modeling_auto.py 57.2 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Auto Model class. """


import logging
Julien Chaumond's avatar
Julien Chaumond committed
19
from collections import OrderedDict
thomwolf's avatar
thomwolf committed
20

21
22
from .configuration_auto import (
    AlbertConfig,
23
    AutoConfig,
24
25
26
27
28
29
30
    BertConfig,
    CamembertConfig,
    CTRLConfig,
    DistilBertConfig,
    GPT2Config,
    OpenAIGPTConfig,
    RobertaConfig,
31
    T5Config,
32
33
34
    TransfoXLConfig,
    XLMConfig,
    XLMRobertaConfig,
Aymeric Augustin's avatar
Aymeric Augustin committed
35
36
    XLNetConfig,
)
37
from .configuration_utils import PretrainedConfig
Aymeric Augustin's avatar
Aymeric Augustin committed
38
39
40
41
42
43
from .modeling_albert import (
    ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP,
    AlbertForMaskedLM,
    AlbertForQuestionAnswering,
    AlbertForSequenceClassification,
    AlbertModel,
44
45
)
from .modeling_bert import (
Aymeric Augustin's avatar
Aymeric Augustin committed
46
    BERT_PRETRAINED_MODEL_ARCHIVE_MAP,
47
48
    BertForMaskedLM,
    BertForQuestionAnswering,
Aymeric Augustin's avatar
Aymeric Augustin committed
49
    BertForSequenceClassification,
50
    BertForTokenClassification,
Aymeric Augustin's avatar
Aymeric Augustin committed
51
    BertModel,
52
)
Aymeric Augustin's avatar
Aymeric Augustin committed
53
54
55
56
57
58
from .modeling_camembert import (
    CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_MAP,
    CamembertForMaskedLM,
    CamembertForSequenceClassification,
    CamembertForTokenClassification,
    CamembertModel,
59
)
Aymeric Augustin's avatar
Aymeric Augustin committed
60
from .modeling_ctrl import CTRL_PRETRAINED_MODEL_ARCHIVE_MAP, CTRLLMHeadModel, CTRLModel
61
from .modeling_distilbert import (
Aymeric Augustin's avatar
Aymeric Augustin committed
62
    DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP,
63
    DistilBertForMaskedLM,
Aymeric Augustin's avatar
Aymeric Augustin committed
64
    DistilBertForQuestionAnswering,
65
66
    DistilBertForSequenceClassification,
    DistilBertForTokenClassification,
Aymeric Augustin's avatar
Aymeric Augustin committed
67
    DistilBertModel,
68
)
Aymeric Augustin's avatar
Aymeric Augustin committed
69
70
71
72
73
74
75
76
from .modeling_gpt2 import GPT2_PRETRAINED_MODEL_ARCHIVE_MAP, GPT2LMHeadModel, GPT2Model
from .modeling_openai import OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP, OpenAIGPTLMHeadModel, OpenAIGPTModel
from .modeling_roberta import (
    ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP,
    RobertaForMaskedLM,
    RobertaForSequenceClassification,
    RobertaForTokenClassification,
    RobertaModel,
77
)
Aymeric Augustin's avatar
Aymeric Augustin committed
78
79
80
81
82
83
84
85
from .modeling_t5 import T5_PRETRAINED_MODEL_ARCHIVE_MAP, T5Model, T5WithLMHeadModel
from .modeling_transfo_xl import TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP, TransfoXLLMHeadModel, TransfoXLModel
from .modeling_xlm import (
    XLM_PRETRAINED_MODEL_ARCHIVE_MAP,
    XLMForQuestionAnswering,
    XLMForSequenceClassification,
    XLMModel,
    XLMWithLMHeadModel,
86
87
)
from .modeling_xlm_roberta import (
Aymeric Augustin's avatar
Aymeric Augustin committed
88
    XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP,
89
    XLMRobertaForMaskedLM,
Aymeric Augustin's avatar
Aymeric Augustin committed
90
    XLMRobertaForSequenceClassification,
91
    XLMRobertaForTokenClassification,
Aymeric Augustin's avatar
Aymeric Augustin committed
92
93
94
95
96
97
98
99
100
    XLMRobertaModel,
)
from .modeling_xlnet import (
    XLNET_PRETRAINED_MODEL_ARCHIVE_MAP,
    XLNetForQuestionAnswering,
    XLNetForSequenceClassification,
    XLNetForTokenClassification,
    XLNetLMHeadModel,
    XLNetModel,
101
)
thomwolf's avatar
thomwolf committed
102

thomwolf's avatar
thomwolf committed
103

104
logger = logging.getLogger(__name__)
thomwolf's avatar
thomwolf committed
105
106


107
108
ALL_PRETRAINED_MODEL_ARCHIVE_MAP = dict(
    (key, value)
109
110
111
112
113
114
115
116
117
118
119
120
121
    for pretrained_map in [
        BERT_PRETRAINED_MODEL_ARCHIVE_MAP,
        OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP,
        TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP,
        GPT2_PRETRAINED_MODEL_ARCHIVE_MAP,
        CTRL_PRETRAINED_MODEL_ARCHIVE_MAP,
        XLNET_PRETRAINED_MODEL_ARCHIVE_MAP,
        XLM_PRETRAINED_MODEL_ARCHIVE_MAP,
        ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP,
        DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP,
        ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP,
        CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_MAP,
        T5_PRETRAINED_MODEL_ARCHIVE_MAP,
122
        XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP,
123
124
125
    ]
    for key, value, in pretrained_map.items()
)
126

Julien Chaumond's avatar
Julien Chaumond committed
127
MODEL_MAPPING = OrderedDict(
Julien Chaumond's avatar
Julien Chaumond committed
128
129
130
131
132
    [
        (T5Config, T5Model),
        (DistilBertConfig, DistilBertModel),
        (AlbertConfig, AlbertModel),
        (CamembertConfig, CamembertModel),
133
        (XLMRobertaConfig, XLMRobertaModel),
134
        (RobertaConfig, RobertaModel),
Julien Chaumond's avatar
Julien Chaumond committed
135
136
137
138
139
140
141
142
143
144
        (BertConfig, BertModel),
        (OpenAIGPTConfig, OpenAIGPTModel),
        (GPT2Config, GPT2Model),
        (TransfoXLConfig, TransfoXLModel),
        (XLNetConfig, XLNetModel),
        (XLMConfig, XLMModel),
        (CTRLConfig, CTRLModel),
    ]
)

Julien Chaumond's avatar
Julien Chaumond committed
145
MODEL_WITH_LM_HEAD_MAPPING = OrderedDict(
146
147
148
149
150
151
    [
        (T5Config, T5WithLMHeadModel),
        (DistilBertConfig, DistilBertForMaskedLM),
        (AlbertConfig, AlbertForMaskedLM),
        (CamembertConfig, CamembertForMaskedLM),
        (XLMRobertaConfig, XLMRobertaForMaskedLM),
152
        (RobertaConfig, RobertaForMaskedLM),
153
154
155
156
157
158
159
160
161
162
        (BertConfig, BertForMaskedLM),
        (OpenAIGPTConfig, OpenAIGPTLMHeadModel),
        (GPT2Config, GPT2LMHeadModel),
        (TransfoXLConfig, TransfoXLLMHeadModel),
        (XLNetConfig, XLNetLMHeadModel),
        (XLMConfig, XLMWithLMHeadModel),
        (CTRLConfig, CTRLLMHeadModel),
    ]
)

Julien Chaumond's avatar
Julien Chaumond committed
163
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = OrderedDict(
164
165
166
167
168
    [
        (DistilBertConfig, DistilBertForSequenceClassification),
        (AlbertConfig, AlbertForSequenceClassification),
        (CamembertConfig, CamembertForSequenceClassification),
        (XLMRobertaConfig, XLMRobertaForSequenceClassification),
169
        (RobertaConfig, RobertaForSequenceClassification),
170
171
172
173
174
175
        (BertConfig, BertForSequenceClassification),
        (XLNetConfig, XLNetForSequenceClassification),
        (XLMConfig, XLMForSequenceClassification),
    ]
)

Julien Chaumond's avatar
Julien Chaumond committed
176
MODEL_FOR_QUESTION_ANSWERING_MAPPING = OrderedDict(
177
178
179
180
181
182
183
184
185
    [
        (DistilBertConfig, DistilBertForQuestionAnswering),
        (AlbertConfig, AlbertForQuestionAnswering),
        (BertConfig, BertForQuestionAnswering),
        (XLNetConfig, XLNetForQuestionAnswering),
        (XLMConfig, XLMForQuestionAnswering),
    ]
)

Julien Chaumond's avatar
Julien Chaumond committed
186
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING = OrderedDict(
Julien Chaumond's avatar
Julien Chaumond committed
187
188
189
    [
        (DistilBertConfig, DistilBertForTokenClassification),
        (CamembertConfig, CamembertForTokenClassification),
190
        (XLMRobertaConfig, XLMRobertaForTokenClassification),
191
        (RobertaConfig, RobertaForTokenClassification),
Julien Chaumond's avatar
Julien Chaumond committed
192
193
194
195
196
        (BertConfig, BertForTokenClassification),
        (XLNetConfig, XLNetForTokenClassification),
    ]
)

197

thomwolf's avatar
thomwolf committed
198
199
class AutoModel(object):
    r"""
200
        :class:`~transformers.AutoModel` is a generic model class
thomwolf's avatar
thomwolf committed
201
202
        that will be instantiated as one of the base model classes of the library
        when created with the `AutoModel.from_pretrained(pretrained_model_name_or_path)`
203
        or the `AutoModel.from_config(config)` class methods.
thomwolf's avatar
thomwolf committed
204

205
        This class cannot be instantiated using `__init__()` (throws an error).
thomwolf's avatar
thomwolf committed
206
    """
207

thomwolf's avatar
thomwolf committed
208
    def __init__(self):
209
210
        raise EnvironmentError(
            "AutoModel is designed to be instantiated "
211
            "using the `AutoModel.from_pretrained(pretrained_model_name_or_path)` or "
212
213
            "`AutoModel.from_config(config)` methods."
        )
214
215
216
217
218
219

    @classmethod
    def from_config(cls, config):
        r""" Instantiates one of the base model classes of the library
        from a configuration.

Lysandre's avatar
Lysandre committed
220
221
        Args:
            config (:class:`~transformers.PretrainedConfig`):
222
                The model class to instantiate is selected based on the configuration class:
Lysandre's avatar
Lysandre committed
223
224
225
226
227
228
229
230
231
232

                - isInstance of `distilbert` configuration class: :class:`~transformers.DistilBertModel` (DistilBERT model)
                - isInstance of `roberta` configuration class: :class:`~transformers.RobertaModel` (RoBERTa model)
                - isInstance of `bert` configuration class: :class:`~transformers.BertModel` (Bert model)
                - isInstance of `openai-gpt` configuration class: :class:`~transformers.OpenAIGPTModel` (OpenAI GPT model)
                - isInstance of `gpt2` configuration class: :class:`~transformers.GPT2Model` (OpenAI GPT-2 model)
                - isInstance of `ctrl` configuration class: :class:`~transformers.CTRLModel` (Salesforce CTRL  model)
                - isInstance of `transfo-xl` configuration class: :class:`~transformers.TransfoXLModel` (Transformer-XL model)
                - isInstance of `xlnet` configuration class: :class:`~transformers.XLNetModel` (XLNet model)
                - isInstance of `xlm` configuration class: :class:`~transformers.XLMModel` (XLM model)
233
234
235
236
237
238

        Examples::

            config = BertConfig.from_pretrained('bert-base-uncased')    # Download configuration from S3 and cache.
            model = AutoModel.from_config(config)  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
        """
Julien Chaumond's avatar
Julien Chaumond committed
239
240
241
        for config_class, model_class in MODEL_MAPPING.items():
            if isinstance(config, config_class):
                return model_class(config)
242
243
244
245
246
247
        raise ValueError(
            "Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
            "Model type should be one of {}.".format(
                config.__class__, cls.__name__, ", ".join(c.__name__ for c in MODEL_MAPPING.keys())
            )
        )
thomwolf's avatar
thomwolf committed
248
249
250

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
251
        r""" Instantiates one of the base model classes of the library
thomwolf's avatar
thomwolf committed
252
253
        from a pre-trained model configuration.

Lysandre's avatar
Lysandre committed
254
255
256
257
258
        The `from_pretrained()` method takes care of returning the correct model class instance
        based on the `model_type` property of the config object, or when it's missing,
        falling back to using pattern matching on the `pretrained_model_name_or_path` string.

        The base model class to instantiate is selected as the first pattern matching
thomwolf's avatar
thomwolf committed
259
        in the `pretrained_model_name_or_path` string (in the following order):
Lysandre's avatar
Lysandre committed
260
261
262
263
264
265
266
267
268
269
270
271
272
            - contains `t5`: :class:`~transformers.T5Model` (T5 model)
            - contains `distilbert`: :class:`~transformers.DistilBertModel` (DistilBERT model)
            - contains `albert`: :class:`~transformers.AlbertModel` (ALBERT model)
            - contains `camembert`: :class:`~transformers.CamembertModel` (CamemBERT model)
            - contains `xlm-roberta`: :class:`~transformers.XLMRobertaModel` (XLM-RoBERTa model)
            - contains `roberta`: :class:`~transformers.RobertaModel` (RoBERTa model)
            - contains `bert`: :class:`~transformers.BertModel` (Bert model)
            - contains `openai-gpt`: :class:`~transformers.OpenAIGPTModel` (OpenAI GPT model)
            - contains `gpt2`: :class:`~transformers.GPT2Model` (OpenAI GPT-2 model)
            - contains `transfo-xl`: :class:`~transformers.TransfoXLModel` (Transformer-XL model)
            - contains `xlnet`: :class:`~transformers.XLNetModel` (XLNet model)
            - contains `xlm`: :class:`~transformers.XLMModel` (XLM model)
            - contains `ctrl`: :class:`~transformers.CTRLModel` (Salesforce CTRL  model)
thomwolf's avatar
thomwolf committed
273

thomwolf's avatar
typos  
thomwolf committed
274
            The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated)
thomwolf's avatar
thomwolf committed
275
276
            To train the model, you should first set it back in training mode with `model.train()`

Lysandre's avatar
Lysandre committed
277
        Args:
thomwolf's avatar
thomwolf committed
278
279
280
            pretrained_model_name_or_path: either:

                - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
281
                - a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``.
282
                - a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
thomwolf's avatar
thomwolf committed
283
284
285
286
287
                - a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.

            model_args: (`optional`) Sequence of positional arguments:
                All remaning positional arguments will be passed to the underlying model's ``__init__`` method

288
            config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`:
thomwolf's avatar
thomwolf committed
289
290
291
                Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:

                - the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
292
                - the model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
thomwolf's avatar
thomwolf committed
293
294
295
296
                - the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.

            state_dict: (`optional`) dict:
                an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
thomwolf's avatar
typos  
thomwolf committed
297
                This option can be used if you want to create a model from a pretrained configuration but load your own weights.
298
                In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option.
thomwolf's avatar
thomwolf committed
299
300

            cache_dir: (`optional`) string:
thomwolf's avatar
thomwolf committed
301
302
                Path to a directory in which a downloaded pre-trained model
                configuration should be cached if the standard cache should not be used.
thomwolf's avatar
thomwolf committed
303
304
305
306

            force_download: (`optional`) boolean, default False:
                Force to (re-)download the model weights and configuration files and override the cached versions if they exists.

307
308
309
            resume_download: (`optional`) boolean, default False:
                Do not delete incompletely recieved file. Attempt to resume the download if such a file exists.

thomwolf's avatar
thomwolf committed
310
311
312
313
314
315
316
317
318
319
320
            proxies: (`optional`) dict, default None:
                A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
                The proxies are used on each request.

            output_loading_info: (`optional`) boolean:
                Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.

            kwargs: (`optional`) Remaining dictionary of keyword arguments:
                Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded:

                - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done)
321
                - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function.
thomwolf's avatar
thomwolf committed
322
323
324

        Examples::

thomwolf's avatar
thomwolf committed
325
326
327
328
329
330
331
            model = AutoModel.from_pretrained('bert-base-uncased')    # Download model and configuration from S3 and cache.
            model = AutoModel.from_pretrained('./test/bert_model/')  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
            model = AutoModel.from_pretrained('bert-base-uncased', output_attention=True)  # Update configuration during loading
            assert model.config.output_attention == True
            # Loading from a TF checkpoint file instead of a PyTorch model (slower)
            config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
            model = AutoModel.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
thomwolf's avatar
thomwolf committed
332
333

        """
334
335
336
337
        config = kwargs.pop("config", None)
        if not isinstance(config, PretrainedConfig):
            config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)

Julien Chaumond's avatar
Julien Chaumond committed
338
339
340
        for config_class, model_class in MODEL_MAPPING.items():
            if isinstance(config, config_class):
                return model_class.from_pretrained(pretrained_model_name_or_path, *model_args, config=config, **kwargs)
341
        raise ValueError(
342
343
344
            "Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
            "Model type should be one of {}.".format(
                config.__class__, cls.__name__, ", ".join(c.__name__ for c in MODEL_MAPPING.keys())
345
346
            )
        )
347
348
349
350


class AutoModelWithLMHead(object):
    r"""
351
        :class:`~transformers.AutoModelWithLMHead` is a generic model class
352
353
354
355
356
357
        that will be instantiated as one of the language modeling model classes of the library
        when created with the `AutoModelWithLMHead.from_pretrained(pretrained_model_name_or_path)`
        class method.

        This class cannot be instantiated using `__init__()` (throws an error).
    """
358

359
    def __init__(self):
360
361
        raise EnvironmentError(
            "AutoModelWithLMHead is designed to be instantiated "
362
            "using the `AutoModelWithLMHead.from_pretrained(pretrained_model_name_or_path)` or "
363
364
            "`AutoModelWithLMHead.from_config(config)` methods."
        )
365
366
367
368
369
370

    @classmethod
    def from_config(cls, config):
        r""" Instantiates one of the base model classes of the library
        from a configuration.

Lysandre's avatar
Lysandre committed
371
372
        Args:
            config (:class:`~transformers.PretrainedConfig`):
373
                The model class to instantiate is selected based on the configuration class:
Lysandre's avatar
Lysandre committed
374

Lysandre's avatar
Lysandre committed
375
376
377
378
379
380
381
382
383
                - isInstance of `distilbert` configuration class: :class:`~transformers.DistilBertModelForMaskedLM` (DistilBERT model)
                - isInstance of `roberta` configuration class: :class:`~transformers.RobertaModelForMaskedLM` (RoBERTa model)
                - isInstance of `bert` configuration class: :class:`~transformers.BertModelForMaskedLM` (Bert model)
                - isInstance of `openai-gpt` configuration class: :class:`~transformers.OpenAIGPTLMHeadModel` (OpenAI GPT model)
                - isInstance of `gpt2` configuration class: :class:`~transformers.GPT2ModelLMHeadModel` (OpenAI GPT-2 model)
                - isInstance of `ctrl` configuration class: :class:`~transformers.CTRLModelLMHeadModel` (Salesforce CTRL  model)
                - isInstance of `transfo-xl` configuration class: :class:`~transformers.TransfoXLLMHeadModel` (Transformer-XL model)
                - isInstance of `xlnet` configuration class: :class:`~transformers.XLNetLMHeadModel` (XLNet model)
                - isInstance of `xlm` configuration class: :class:`~transformers.XLMWithLMHeadModel` (XLM model)
384
385
386
387
388
389

        Examples::

            config = BertConfig.from_pretrained('bert-base-uncased')    # Download configuration from S3 and cache.
            model = AutoModelWithLMHead.from_config(config)  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
        """
390
391
392
393
394
395
396
397
398
        for config_class, model_class in MODEL_WITH_LM_HEAD_MAPPING.items():
            if isinstance(config, config_class):
                return model_class(config)
        raise ValueError(
            "Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
            "Model type should be one of {}.".format(
                config.__class__, cls.__name__, ", ".join(c.__name__ for c in MODEL_WITH_LM_HEAD_MAPPING.keys())
            )
        )
399
400
401
402
403
404
405

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
        r""" Instantiates one of the language modeling model classes of the library
        from a pre-trained model configuration.

        The `from_pretrained()` method takes care of returning the correct model class instance
406
407
        based on the `model_type` property of the config object, or when it's missing,
        falling back to using pattern matching on the `pretrained_model_name_or_path` string.
408
409
410

        The model class to instantiate is selected as the first pattern matching
        in the `pretrained_model_name_or_path` string (in the following order):
Lysandre's avatar
Lysandre committed
411
412
413
414
415
416
417
418
419
420
421
422
423
            - contains `t5`: :class:`~transformers.T5ModelWithLMHead` (T5 model)
            - contains `distilbert`: :class:`~transformers.DistilBertForMaskedLM` (DistilBERT model)
            - contains `albert`: :class:`~transformers.AlbertForMaskedLM` (ALBERT model)
            - contains `camembert`: :class:`~transformers.CamembertForMaskedLM` (CamemBERT model)
            - contains `xlm-roberta`: :class:`~transformers.XLMRobertaForMaskedLM` (XLM-RoBERTa model)
            - contains `roberta`: :class:`~transformers.RobertaForMaskedLM` (RoBERTa model)
            - contains `bert`: :class:`~transformers.BertForMaskedLM` (Bert model)
            - contains `openai-gpt`: :class:`~transformers.OpenAIGPTLMHeadModel` (OpenAI GPT model)
            - contains `gpt2`: :class:`~transformers.GPT2LMHeadModel` (OpenAI GPT-2 model)
            - contains `transfo-xl`: :class:`~transformers.TransfoXLLMHeadModel` (Transformer-XL model)
            - contains `xlnet`: :class:`~transformers.XLNetLMHeadModel` (XLNet model)
            - contains `xlm`: :class:`~transformers.XLMWithLMHeadModel` (XLM model)
            - contains `ctrl`: :class:`~transformers.CTRLLMHeadModel` (Salesforce CTRL model)
424
425
426
427

        The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated)
        To train the model, you should first set it back in training mode with `model.train()`

Lysandre's avatar
Lysandre committed
428
429
430
        Args:
            pretrained_model_name_or_path:
                Either:
thomwolf's avatar
thomwolf committed
431
432

                - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
433
                - a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``.
434
                - a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
thomwolf's avatar
thomwolf committed
435
436
437
                - a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
            model_args: (`optional`) Sequence of positional arguments:
                All remaning positional arguments will be passed to the underlying model's ``__init__`` method
438
            config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`:
thomwolf's avatar
thomwolf committed
439
440
441
                Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:

                - the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
442
                - the model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
thomwolf's avatar
thomwolf committed
443
444
445
446
                - the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.

            state_dict: (`optional`) dict:
                an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
447
                This option can be used if you want to create a model from a pretrained configuration but load your own weights.
448
                In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option.
thomwolf's avatar
thomwolf committed
449
            cache_dir: (`optional`) string:
450
451
                Path to a directory in which a downloaded pre-trained model
                configuration should be cached if the standard cache should not be used.
thomwolf's avatar
thomwolf committed
452
453
            force_download: (`optional`) boolean, default False:
                Force to (re-)download the model weights and configuration files and override the cached versions if they exists.
454
            resume_download: (`optional`) boolean, default False:
Lysandre's avatar
Lysandre committed
455
                Do not delete incompletely received file. Attempt to resume the download if such a file exists.
thomwolf's avatar
thomwolf committed
456
457
458
459
460
461
            proxies: (`optional`) dict, default None:
                A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
                The proxies are used on each request.
            output_loading_info: (`optional`) boolean:
                Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.
            kwargs: (`optional`) Remaining dictionary of keyword arguments:
Lysandre's avatar
Lysandre committed
462
463
464
465
466
467
468
469
470
471
472
473
                Can be used to update the configuration object (after it being loaded) and initiate the model.
                (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or
                automatically loaded:

                - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the
                  underlying model's ``__init__`` method (we assume all relevant updates to the configuration have
                  already been done)
                - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class
                  initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of
                  ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute
                  with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration
                  attribute will be passed to the underlying model's ``__init__`` function.
474
475
476
477
478
479
480
481
482
483
484
485

        Examples::

            model = AutoModelWithLMHead.from_pretrained('bert-base-uncased')    # Download model and configuration from S3 and cache.
            model = AutoModelWithLMHead.from_pretrained('./test/bert_model/')  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
            model = AutoModelWithLMHead.from_pretrained('bert-base-uncased', output_attention=True)  # Update configuration during loading
            assert model.config.output_attention == True
            # Loading from a TF checkpoint file instead of a PyTorch model (slower)
            config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
            model = AutoModelWithLMHead.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)

        """
486
487
488
489
        config = kwargs.pop("config", None)
        if not isinstance(config, PretrainedConfig):
            config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)

490
491
492
        for config_class, model_class in MODEL_WITH_LM_HEAD_MAPPING.items():
            if isinstance(config, config_class):
                return model_class.from_pretrained(pretrained_model_name_or_path, *model_args, config=config, **kwargs)
493
        raise ValueError(
494
495
496
            "Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
            "Model type should be one of {}.".format(
                config.__class__, cls.__name__, ", ".join(c.__name__ for c in MODEL_WITH_LM_HEAD_MAPPING.keys())
497
498
            )
        )
499
500
501
502


class AutoModelForSequenceClassification(object):
    r"""
503
        :class:`~transformers.AutoModelForSequenceClassification` is a generic model class
504
505
506
507
508
509
        that will be instantiated as one of the sequence classification model classes of the library
        when created with the `AutoModelForSequenceClassification.from_pretrained(pretrained_model_name_or_path)`
        class method.

        This class cannot be instantiated using `__init__()` (throws an error).
    """
510

511
    def __init__(self):
512
513
        raise EnvironmentError(
            "AutoModelForSequenceClassification is designed to be instantiated "
514
            "using the `AutoModelForSequenceClassification.from_pretrained(pretrained_model_name_or_path)` or "
515
516
            "`AutoModelForSequenceClassification.from_config(config)` methods."
        )
517
518
519
520
521
522

    @classmethod
    def from_config(cls, config):
        r""" Instantiates one of the base model classes of the library
        from a configuration.

Lysandre's avatar
Lysandre committed
523
524
        Args:
            config (:class:`~transformers.PretrainedConfig`):
525
                The model class to instantiate is selected based on the configuration class:
Lysandre's avatar
Lysandre committed
526

Lysandre's avatar
Lysandre committed
527
528
529
530
531
532
533
534
                - isInstance of `distilbert` configuration class: :class:`~transformers.DistilBertModelForSequenceClassification` (DistilBERT model)
                - isInstance of `albert` configuration class: :class:`~transformers.AlbertModelForSequenceClassification` (ALBERT model)
                - isInstance of `camembert` configuration class: :class:`~transformers.CamembertModelForSequenceClassification` (CamemBERT model)
                - isInstance of `xlm roberta` configuration class: :class:`~transformers.XLMRobertaModelForSequenceClassification` (XLM-RoBERTa model)
                - isInstance of `roberta` configuration class: :class:`~transformers.RobertaModelForSequenceClassification` (RoBERTa model)
                - isInstance of `bert` configuration class: :class:`~transformers.BertModelForSequenceClassification` (Bert model)
                - isInstance of `xlnet` configuration class: :class:`~transformers.XLNetModelForSequenceClassification` (XLNet model)
                - isInstance of `xlm` configuration class: :class:`~transformers.XLMModelForSequenceClassification` (XLM model)
Lysandre's avatar
Lysandre committed
535

536
537
538
539
540
541

        Examples::

            config = BertConfig.from_pretrained('bert-base-uncased')    # Download configuration from S3 and cache.
            model = AutoModelForSequenceClassification.from_config(config)  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
        """
542
543
544
545
546
547
548
549
550
551
552
        for config_class, model_class in MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.items():
            if isinstance(config, config_class):
                return model_class(config)
        raise ValueError(
            "Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
            "Model type should be one of {}.".format(
                config.__class__,
                cls.__name__,
                ", ".join(c.__name__ for c in MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.keys()),
            )
        )
553
554
555
556
557
558
559

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
        r""" Instantiates one of the sequence classification model classes of the library
        from a pre-trained model configuration.

        The `from_pretrained()` method takes care of returning the correct model class instance
560
561
        based on the `model_type` property of the config object, or when it's missing,
        falling back to using pattern matching on the `pretrained_model_name_or_path` string.
562
563
564

        The model class to instantiate is selected as the first pattern matching
        in the `pretrained_model_name_or_path` string (in the following order):
Lysandre's avatar
Lysandre committed
565
566
567
568
569
570
571
572
            - contains `distilbert`: :class:`~transformers.DistilBertForSequenceClassification` (DistilBERT model)
            - contains `albert`: :class:`~transformers.AlbertForSequenceClassification` (ALBERT model)
            - contains `camembert`: :class:`~transformers.CamembertForSequenceClassification` (CamemBERT model)
            - contains `xlm-roberta`: :class:`~transformers.XLMRobertaForSequenceClassification` (XLM-RoBERTa model)
            - contains `roberta`: :class:`~transformers.RobertaForSequenceClassification` (RoBERTa model)
            - contains `bert`: :class:`~transformers.BertForSequenceClassification` (Bert model)
            - contains `xlnet`: :class:`~transformers.XLNetForSequenceClassification` (XLNet model)
            - contains `xlm`: :class:`~transformers.XLMForSequenceClassification` (XLM model)
573
574
575
576

        The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated)
        To train the model, you should first set it back in training mode with `model.train()`

Lysandre's avatar
Lysandre committed
577
        Args:
thomwolf's avatar
thomwolf committed
578
579
580
            pretrained_model_name_or_path: either:

                - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
581
                - a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``.
582
                - a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
thomwolf's avatar
thomwolf committed
583
584
585
                - a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.

            model_args: (`optional`) Sequence of positional arguments:
Lysandre's avatar
Lysandre committed
586
                All remaining positional arguments will be passed to the underlying model's ``__init__`` method
thomwolf's avatar
thomwolf committed
587

588
            config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`:
thomwolf's avatar
thomwolf committed
589
590
591
                Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:

                - the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
592
                - the model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
thomwolf's avatar
thomwolf committed
593
594
595
596
                - the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.

            state_dict: (`optional`) dict:
                an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
597
                This option can be used if you want to create a model from a pretrained configuration but load your own weights.
598
                In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option.
thomwolf's avatar
thomwolf committed
599
600

            cache_dir: (`optional`) string:
601
602
                Path to a directory in which a downloaded pre-trained model
                configuration should be cached if the standard cache should not be used.
thomwolf's avatar
thomwolf committed
603
604
605
606

            force_download: (`optional`) boolean, default False:
                Force to (re-)download the model weights and configuration files and override the cached versions if they exists.

607
608
609
            resume_download: (`optional`) boolean, default False:
                Do not delete incompletely recieved file. Attempt to resume the download if such a file exists.

thomwolf's avatar
thomwolf committed
610
611
612
613
614
615
616
617
618
619
620
            proxies: (`optional`) dict, default None:
                A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
                The proxies are used on each request.

            output_loading_info: (`optional`) boolean:
                Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.

            kwargs: (`optional`) Remaining dictionary of keyword arguments:
                Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded:

                - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done)
621
                - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function.
622
623
624
625
626
627
628
629
630
631
632
633

        Examples::

            model = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased')    # Download model and configuration from S3 and cache.
            model = AutoModelForSequenceClassification.from_pretrained('./test/bert_model/')  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
            model = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased', output_attention=True)  # Update configuration during loading
            assert model.config.output_attention == True
            # Loading from a TF checkpoint file instead of a PyTorch model (slower)
            config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
            model = AutoModelForSequenceClassification.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)

        """
634
635
636
637
        config = kwargs.pop("config", None)
        if not isinstance(config, PretrainedConfig):
            config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)

638
639
640
        for config_class, model_class in MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.items():
            if isinstance(config, config_class):
                return model_class.from_pretrained(pretrained_model_name_or_path, *model_args, config=config, **kwargs)
641
        raise ValueError(
642
643
644
645
646
            "Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
            "Model type should be one of {}.".format(
                config.__class__,
                cls.__name__,
                ", ".join(c.__name__ for c in MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.keys()),
647
648
            )
        )
649
650
651
652


class AutoModelForQuestionAnswering(object):
    r"""
653
        :class:`~transformers.AutoModelForQuestionAnswering` is a generic model class
654
655
656
657
658
659
        that will be instantiated as one of the question answering model classes of the library
        when created with the `AutoModelForQuestionAnswering.from_pretrained(pretrained_model_name_or_path)`
        class method.

        This class cannot be instantiated using `__init__()` (throws an error).
    """
660

661
    def __init__(self):
662
663
        raise EnvironmentError(
            "AutoModelForQuestionAnswering is designed to be instantiated "
664
            "using the `AutoModelForQuestionAnswering.from_pretrained(pretrained_model_name_or_path)` or "
665
666
            "`AutoModelForQuestionAnswering.from_config(config)` methods."
        )
667
668
669
670
671
672

    @classmethod
    def from_config(cls, config):
        r""" Instantiates one of the base model classes of the library
        from a configuration.

Lysandre's avatar
Lysandre committed
673
674
        Args:
            config (:class:`~transformers.PretrainedConfig`):
675
                The model class to instantiate is selected based on the configuration class:
Lysandre's avatar
Lysandre committed
676

Lysandre's avatar
Lysandre committed
677
678
679
680
681
                - isInstance of `distilbert` configuration class: :class:`~transformers.DistilBertModelForQuestionAnswering` (DistilBERT model)
                - isInstance of `albert` configuration class: :class:`~transformers.AlbertModelForQuestionAnswering` (ALBERT model)
                - isInstance of `bert` configuration class: :class:`~transformers.BertModelForQuestionAnswering` (Bert model)
                - isInstance of `xlnet` configuration class: :class:`~transformers.XLNetModelForQuestionAnswering` (XLNet model)
                - isInstance of `xlm` configuration class: :class:`~transformers.XLMModelForQuestionAnswering` (XLM model)
682
683
684
685
686
687

        Examples::

            config = BertConfig.from_pretrained('bert-base-uncased')    # Download configuration from S3 and cache.
            model = AutoModelForSequenceClassification.from_config(config)  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
        """
688
689
690
691
692
693
694
695
696
697
698
699
        for config_class, model_class in MODEL_FOR_QUESTION_ANSWERING_MAPPING.items():
            if isinstance(config, config_class):
                return model_class(config)

        raise ValueError(
            "Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
            "Model type should be one of {}.".format(
                config.__class__,
                cls.__name__,
                ", ".join(c.__name__ for c in MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()),
            )
        )
700
701
702
703
704
705
706

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
        r""" Instantiates one of the question answering model classes of the library
        from a pre-trained model configuration.

        The `from_pretrained()` method takes care of returning the correct model class instance
707
708
        based on the `model_type` property of the config object, or when it's missing,
        falling back to using pattern matching on the `pretrained_model_name_or_path` string.
709
710
711

        The model class to instantiate is selected as the first pattern matching
        in the `pretrained_model_name_or_path` string (in the following order):
Lysandre's avatar
Lysandre committed
712
713
714
715
716
            - contains `distilbert`: :class:`~transformers.DistilBertForQuestionAnswering` (DistilBERT model)
            - contains `albert`: :class:`~transformers.AlbertForQuestionAnswering` (ALBERT model)
            - contains `bert`: :class:`~transformers.BertForQuestionAnswering` (Bert model)
            - contains `xlnet`: :class:`~transformers.XLNetForQuestionAnswering` (XLNet model)
            - contains `xlm`: :class:`~transformers.XLMForQuestionAnswering` (XLM model)
717
718
719
720

        The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated)
        To train the model, you should first set it back in training mode with `model.train()`

Lysandre's avatar
Lysandre committed
721
        Args:
thomwolf's avatar
thomwolf committed
722
723
724
            pretrained_model_name_or_path: either:

                - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
725
                - a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``.
726
                - a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
thomwolf's avatar
thomwolf committed
727
728
729
730
731
                - a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.

            model_args: (`optional`) Sequence of positional arguments:
                All remaning positional arguments will be passed to the underlying model's ``__init__`` method

732
            config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`:
thomwolf's avatar
thomwolf committed
733
734
735
                Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:

                - the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
736
                - the model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
thomwolf's avatar
thomwolf committed
737
738
739
740
                - the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.

            state_dict: (`optional`) dict:
                an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
741
                This option can be used if you want to create a model from a pretrained configuration but load your own weights.
742
                In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option.
thomwolf's avatar
thomwolf committed
743
744

            cache_dir: (`optional`) string:
745
746
                Path to a directory in which a downloaded pre-trained model
                configuration should be cached if the standard cache should not be used.
thomwolf's avatar
thomwolf committed
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761

            force_download: (`optional`) boolean, default False:
                Force to (re-)download the model weights and configuration files and override the cached versions if they exists.

            proxies: (`optional`) dict, default None:
                A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
                The proxies are used on each request.

            output_loading_info: (`optional`) boolean:
                Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.

            kwargs: (`optional`) Remaining dictionary of keyword arguments:
                Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded:

                - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done)
762
                - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function.
763
764
765
766
767
768
769
770
771
772
773
774

        Examples::

            model = AutoModelForQuestionAnswering.from_pretrained('bert-base-uncased')    # Download model and configuration from S3 and cache.
            model = AutoModelForQuestionAnswering.from_pretrained('./test/bert_model/')  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
            model = AutoModelForQuestionAnswering.from_pretrained('bert-base-uncased', output_attention=True)  # Update configuration during loading
            assert model.config.output_attention == True
            # Loading from a TF checkpoint file instead of a PyTorch model (slower)
            config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
            model = AutoModelForQuestionAnswering.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)

        """
775
776
777
778
        config = kwargs.pop("config", None)
        if not isinstance(config, PretrainedConfig):
            config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)

779
780
781
        for config_class, model_class in MODEL_FOR_QUESTION_ANSWERING_MAPPING.items():
            if isinstance(config, config_class):
                return model_class.from_pretrained(pretrained_model_name_or_path, *model_args, config=config, **kwargs)
782

783
        raise ValueError(
784
785
786
787
788
789
            "Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
            "Model type should be one of {}.".format(
                config.__class__,
                cls.__name__,
                ", ".join(c.__name__ for c in MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()),
            )
790
        )
791
792
793


class AutoModelForTokenClassification:
Lysandre's avatar
Lysandre committed
794
795
796
797
798
799
800
801
802
    r"""
        :class:`~transformers.AutoModelForTokenClassification` is a generic model class
        that will be instantiated as one of the token classification model classes of the library
        when created with the `AutoModelForTokenClassification.from_pretrained(pretrained_model_name_or_path)`
        class method.

        This class cannot be instantiated using `__init__()` (throws an error).
    """

803
    def __init__(self):
804
805
806
807
808
        raise EnvironmentError(
            "AutoModelForTokenClassification is designed to be instantiated "
            "using the `AutoModelForTokenClassification.from_pretrained(pretrained_model_name_or_path)` or "
            "`AutoModelForTokenClassification.from_config(config)` methods."
        )
809
810
811
812
813

    @classmethod
    def from_config(cls, config):
        r""" Instantiates one of the base model classes of the library
        from a configuration.
814

Lysandre's avatar
Lysandre committed
815
816
        Args:
            config (:class:`~transformers.PretrainedConfig`):
817
                The model class to instantiate is selected based on the configuration class:
Lysandre's avatar
Lysandre committed
818

Lysandre's avatar
Lysandre committed
819
820
821
822
823
824
                - isInstance of `distilbert` configuration class: :class:`~transformers.DistilBertModelForTokenClassification` (DistilBERT model)
                - isInstance of `xlm roberta` configuration class: :class:`~transformers.XLMRobertaModelForTokenClassification` (XLMRoberta model)
                - isInstance of `bert` configuration class: :class:`~transformers.BertModelForTokenClassification` (Bert model)
                - isInstance of `xlnet` configuration class: :class:`~transformers.XLNetModelForTokenClassification` (XLNet model)
                - isInstance of `camembert` configuration class: :class:`~transformers.CamembertModelForTokenClassification` (Camembert model)
                - isInstance of `roberta` configuration class: :class:`~transformers.RobertaModelForTokenClassification` (Roberta model)
825

826
        Examples::
827

828
829
830
            config = BertConfig.from_pretrained('bert-base-uncased')    # Download configuration from S3 and cache.
            model = AutoModelForTokenClassification.from_config(config)  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
        """
831
832
833
834
835
836
837
838
839
840
841
842
        for config_class, model_class in MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items():
            if isinstance(config, config_class):
                return model_class(config)

        raise ValueError(
            "Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
            "Model type should be one of {}.".format(
                config.__class__,
                cls.__name__,
                ", ".join(c.__name__ for c in MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.keys()),
            )
        )
843

844
845
846
847
848
849
    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
        r""" Instantiates one of the question answering model classes of the library
        from a pre-trained model configuration.

        The `from_pretrained()` method takes care of returning the correct model class instance
850
851
        based on the `model_type` property of the config object, or when it's missing,
        falling back to using pattern matching on the `pretrained_model_name_or_path` string.
852
853
854

        The model class to instantiate is selected as the first pattern matching
        in the `pretrained_model_name_or_path` string (in the following order):
Lysandre's avatar
Lysandre committed
855
856
857
858
859
860
            - contains `distilbert`: :class:`~transformers.DistilBertForTokenClassification` (DistilBERT model)
            - contains `xlm-roberta`: :class:`~transformers.XLMRobertaForTokenClassification` (XLM-RoBERTa?Para model)
            - contains `camembert`: :class:`~transformers.CamembertForTokenClassification` (Camembert model)
            - contains `bert`: :class:`~transformers.BertForTokenClassification` (Bert model)
            - contains `xlnet`: :class:`~transformers.XLNetForTokenClassification` (XLNet model)
            - contains `roberta`: :class:`~transformers.RobertaForTokenClassification` (Roberta model)
861
862
863
864

        The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated)
        To train the model, you should first set it back in training mode with `model.train()`

Lysandre's avatar
Lysandre committed
865
866
867
        Args:
            pretrained_model_name_or_path:
                Either:
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918

                - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
                - a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
                - a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.

            model_args: (`optional`) Sequence of positional arguments:
                All remaning positional arguments will be passed to the underlying model's ``__init__`` method

            config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`:
                Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:

                - the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
                - the model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
                - the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.

            state_dict: (`optional`) dict:
                an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
                This option can be used if you want to create a model from a pretrained configuration but load your own weights.
                In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option.

            cache_dir: (`optional`) string:
                Path to a directory in which a downloaded pre-trained model
                configuration should be cached if the standard cache should not be used.

            force_download: (`optional`) boolean, default False:
                Force to (re-)download the model weights and configuration files and override the cached versions if they exists.

            proxies: (`optional`) dict, default None:
                A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
                The proxies are used on each request.

            output_loading_info: (`optional`) boolean:
                Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.

            kwargs: (`optional`) Remaining dictionary of keyword arguments:
                Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded:

                - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done)
                - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function.

        Examples::

            model = AutoModelForTokenClassification.from_pretrained('bert-base-uncased')    # Download model and configuration from S3 and cache.
            model = AutoModelForTokenClassification.from_pretrained('./test/bert_model/')  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
            model = AutoModelForTokenClassification.from_pretrained('bert-base-uncased', output_attention=True)  # Update configuration during loading
            assert model.config.output_attention == True
            # Loading from a TF checkpoint file instead of a PyTorch model (slower)
            config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
            model = AutoModelForTokenClassification.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)

        """
919
920
921
922
        config = kwargs.pop("config", None)
        if not isinstance(config, PretrainedConfig):
            config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)

923
924
925
        for config_class, model_class in MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items():
            if isinstance(config, config_class):
                return model_class.from_pretrained(pretrained_model_name_or_path, *model_args, config=config, **kwargs)
926

927
        raise ValueError(
928
929
930
931
932
            "Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
            "Model type should be one of {}.".format(
                config.__class__,
                cls.__name__,
                ", ".join(c.__name__ for c in MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.keys()),
933
934
            )
        )