committed
63
    DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP,
64
    DistilBertForMaskedLM,
Aymeric Augustin's avatar
Aymeric Augustin committed
65
    DistilBertForQuestionAnswering,
66
67
    DistilBertForSequenceClassification,
    DistilBertForTokenClassification,
Aymeric Augustin's avatar
Aymeric Augustin committed
68
    DistilBertModel,
69
)
Aymeric Augustin's avatar
Aymeric Augustin committed
70
71
72
73
74
from .modeling_gpt2 import GPT2_PRETRAINED_MODEL_ARCHIVE_MAP, GPT2LMHeadModel, GPT2Model
from .modeling_openai import OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP, OpenAIGPTLMHeadModel, OpenAIGPTModel
from .modeling_roberta import (
    ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP,
    RobertaForMaskedLM,
Julien Chaumond's avatar
Julien Chaumond committed
75
    RobertaForQuestionAnswering,
Aymeric Augustin's avatar
Aymeric Augustin committed
76
77
78
    RobertaForSequenceClassification,
    RobertaForTokenClassification,
    RobertaModel,
79
)
Aymeric Augustin's avatar
Aymeric Augustin committed
80
81
82
83
84
85
86
87
from .modeling_t5 import T5_PRETRAINED_MODEL_ARCHIVE_MAP, T5Model, T5WithLMHeadModel
from .modeling_transfo_xl import TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP, TransfoXLLMHeadModel, TransfoXLModel
from .modeling_xlm import (
    XLM_PRETRAINED_MODEL_ARCHIVE_MAP,
    XLMForQuestionAnswering,
    XLMForSequenceClassification,
    XLMModel,
    XLMWithLMHeadModel,
88
89
)
from .modeling_xlm_roberta import (
Aymeric Augustin's avatar
Aymeric Augustin committed
90
    XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP,
91
    XLMRobertaForMaskedLM,
Aymeric Augustin's avatar
Aymeric Augustin committed
92
    XLMRobertaForSequenceClassification,
93
    XLMRobertaForTokenClassification,
Aymeric Augustin's avatar
Aymeric Augustin committed
94
95
96
97
98
99
100
101
102
    XLMRobertaModel,
)
from .modeling_xlnet import (
    XLNET_PRETRAINED_MODEL_ARCHIVE_MAP,
    XLNetForQuestionAnswering,
    XLNetForSequenceClassification,
    XLNetForTokenClassification,
    XLNetLMHeadModel,
    XLNetModel,
103
)
thomwolf's avatar
thomwolf committed
104

thomwolf's avatar
thomwolf committed
105

106
logger = logging.getLogger(__name__)
thomwolf's avatar
thomwolf committed
107
108


109
110
ALL_PRETRAINED_MODEL_ARCHIVE_MAP = dict(
    (key, value)
111
112
113
114
115
116
117
118
119
120
121
122
123
    for pretrained_map in [
        BERT_PRETRAINED_MODEL_ARCHIVE_MAP,
        OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP,
        TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP,
        GPT2_PRETRAINED_MODEL_ARCHIVE_MAP,
        CTRL_PRETRAINED_MODEL_ARCHIVE_MAP,
        XLNET_PRETRAINED_MODEL_ARCHIVE_MAP,
        XLM_PRETRAINED_MODEL_ARCHIVE_MAP,
        ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP,
        DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP,
        ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP,
        CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_MAP,
        T5_PRETRAINED_MODEL_ARCHIVE_MAP,
124
        XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP,
125
126
127
    ]
    for key, value, in pretrained_map.items()
)
128

Julien Chaumond's avatar
Julien Chaumond committed
129
MODEL_MAPPING = OrderedDict(
Julien Chaumond's avatar
Julien Chaumond committed
130
131
132
133
134
    [
        (T5Config, T5Model),
        (DistilBertConfig, DistilBertModel),
        (AlbertConfig, AlbertModel),
        (CamembertConfig, CamembertModel),
135
        (XLMRobertaConfig, XLMRobertaModel),
136
        (RobertaConfig, RobertaModel),
Julien Chaumond's avatar
Julien Chaumond committed
137
138
139
140
141
142
143
144
145
146
        (BertConfig, BertModel),
        (OpenAIGPTConfig, OpenAIGPTModel),
        (GPT2Config, GPT2Model),
        (TransfoXLConfig, TransfoXLModel),
        (XLNetConfig, XLNetModel),
        (XLMConfig, XLMModel),
        (CTRLConfig, CTRLModel),
    ]
)

thomwolf's avatar
thomwolf committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
MODEL_FOR_PRETRAINING_MAPPING = OrderedDict(
    [
        (T5Config, T5WithLMHeadModel),
        (DistilBertConfig, DistilBertForMaskedLM),
        (AlbertConfig, AlbertForMaskedLM),
        (CamembertConfig, CamembertForMaskedLM),
        (XLMRobertaConfig, XLMRobertaForMaskedLM),
        (RobertaConfig, RobertaForMaskedLM),
        (BertConfig, BertForPreTraining),
        (OpenAIGPTConfig, OpenAIGPTLMHeadModel),
        (GPT2Config, GPT2LMHeadModel),
        (TransfoXLConfig, TransfoXLLMHeadModel),
        (XLNetConfig, XLNetLMHeadModel),
        (XLMConfig, XLMWithLMHeadModel),
        (CTRLConfig, CTRLLMHeadModel),
    ]
)

Julien Chaumond's avatar
Julien Chaumond committed
165
MODEL_WITH_LM_HEAD_MAPPING = OrderedDict(
166
167
168
169
170
171
    [
        (T5Config, T5WithLMHeadModel),
        (DistilBertConfig, DistilBertForMaskedLM),
        (AlbertConfig, AlbertForMaskedLM),
        (CamembertConfig, CamembertForMaskedLM),
        (XLMRobertaConfig, XLMRobertaForMaskedLM),
172
        (RobertaConfig, RobertaForMaskedLM),
173
174
175
176
177
178
179
180
181
182
        (BertConfig, BertForMaskedLM),
        (OpenAIGPTConfig, OpenAIGPTLMHeadModel),
        (GPT2Config, GPT2LMHeadModel),
        (TransfoXLConfig, TransfoXLLMHeadModel),
        (XLNetConfig, XLNetLMHeadModel),
        (XLMConfig, XLMWithLMHeadModel),
        (CTRLConfig, CTRLLMHeadModel),
    ]
)

Julien Chaumond's avatar
Julien Chaumond committed
183
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = OrderedDict(
184
185
186
187
188
    [
        (DistilBertConfig, DistilBertForSequenceClassification),
        (AlbertConfig, AlbertForSequenceClassification),
        (CamembertConfig, CamembertForSequenceClassification),
        (XLMRobertaConfig, XLMRobertaForSequenceClassification),
189
        (RobertaConfig, RobertaForSequenceClassification),
190
191
192
193
194
195
        (BertConfig, BertForSequenceClassification),
        (XLNetConfig, XLNetForSequenceClassification),
        (XLMConfig, XLMForSequenceClassification),
    ]
)

Julien Chaumond's avatar
Julien Chaumond committed
196
MODEL_FOR_QUESTION_ANSWERING_MAPPING = OrderedDict(
197
198
199
    [
        (DistilBertConfig, DistilBertForQuestionAnswering),
        (AlbertConfig, AlbertForQuestionAnswering),
Malte Pietsch's avatar
Malte Pietsch committed
200
        (RobertaConfig, RobertaForQuestionAnswering),
201
202
203
204
205
206
        (BertConfig, BertForQuestionAnswering),
        (XLNetConfig, XLNetForQuestionAnswering),
        (XLMConfig, XLMForQuestionAnswering),
    ]
)

Julien Chaumond's avatar
Julien Chaumond committed
207
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING = OrderedDict(
Julien Chaumond's avatar
Julien Chaumond committed
208
209
210
    [
        (DistilBertConfig, DistilBertForTokenClassification),
        (CamembertConfig, CamembertForTokenClassification),
211
        (XLMRobertaConfig, XLMRobertaForTokenClassification),
212
        (RobertaConfig, RobertaForTokenClassification),
Julien Chaumond's avatar
Julien Chaumond committed
213
214
215
216
217
        (BertConfig, BertForTokenClassification),
        (XLNetConfig, XLNetForTokenClassification),
    ]
)

218

thomwolf's avatar
thomwolf committed
219
220
class AutoModel(object):
    r"""
221
        :class:`~transformers.AutoModel` is a generic model class
thomwolf's avatar
thomwolf committed
222
223
        that will be instantiated as one of the base model classes of the library
        when created with the `AutoModel.from_pretrained(pretrained_model_name_or_path)`
224
        or the `AutoModel.from_config(config)` class methods.
thomwolf's avatar
thomwolf committed
225

226
        This class cannot be instantiated using `__init__()` (throws an error).
thomwolf's avatar
thomwolf committed
227
    """
228

thomwolf's avatar
thomwolf committed
229
    def __init__(self):
230
231
        raise EnvironmentError(
            "AutoModel is designed to be instantiated "
232
            "using the `AutoModel.from_pretrained(pretrained_model_name_or_path)` or "
233
234
            "`AutoModel.from_config(config)` methods."
        )
235
236
237
238
239
240

    @classmethod
    def from_config(cls, config):
        r""" Instantiates one of the base model classes of the library
        from a configuration.

Lysandre's avatar
Lysandre committed
241
242
        Args:
            config (:class:`~transformers.PretrainedConfig`):
243
                The model class to instantiate is selected based on the configuration class:
Lysandre's avatar
Lysandre committed
244
245
246
247
248
249
250
251
252
253

                - isInstance of `distilbert` configuration class: :class:`~transformers.DistilBertModel` (DistilBERT model)
                - isInstance of `roberta` configuration class: :class:`~transformers.RobertaModel` (RoBERTa model)
                - isInstance of `bert` configuration class: :class:`~transformers.BertModel` (Bert model)
                - isInstance of `openai-gpt` configuration class: :class:`~transformers.OpenAIGPTModel` (OpenAI GPT model)
                - isInstance of `gpt2` configuration class: :class:`~transformers.GPT2Model` (OpenAI GPT-2 model)
                - isInstance of `ctrl` configuration class: :class:`~transformers.CTRLModel` (Salesforce CTRL  model)
                - isInstance of `transfo-xl` configuration class: :class:`~transformers.TransfoXLModel` (Transformer-XL model)
                - isInstance of `xlnet` configuration class: :class:`~transformers.XLNetModel` (XLNet model)
                - isInstance of `xlm` configuration class: :class:`~transformers.XLMModel` (XLM model)
254
255
256
257
258
259

        Examples::

            config = BertConfig.from_pretrained('bert-base-uncased')    # Download configuration from S3 and cache.
            model = AutoModel.from_config(config)  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
        """
Julien Chaumond's avatar
Julien Chaumond committed
260
261
262
        for config_class, model_class in MODEL_MAPPING.items():
            if isinstance(config, config_class):
                return model_class(config)
263
264
265
266
267
268
        raise ValueError(
            "Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
            "Model type should be one of {}.".format(
                config.__class__, cls.__name__, ", ".join(c.__name__ for c in MODEL_MAPPING.keys())
            )
        )
thomwolf's avatar
thomwolf committed
269
270
271

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
272
        r""" Instantiates one of the base model classes of the library
thomwolf's avatar
thomwolf committed
273
274
        from a pre-trained model configuration.

Lysandre's avatar
Lysandre committed
275
276
277
278
279
        The `from_pretrained()` method takes care of returning the correct model class instance
        based on the `model_type` property of the config object, or when it's missing,
        falling back to using pattern matching on the `pretrained_model_name_or_path` string.

        The base model class to instantiate is selected as the first pattern matching
thomwolf's avatar
thomwolf committed
280
        in the `pretrained_model_name_or_path` string (in the following order):
Lysandre's avatar
Lysandre committed
281
282
283
284
285
286
287
288
289
290
291
292
293
            - contains `t5`: :class:`~transformers.T5Model` (T5 model)
            - contains `distilbert`: :class:`~transformers.DistilBertModel` (DistilBERT model)
            - contains `albert`: :class:`~transformers.AlbertModel` (ALBERT model)
            - contains `camembert`: :class:`~transformers.CamembertModel` (CamemBERT model)
            - contains `xlm-roberta`: :class:`~transformers.XLMRobertaModel` (XLM-RoBERTa model)
            - contains `roberta`: :class:`~transformers.RobertaModel` (RoBERTa model)
            - contains `bert`: :class:`~transformers.BertModel` (Bert model)
            - contains `openai-gpt`: :class:`~transformers.OpenAIGPTModel` (OpenAI GPT model)
            - contains `gpt2`: :class:`~transformers.GPT2Model` (OpenAI GPT-2 model)
            - contains `transfo-xl`: :class:`~transformers.TransfoXLModel` (Transformer-XL model)
            - contains `xlnet`: :class:`~transformers.XLNetModel` (XLNet model)
            - contains `xlm`: :class:`~transformers.XLMModel` (XLM model)
            - contains `ctrl`: :class:`~transformers.CTRLModel` (Salesforce CTRL  model)
thomwolf's avatar
thomwolf committed
294

thomwolf's avatar
typos  
thomwolf committed
295
            The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated)
thomwolf's avatar
thomwolf committed
296
297
            To train the model, you should first set it back in training mode with `model.train()`

Lysandre's avatar
Lysandre committed
298
        Args:
thomwolf's avatar
thomwolf committed
299
300
301
            pretrained_model_name_or_path: either:

                - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
302
                - a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``.
303
                - a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
thomwolf's avatar
thomwolf committed
304
305
306
307
308
                - a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.

            model_args: (`optional`) Sequence of positional arguments:
                All remaning positional arguments will be passed to the underlying model's ``__init__`` method

309
            config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`:
thomwolf's avatar
thomwolf committed
310
311
312
                Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:

                - the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
313
                - the model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
thomwolf's avatar
thomwolf committed
314
315
316
317
                - the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.

            state_dict: (`optional`) dict:
                an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
thomwolf's avatar
typos  
thomwolf committed
318
                This option can be used if you want to create a model from a pretrained configuration but load your own weights.
319
                In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option.
thomwolf's avatar
thomwolf committed
320
321

            cache_dir: (`optional`) string:
thomwolf's avatar
thomwolf committed
322
323
                Path to a directory in which a downloaded pre-trained model
                configuration should be cached if the standard cache should not be used.
thomwolf's avatar
thomwolf committed
324
325
326
327

            force_download: (`optional`) boolean, default False:
                Force to (re-)download the model weights and configuration files and override the cached versions if they exists.

328
329
330
            resume_download: (`optional`) boolean, default False:
                Do not delete incompletely recieved file. Attempt to resume the download if such a file exists.

thomwolf's avatar
thomwolf committed
331
332
333
334
335
336
337
338
339
340
341
            proxies: (`optional`) dict, default None:
                A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
                The proxies are used on each request.

            output_loading_info: (`optional`) boolean:
                Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.

            kwargs: (`optional`) Remaining dictionary of keyword arguments:
                Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded:

                - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done)
342
                - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function.
thomwolf's avatar
thomwolf committed
343
344
345

        Examples::

thomwolf's avatar
thomwolf committed
346
347
348
349
350
351
352
            model = AutoModel.from_pretrained('bert-base-uncased')    # Download model and configuration from S3 and cache.
            model = AutoModel.from_pretrained('./test/bert_model/')  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
            model = AutoModel.from_pretrained('bert-base-uncased', output_attention=True)  # Update configuration during loading
            assert model.config.output_attention == True
            # Loading from a TF checkpoint file instead of a PyTorch model (slower)
            config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
            model = AutoModel.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
thomwolf's avatar
thomwolf committed
353
354

        """
355
356
357
358
        config = kwargs.pop("config", None)
        if not isinstance(config, PretrainedConfig):
            config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)

Julien Chaumond's avatar
Julien Chaumond committed
359
360
361
        for config_class, model_class in MODEL_MAPPING.items():
            if isinstance(config, config_class):
                return model_class.from_pretrained(pretrained_model_name_or_path, *model_args, config=config, **kwargs)
362
        raise ValueError(
363
364
365
            "Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
            "Model type should be one of {}.".format(
                config.__class__, cls.__name__, ", ".join(c.__name__ for c in MODEL_MAPPING.keys())
366
367
            )
        )
368
369


thomwolf's avatar
thomwolf committed
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
class AutoModelForPreTraining(object):
    r"""
        :class:`~transformers.AutoModelForPreTraining` is a generic model class
        that will be instantiated as one of the model classes of the library -with the architecture used for pretraining this model– when created with the `AutoModelForPreTraining.from_pretrained(pretrained_model_name_or_path)`
        class method.

        This class cannot be instantiated using `__init__()` (throws an error).
    """

    def __init__(self):
        raise EnvironmentError(
            "AutoModelForPreTraining is designed to be instantiated "
            "using the `AutoModelForPreTraining.from_pretrained(pretrained_model_name_or_path)` or "
            "`AutoModelForPreTraining.from_config(config)` methods."
        )

    @classmethod
    def from_config(cls, config):
        r""" Instantiates one of the base model classes of the library
        from a configuration.

        Args:
            config (:class:`~transformers.PretrainedConfig`):
                The model class to instantiate is selected based on the configuration class:

                - isInstance of `distilbert` configuration class: :class:`~transformers.DistilBertModelForMaskedLM` (DistilBERT model)
                - isInstance of `roberta` configuration class: :class:`~transformers.RobertaModelForMaskedLM` (RoBERTa model)
                - isInstance of `bert` configuration class: :class:`~transformers.BertForPreTraining` (Bert model)
                - isInstance of `openai-gpt` configuration class: :class:`~transformers.OpenAIGPTLMHeadModel` (OpenAI GPT model)
                - isInstance of `gpt2` configuration class: :class:`~transformers.GPT2ModelLMHeadModel` (OpenAI GPT-2 model)
                - isInstance of `ctrl` configuration class: :class:`~transformers.CTRLModelLMHeadModel` (Salesforce CTRL  model)
                - isInstance of `transfo-xl` configuration class: :class:`~transformers.TransfoXLLMHeadModel` (Transformer-XL model)
                - isInstance of `xlnet` configuration class: :class:`~transformers.XLNetLMHeadModel` (XLNet model)
                - isInstance of `xlm` configuration class: :class:`~transformers.XLMWithLMHeadModel` (XLM model)

        Examples::

            config = BertConfig.from_pretrained('bert-base-uncased')    # Download configuration from S3 and cache.
            model = AutoModelForPreTraining.from_config(config)  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
        """
        for config_class, model_class in MODEL_FOR_PRETRAINING_MAPPING.items():
            if isinstance(config, config_class):
                return model_class(config)
        raise ValueError(
            "Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
            "Model type should be one of {}.".format(
                config.__class__, cls.__name__, ", ".join(c.__name__ for c in MODEL_FOR_PRETRAINING_MAPPING.keys())
            )
        )

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
        r""" Instantiates one of the model classes of the library -with the architecture used for pretraining this model– from a pre-trained model configuration.

        The `from_pretrained()` method takes care of returning the correct model class instance
        based on the `model_type` property of the config object, or when it's missing,
        falling back to using pattern matching on the `pretrained_model_name_or_path` string.

        The model class to instantiate is selected as the first pattern matching
        in the `pretrained_model_name_or_path` string (in the following order):
            - contains `t5`: :class:`~transformers.T5ModelWithLMHead` (T5 model)
            - contains `distilbert`: :class:`~transformers.DistilBertForMaskedLM` (DistilBERT model)
            - contains `albert`: :class:`~transformers.AlbertForMaskedLM` (ALBERT model)
            - contains `camembert`: :class:`~transformers.CamembertForMaskedLM` (CamemBERT model)
            - contains `xlm-roberta`: :class:`~transformers.XLMRobertaForMaskedLM` (XLM-RoBERTa model)
            - contains `roberta`: :class:`~transformers.RobertaForMaskedLM` (RoBERTa model)
            - contains `bert`: :class:`~transformers.BertForPreTraining` (Bert model)
            - contains `openai-gpt`: :class:`~transformers.OpenAIGPTLMHeadModel` (OpenAI GPT model)
            - contains `gpt2`: :class:`~transformers.GPT2LMHeadModel` (OpenAI GPT-2 model)
            - contains `transfo-xl`: :class:`~transformers.TransfoXLLMHeadModel` (Transformer-XL model)
            - contains `xlnet`: :class:`~transformers.XLNetLMHeadModel` (XLNet model)
            - contains `xlm`: :class:`~transformers.XLMWithLMHeadModel` (XLM model)
            - contains `ctrl`: :class:`~transformers.CTRLLMHeadModel` (Salesforce CTRL model)

        The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated)
        To train the model, you should first set it back in training mode with `model.train()`

        Args:
            pretrained_model_name_or_path:
                Either:

                - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
                - a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``.
                - a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
                - a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
            model_args: (`optional`) Sequence of positional arguments:
                All remaning positional arguments will be passed to the underlying model's ``__init__`` method
            config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`:
                Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:

                - the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
                - the model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
                - the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.

            state_dict: (`optional`) dict:
                an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
                This option can be used if you want to create a model from a pretrained configuration but load your own weights.
                In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option.
            cache_dir: (`optional`) string:
                Path to a directory in which a downloaded pre-trained model
                configuration should be cached if the standard cache should not be used.
            force_download: (`optional`) boolean, default False:
                Force to (re-)download the model weights and configuration files and override the cached versions if they exists.
            resume_download: (`optional`) boolean, default False:
                Do not delete incompletely received file. Attempt to resume the download if such a file exists.
            proxies: (`optional`) dict, default None:
                A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
                The proxies are used on each request.
            output_loading_info: (`optional`) boolean:
                Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.
            kwargs: (`optional`) Remaining dictionary of keyword arguments:
                Can be used to update the configuration object (after it being loaded) and initiate the model.
                (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or
                automatically loaded:

                - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the
                  underlying model's ``__init__`` method (we assume all relevant updates to the configuration have
                  already been done)
                - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class
                  initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of
                  ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute
                  with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration
                  attribute will be passed to the underlying model's ``__init__`` function.

        Examples::

            model = AutoModelForPreTraining.from_pretrained('bert-base-uncased')    # Download model and configuration from S3 and cache.
            model = AutoModelForPreTraining.from_pretrained('./test/bert_model/')  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
            model = AutoModelForPreTraining.from_pretrained('bert-base-uncased', output_attention=True)  # Update configuration during loading
            assert model.config.output_attention == True
            # Loading from a TF checkpoint file instead of a PyTorch model (slower)
            config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
            model = AutoModelForPreTraining.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)

        """
        config = kwargs.pop("config", None)
        if not isinstance(config, PretrainedConfig):
            config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)

        for config_class, model_class in MODEL_FOR_PRETRAINING_MAPPING.items():
            if isinstance(config, config_class):
                return model_class.from_pretrained(pretrained_model_name_or_path, *model_args, config=config, **kwargs)
        raise ValueError(
            "Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
            "Model type should be one of {}.".format(
                config.__class__, cls.__name__, ", ".join(c.__name__ for c in MODEL_FOR_PRETRAINING_MAPPING.keys())
            )
        )


520
521
class AutoModelWithLMHead(object):
    r"""
522
        :class:`~transformers.AutoModelWithLMHead` is a generic model class
523
524
525
526
527
528
        that will be instantiated as one of the language modeling model classes of the library
        when created with the `AutoModelWithLMHead.from_pretrained(pretrained_model_name_or_path)`
        class method.

        This class cannot be instantiated using `__init__()` (throws an error).
    """
529

530
    def __init__(self):
531
532
        raise EnvironmentError(
            "AutoModelWithLMHead is designed to be instantiated "
533
            "using the `AutoModelWithLMHead.from_pretrained(pretrained_model_name_or_path)` or "
534
535
            "`AutoModelWithLMHead.from_config(config)` methods."
        )
536
537
538
539
540
541

    @classmethod
    def from_config(cls, config):
        r""" Instantiates one of the base model classes of the library
        from a configuration.

Lysandre's avatar
Lysandre committed
542
543
        Args:
            config (:class:`~transformers.PretrainedConfig`):
544
                The model class to instantiate is selected based on the configuration class:
Lysandre's avatar
Lysandre committed
545

Lysandre's avatar
Lysandre committed
546
547
548
549
550
551
552
553
554
                - isInstance of `distilbert` configuration class: :class:`~transformers.DistilBertModelForMaskedLM` (DistilBERT model)
                - isInstance of `roberta` configuration class: :class:`~transformers.RobertaModelForMaskedLM` (RoBERTa model)
                - isInstance of `bert` configuration class: :class:`~transformers.BertModelForMaskedLM` (Bert model)
                - isInstance of `openai-gpt` configuration class: :class:`~transformers.OpenAIGPTLMHeadModel` (OpenAI GPT model)
                - isInstance of `gpt2` configuration class: :class:`~transformers.GPT2ModelLMHeadModel` (OpenAI GPT-2 model)
                - isInstance of `ctrl` configuration class: :class:`~transformers.CTRLModelLMHeadModel` (Salesforce CTRL  model)
                - isInstance of `transfo-xl` configuration class: :class:`~transformers.TransfoXLLMHeadModel` (Transformer-XL model)
                - isInstance of `xlnet` configuration class: :class:`~transformers.XLNetLMHeadModel` (XLNet model)
                - isInstance of `xlm` configuration class: :class:`~transformers.XLMWithLMHeadModel` (XLM model)
555
556
557
558
559
560

        Examples::

            config = BertConfig.from_pretrained('bert-base-uncased')    # Download configuration from S3 and cache.
            model = AutoModelWithLMHead.from_config(config)  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
        """
561
562
563
564
565
566
567
568
569
        for config_class, model_class in MODEL_WITH_LM_HEAD_MAPPING.items():
            if isinstance(config, config_class):
                return model_class(config)
        raise ValueError(
            "Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
            "Model type should be one of {}.".format(
                config.__class__, cls.__name__, ", ".join(c.__name__ for c in MODEL_WITH_LM_HEAD_MAPPING.keys())
            )
        )
570
571
572
573
574
575
576

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
        r""" Instantiates one of the language modeling model classes of the library
        from a pre-trained model configuration.

        The `from_pretrained()` method takes care of returning the correct model class instance
577
578
        based on the `model_type` property of the config object, or when it's missing,
        falling back to using pattern matching on the `pretrained_model_name_or_path` string.
579
580
581

        The model class to instantiate is selected as the first pattern matching
        in the `pretrained_model_name_or_path` string (in the following order):
Lysandre's avatar
Lysandre committed
582
583
584
585
586
587
588
589
590
591
592
593
594
            - contains `t5`: :class:`~transformers.T5ModelWithLMHead` (T5 model)
            - contains `distilbert`: :class:`~transformers.DistilBertForMaskedLM` (DistilBERT model)
            - contains `albert`: :class:`~transformers.AlbertForMaskedLM` (ALBERT model)
            - contains `camembert`: :class:`~transformers.CamembertForMaskedLM` (CamemBERT model)
            - contains `xlm-roberta`: :class:`~transformers.XLMRobertaForMaskedLM` (XLM-RoBERTa model)
            - contains `roberta`: :class:`~transformers.RobertaForMaskedLM` (RoBERTa model)
            - contains `bert`: :class:`~transformers.BertForMaskedLM` (Bert model)
            - contains `openai-gpt`: :class:`~transformers.OpenAIGPTLMHeadModel` (OpenAI GPT model)
            - contains `gpt2`: :class:`~transformers.GPT2LMHeadModel` (OpenAI GPT-2 model)
            - contains `transfo-xl`: :class:`~transformers.TransfoXLLMHeadModel` (Transformer-XL model)
            - contains `xlnet`: :class:`~transformers.XLNetLMHeadModel` (XLNet model)
            - contains `xlm`: :class:`~transformers.XLMWithLMHeadModel` (XLM model)
            - contains `ctrl`: :class:`~transformers.CTRLLMHeadModel` (Salesforce CTRL model)
595
596
597
598

        The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated)
        To train the model, you should first set it back in training mode with `model.train()`

Lysandre's avatar
Lysandre committed
599
600
601
        Args:
            pretrained_model_name_or_path:
                Either:
thomwolf's avatar
thomwolf committed
602
603

                - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
604
                - a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``.
605
                - a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
thomwolf's avatar
thomwolf committed
606
607
608
                - a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
            model_args: (`optional`) Sequence of positional arguments:
                All remaning positional arguments will be passed to the underlying model's ``__init__`` method
609
            config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`:
thomwolf's avatar
thomwolf committed
610
611
612
                Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:

                - the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
613
                - the model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
thomwolf's avatar
thomwolf committed
614
615
616
617
                - the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.

            state_dict: (`optional`) dict:
                an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
618
                This option can be used if you want to create a model from a pretrained configuration but load your own weights.
619
                In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option.
thomwolf's avatar
thomwolf committed
620
            cache_dir: (`optional`) string:
621
622
                Path to a directory in which a downloaded pre-trained model
                configuration should be cached if the standard cache should not be used.
thomwolf's avatar
thomwolf committed
623
624
            force_download: (`optional`) boolean, default False:
                Force to (re-)download the model weights and configuration files and override the cached versions if they exists.
625
            resume_download: (`optional`) boolean, default False:
Lysandre's avatar
Lysandre committed
626
                Do not delete incompletely received file. Attempt to resume the download if such a file exists.
thomwolf's avatar
thomwolf committed
627
628
629
630
631
632
            proxies: (`optional`) dict, default None:
                A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
                The proxies are used on each request.
            output_loading_info: (`optional`) boolean:
                Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.
            kwargs: (`optional`) Remaining dictionary of keyword arguments:
Lysandre's avatar
Lysandre committed
633
634
635
636
637
638
639
640
641
642
643
644
                Can be used to update the configuration object (after it being loaded) and initiate the model.
                (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or
                automatically loaded:

                - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the
                  underlying model's ``__init__`` method (we assume all relevant updates to the configuration have
                  already been done)
                - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class
                  initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of
                  ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute
                  with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration
                  attribute will be passed to the underlying model's ``__init__`` function.
645
646
647
648
649
650
651
652
653
654
655
656

        Examples::

            model = AutoModelWithLMHead.from_pretrained('bert-base-uncased')    # Download model and configuration from S3 and cache.
            model = AutoModelWithLMHead.from_pretrained('./test/bert_model/')  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
            model = AutoModelWithLMHead.from_pretrained('bert-base-uncased', output_attention=True)  # Update configuration during loading
            assert model.config.output_attention == True
            # Loading from a TF checkpoint file instead of a PyTorch model (slower)
            config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
            model = AutoModelWithLMHead.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)

        """
657
658
659
660
        config = kwargs.pop("config", None)
        if not isinstance(config, PretrainedConfig):
            config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)

661
662
663
        for config_class, model_class in MODEL_WITH_LM_HEAD_MAPPING.items():
            if isinstance(config, config_class):
                return model_class.from_pretrained(pretrained_model_name_or_path, *model_args, config=config, **kwargs)
664
        raise ValueError(
665
666
667
            "Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
            "Model type should be one of {}.".format(
                config.__class__, cls.__name__, ", ".join(c.__name__ for c in MODEL_WITH_LM_HEAD_MAPPING.keys())
668
669
            )
        )
670
671
672
673


class AutoModelForSequenceClassification(object):
    r"""
674
        :class:`~transformers.AutoModelForSequenceClassification` is a generic model class
675
676
677
678
679
680
        that will be instantiated as one of the sequence classification model classes of the library
        when created with the `AutoModelForSequenceClassification.from_pretrained(pretrained_model_name_or_path)`
        class method.

        This class cannot be instantiated using `__init__()` (throws an error).
    """
681

682
    def __init__(self):
683
684
        raise EnvironmentError(
            "AutoModelForSequenceClassification is designed to be instantiated "
685
            "using the `AutoModelForSequenceClassification.from_pretrained(pretrained_model_name_or_path)` or "
686
687
            "`AutoModelForSequenceClassification.from_config(config)` methods."
        )
688
689
690
691
692
693

    @classmethod
    def from_config(cls, config):
        r""" Instantiates one of the base model classes of the library
        from a configuration.

Lysandre's avatar
Lysandre committed
694
695
        Args:
            config (:class:`~transformers.PretrainedConfig`):
696
                The model class to instantiate is selected based on the configuration class:
Lysandre's avatar
Lysandre committed
697

Lysandre's avatar
Lysandre committed
698
699
700
701
702
703
704
705
                - isInstance of `distilbert` configuration class: :class:`~transformers.DistilBertModelForSequenceClassification` (DistilBERT model)
                - isInstance of `albert` configuration class: :class:`~transformers.AlbertModelForSequenceClassification` (ALBERT model)
                - isInstance of `camembert` configuration class: :class:`~transformers.CamembertModelForSequenceClassification` (CamemBERT model)
                - isInstance of `xlm roberta` configuration class: :class:`~transformers.XLMRobertaModelForSequenceClassification` (XLM-RoBERTa model)
                - isInstance of `roberta` configuration class: :class:`~transformers.RobertaModelForSequenceClassification` (RoBERTa model)
                - isInstance of `bert` configuration class: :class:`~transformers.BertModelForSequenceClassification` (Bert model)
                - isInstance of `xlnet` configuration class: :class:`~transformers.XLNetModelForSequenceClassification` (XLNet model)
                - isInstance of `xlm` configuration class: :class:`~transformers.XLMModelForSequenceClassification` (XLM model)
Lysandre's avatar
Lysandre committed
706

707
708
709
710
711
712

        Examples::

            config = BertConfig.from_pretrained('bert-base-uncased')    # Download configuration from S3 and cache.
            model = AutoModelForSequenceClassification.from_config(config)  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
        """
713
714
715
716
717
718
719
720
721
722
723
        for config_class, model_class in MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.items():
            if isinstance(config, config_class):
                return model_class(config)
        raise ValueError(
            "Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
            "Model type should be one of {}.".format(
                config.__class__,
                cls.__name__,
                ", ".join(c.__name__ for c in MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.keys()),
            )
        )
724
725
726
727
728
729
730

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
        r""" Instantiates one of the sequence classification model classes of the library
        from a pre-trained model configuration.

        The `from_pretrained()` method takes care of returning the correct model class instance
731
732
        based on the `model_type` property of the config object, or when it's missing,
        falling back to using pattern matching on the `pretrained_model_name_or_path` string.
733
734
735

        The model class to instantiate is selected as the first pattern matching
        in the `pretrained_model_name_or_path` string (in the following order):
Lysandre's avatar
Lysandre committed
736
737
738
739
740
741
742
743
            - contains `distilbert`: :class:`~transformers.DistilBertForSequenceClassification` (DistilBERT model)
            - contains `albert`: :class:`~transformers.AlbertForSequenceClassification` (ALBERT model)
            - contains `camembert`: :class:`~transformers.CamembertForSequenceClassification` (CamemBERT model)
            - contains `xlm-roberta`: :class:`~transformers.XLMRobertaForSequenceClassification` (XLM-RoBERTa model)
            - contains `roberta`: :class:`~transformers.RobertaForSequenceClassification` (RoBERTa model)
            - contains `bert`: :class:`~transformers.BertForSequenceClassification` (Bert model)
            - contains `xlnet`: :class:`~transformers.XLNetForSequenceClassification` (XLNet model)
            - contains `xlm`: :class:`~transformers.XLMForSequenceClassification` (XLM model)
744
745
746
747

        The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated)
        To train the model, you should first set it back in training mode with `model.train()`

Lysandre's avatar
Lysandre committed
748
        Args:
thomwolf's avatar
thomwolf committed
749
750
751
            pretrained_model_name_or_path: either:

                - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
752
                - a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``.
753
                - a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
thomwolf's avatar
thomwolf committed
754
755
756
                - a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.

            model_args: (`optional`) Sequence of positional arguments:
Lysandre's avatar
Lysandre committed
757
                All remaining positional arguments will be passed to the underlying model's ``__init__`` method
thomwolf's avatar
thomwolf committed
758

759
            config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`:
thomwolf's avatar
thomwolf committed
760
761
762
                Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:

                - the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
763
                - the model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
thomwolf's avatar
thomwolf committed
764
765
766
767
                - the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.

            state_dict: (`optional`) dict:
                an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
768
                This option can be used if you want to create a model from a pretrained configuration but load your own weights.
769
                In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option.
thomwolf's avatar
thomwolf committed
770
771

            cache_dir: (`optional`) string:
772
773
                Path to a directory in which a downloaded pre-trained model
                configuration should be cached if the standard cache should not be used.
thomwolf's avatar
thomwolf committed
774
775
776
777

            force_download: (`optional`) boolean, default False:
                Force to (re-)download the model weights and configuration files and override the cached versions if they exists.

778
779
780
            resume_download: (`optional`) boolean, default False:
                Do not delete incompletely recieved file. Attempt to resume the download if such a file exists.

thomwolf's avatar
thomwolf committed
781
782
783
784
785
786
787
788
789
790
791
            proxies: (`optional`) dict, default None:
                A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
                The proxies are used on each request.

            output_loading_info: (`optional`) boolean:
                Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.

            kwargs: (`optional`) Remaining dictionary of keyword arguments:
                Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded:

                - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done)
792
                - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function.
793
794
795
796
797
798
799
800
801
802
803
804

        Examples::

            model = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased')    # Download model and configuration from S3 and cache.
            model = AutoModelForSequenceClassification.from_pretrained('./test/bert_model/')  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
            model = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased', output_attention=True)  # Update configuration during loading
            assert model.config.output_attention == True
            # Loading from a TF checkpoint file instead of a PyTorch model (slower)
            config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
            model = AutoModelForSequenceClassification.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)

        """
805
806
807
808
        config = kwargs.pop("config", None)
        if not isinstance(config, PretrainedConfig):
            config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)

809
810
811
        for config_class, model_class in MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.items():
            if isinstance(config, config_class):
                return model_class.from_pretrained(pretrained_model_name_or_path, *model_args, config=config, **kwargs)
812
        raise ValueError(
813
814
815
816
817
            "Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
            "Model type should be one of {}.".format(
                config.__class__,
                cls.__name__,
                ", ".join(c.__name__ for c in MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.keys()),
818
819
            )
        )
820
821
822
823


class AutoModelForQuestionAnswering(object):
    r"""
824
        :class:`~transformers.AutoModelForQuestionAnswering` is a generic model class
825
826
827
828
829
830
        that will be instantiated as one of the question answering model classes of the library
        when created with the `AutoModelForQuestionAnswering.from_pretrained(pretrained_model_name_or_path)`
        class method.

        This class cannot be instantiated using `__init__()` (throws an error).
    """
831

832
    def __init__(self):
833
834
        raise EnvironmentError(
            "AutoModelForQuestionAnswering is designed to be instantiated "
835
            "using the `AutoModelForQuestionAnswering.from_pretrained(pretrained_model_name_or_path)` or "
836
837
            "`AutoModelForQuestionAnswering.from_config(config)` methods."
        )
838
839
840
841
842
843

    @classmethod
    def from_config(cls, config):
        r""" Instantiates one of the base model classes of the library
        from a configuration.

Lysandre's avatar
Lysandre committed
844
845
        Args:
            config (:class:`~transformers.PretrainedConfig`):
846
                The model class to instantiate is selected based on the configuration class:
Lysandre's avatar
Lysandre committed
847

Lysandre's avatar
Lysandre committed
848
849
850
851
852
                - isInstance of `distilbert` configuration class: :class:`~transformers.DistilBertModelForQuestionAnswering` (DistilBERT model)
                - isInstance of `albert` configuration class: :class:`~transformers.AlbertModelForQuestionAnswering` (ALBERT model)
                - isInstance of `bert` configuration class: :class:`~transformers.BertModelForQuestionAnswering` (Bert model)
                - isInstance of `xlnet` configuration class: :class:`~transformers.XLNetModelForQuestionAnswering` (XLNet model)
                - isInstance of `xlm` configuration class: :class:`~transformers.XLMModelForQuestionAnswering` (XLM model)
853
854
855
856
857
858

        Examples::

            config = BertConfig.from_pretrained('bert-base-uncased')    # Download configuration from S3 and cache.
            model = AutoModelForSequenceClassification.from_config(config)  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
        """
859
860
861
862
863
864
865
866
867
868
869
870
        for config_class, model_class in MODEL_FOR_QUESTION_ANSWERING_MAPPING.items():
            if isinstance(config, config_class):
                return model_class(config)

        raise ValueError(
            "Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
            "Model type should be one of {}.".format(
                config.__class__,
                cls.__name__,
                ", ".join(c.__name__ for c in MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()),
            )
        )
871
872
873
874
875
876
877

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
        r""" Instantiates one of the question answering model classes of the library
        from a pre-trained model configuration.

        The `from_pretrained()` method takes care of returning the correct model class instance
878
879
        based on the `model_type` property of the config object, or when it's missing,
        falling back to using pattern matching on the `pretrained_model_name_or_path` string.
880
881
882

        The model class to instantiate is selected as the first pattern matching
        in the `pretrained_model_name_or_path` string (in the following order):
Lysandre's avatar
Lysandre committed
883
884
885
886
887
            - contains `distilbert`: :class:`~transformers.DistilBertForQuestionAnswering` (DistilBERT model)
            - contains `albert`: :class:`~transformers.AlbertForQuestionAnswering` (ALBERT model)
            - contains `bert`: :class:`~transformers.BertForQuestionAnswering` (Bert model)
            - contains `xlnet`: :class:`~transformers.XLNetForQuestionAnswering` (XLNet model)
            - contains `xlm`: :class:`~transformers.XLMForQuestionAnswering` (XLM model)
888
889
890
891

        The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated)
        To train the model, you should first set it back in training mode with `model.train()`

Lysandre's avatar
Lysandre committed
892
        Args:
thomwolf's avatar
thomwolf committed
893
894
895
            pretrained_model_name_or_path: either:

                - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
896
                - a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``.
897
                - a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
thomwolf's avatar
thomwolf committed
898
899
900
901
902
                - a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.

            model_args: (`optional`) Sequence of positional arguments:
                All remaning positional arguments will be passed to the underlying model's ``__init__`` method

903
            config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`:
thomwolf's avatar
thomwolf committed
904
905
906
                Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:

                - the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
907
                - the model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
thomwolf's avatar
thomwolf committed
908
909
910
911
                - the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.

            state_dict: (`optional`) dict:
                an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
912
                This option can be used if you want to create a model from a pretrained configuration but load your own weights.
913
                In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option.
thomwolf's avatar
thomwolf committed
914
915

            cache_dir: (`optional`) string:
916
917
                Path to a directory in which a downloaded pre-trained model
                configuration should be cached if the standard cache should not be used.
thomwolf's avatar
thomwolf committed
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932

            force_download: (`optional`) boolean, default False:
                Force to (re-)download the model weights and configuration files and override the cached versions if they exists.

            proxies: (`optional`) dict, default None:
                A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
                The proxies are used on each request.

            output_loading_info: (`optional`) boolean:
                Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.

            kwargs: (`optional`) Remaining dictionary of keyword arguments:
                Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded:

                - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done)
933
                - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function.
934
935
936
937
938
939
940
941
942
943
944
945

        Examples::

            model = AutoModelForQuestionAnswering.from_pretrained('bert-base-uncased')    # Download model and configuration from S3 and cache.
            model = AutoModelForQuestionAnswering.from_pretrained('./test/bert_model/')  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
            model = AutoModelForQuestionAnswering.from_pretrained('bert-base-uncased', output_attention=True)  # Update configuration during loading
            assert model.config.output_attention == True
            # Loading from a TF checkpoint file instead of a PyTorch model (slower)
            config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
            model = AutoModelForQuestionAnswering.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)

        """
946
947
948
949
        config = kwargs.pop("config", None)
        if not isinstance(config, PretrainedConfig):
            config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)

950
951
952
        for config_class, model_class in MODEL_FOR_QUESTION_ANSWERING_MAPPING.items():
            if isinstance(config, config_class):
                return model_class.from_pretrained(pretrained_model_name_or_path, *model_args, config=config, **kwargs)
953

954
        raise ValueError(
955
956
957
958
959
960
            "Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
            "Model type should be one of {}.".format(
                config.__class__,
                cls.__name__,
                ", ".join(c.__name__ for c in MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()),
            )
961
        )
962
963
964


class AutoModelForTokenClassification:
Lysandre's avatar
Lysandre committed
965
966
967
968
969
970
971
972
973
    r"""
        :class:`~transformers.AutoModelForTokenClassification` is a generic model class
        that will be instantiated as one of the token classification model classes of the library
        when created with the `AutoModelForTokenClassification.from_pretrained(pretrained_model_name_or_path)`
        class method.

        This class cannot be instantiated using `__init__()` (throws an error).
    """

974
    def __init__(self):
975
976
977
978
979
        raise EnvironmentError(
            "AutoModelForTokenClassification is designed to be instantiated "
            "using the `AutoModelForTokenClassification.from_pretrained(pretrained_model_name_or_path)` or "
            "`AutoModelForTokenClassification.from_config(config)` methods."
        )
980
981
982
983
984

    @classmethod
    def from_config(cls, config):
        r""" Instantiates one of the base model classes of the library
        from a configuration.
985

Lysandre's avatar
Lysandre committed
986
987
        Args:
            config (:class:`~transformers.PretrainedConfig`):
988
                The model class to instantiate is selected based on the configuration class:
Lysandre's avatar
Lysandre committed
989

Lysandre's avatar
Lysandre committed
990
991
992
993
994
995
                - isInstance of `distilbert` configuration class: :class:`~transformers.DistilBertModelForTokenClassification` (DistilBERT model)
                - isInstance of `xlm roberta` configuration class: :class:`~transformers.XLMRobertaModelForTokenClassification` (XLMRoberta model)
                - isInstance of `bert` configuration class: :class:`~transformers.BertModelForTokenClassification` (Bert model)
                - isInstance of `xlnet` configuration class: :class:`~transformers.XLNetModelForTokenClassification` (XLNet model)
                - isInstance of `camembert` configuration class: :class:`~transformers.CamembertModelForTokenClassification` (Camembert model)
                - isInstance of `roberta` configuration class: :class:`~transformers.RobertaModelForTokenClassification` (Roberta model)
996

997
        Examples::
998

999
1000
1001
            config = BertConfig.from_pretrained('bert-base-uncased')    # Download configuration from S3 and cache.
            model = AutoModelForTokenClassification.from_config(config)  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
        """
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
        for config_class, model_class in MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items():
            if isinstance(config, config_class):
                return model_class(config)

        raise ValueError(
            "Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
            "Model type should be one of {}.".format(
                config.__class__,
                cls.__name__,
                ", ".join(c.__name__ for c in MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.keys()),
            )
        )
1014

1015
1016
1017
1018
1019
1020
    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
        r""" Instantiates one of the question answering model classes of the library
        from a pre-trained model configuration.

        The `from_pretrained()` method takes care of returning the correct model class instance
1021
1022
        based on the `model_type` property of the config object, or when it's missing,
        falling back to using pattern matching on the `pretrained_model_name_or_path` string.
1023
1024
1025

        The model class to instantiate is selected as the first pattern matching
        in the `pretrained_model_name_or_path` string (in the following order):
Lysandre's avatar
Lysandre committed
1026
1027
1028
1029
1030
1031
            - contains `distilbert`: :class:`~transformers.DistilBertForTokenClassification` (DistilBERT model)
            - contains `xlm-roberta`: :class:`~transformers.XLMRobertaForTokenClassification` (XLM-RoBERTa?Para model)
            - contains `camembert`: :class:`~transformers.CamembertForTokenClassification` (Camembert model)
            - contains `bert`: :class:`~transformers.BertForTokenClassification` (Bert model)
            - contains `xlnet`: :class:`~transformers.XLNetForTokenClassification` (XLNet model)
            - contains `roberta`: :class:`~transformers.RobertaForTokenClassification` (Roberta model)
1032
1033
1034
1035

        The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated)
        To train the model, you should first set it back in training mode with `model.train()`

Lysandre's avatar
Lysandre committed
1036
1037
1038
        Args:
            pretrained_model_name_or_path:
                Either:
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089

                - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
                - a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
                - a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.

            model_args: (`optional`) Sequence of positional arguments:
                All remaning positional arguments will be passed to the underlying model's ``__init__`` method

            config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`:
                Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:

                - the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
                - the model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
                - the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.

            state_dict: (`optional`) dict:
                an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
                This option can be used if you want to create a model from a pretrained configuration but load your own weights.
                In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option.

            cache_dir: (`optional`) string:
                Path to a directory in which a downloaded pre-trained model
                configuration should be cached if the standard cache should not be used.

            force_download: (`optional`) boolean, default False:
                Force to (re-)download the model weights and configuration files and override the cached versions if they exists.

            proxies: (`optional`) dict, default None:
                A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
                The proxies are used on each request.

            output_loading_info: (`optional`) boolean:
                Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.

            kwargs: (`optional`) Remaining dictionary of keyword arguments:
                Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded:

                - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done)
                - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function.

        Examples::

            model = AutoModelForTokenClassification.from_pretrained('bert-base-uncased')    # Download model and configuration from S3 and cache.
            model = AutoModelForTokenClassification.from_pretrained('./test/bert_model/')  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
            model = AutoModelForTokenClassification.from_pretrained('bert-base-uncased', output_attention=True)  # Update configuration during loading
            assert model.config.output_attention == True
            # Loading from a TF checkpoint file instead of a PyTorch model (slower)
            config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
            model = AutoModelForTokenClassification.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)

        """
1090
1091
1092
1093
        config = kwargs.pop("config", None)
        if not isinstance(config, PretrainedConfig):
            config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)

1094
1095
1096
        for config_class, model_class in MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items():
            if isinstance(config, config_class):
                return model_class.from_pretrained(pretrained_model_name_or_path, *model_args, config=config, **kwargs)
1097

1098
        raise ValueError(
1099
1100
1101
1102
1103
            "Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
            "Model type should be one of {}.".format(
                config.__class__,
                cls.__name__,
                ", ".join(c.__name__ for c in MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.keys()),
1104
1105
            )
        )