In many cases, the architecture you want to use can be guessed from the name or the path of the pretrained model you are supplying to the ``from_pretrained`` method.
In many cases, the architecture you want to use can be guessed from the name or the path of the pretrained model you are supplying to the ``from_pretrained`` method.
AutoClasses are here to do this job for you so that you automatically retreive the relevant model given the name/path to the pretrained weights/config/vocabulary:
AutoClasses are here to do this job for you so that you automatically retrieve the relevant model given the name/path to the pretrained weights/config/vocabulary:
Instantiating one of ``AutoModel``, ``AutoConfig`` and ``AutoTokenizer`` will directly create a class of the relevant architecture (ex: ``model = AutoModel.from_pretrained('bert-base-cased')`` will create a instance of ``BertModel``).
Instantiating one of ``AutoModel``, ``AutoConfig`` and ``AutoTokenizer`` will directly create a class of the relevant architecture (ex: ``model = AutoModel.from_pretrained('bert-base-cased')`` will create a instance of ``BertModel``).
...
@@ -15,6 +15,13 @@ Instantiating one of ``AutoModel``, ``AutoConfig`` and ``AutoTokenizer`` will di
...
@@ -15,6 +15,13 @@ Instantiating one of ``AutoModel``, ``AutoConfig`` and ``AutoTokenizer`` will di
:members:
:members:
``AutoTokenizer``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.AutoTokenizer
:members:
``AutoModel``
``AutoModel``
~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~
...
@@ -22,8 +29,30 @@ Instantiating one of ``AutoModel``, ``AutoConfig`` and ``AutoTokenizer`` will di
...
@@ -22,8 +29,30 @@ Instantiating one of ``AutoModel``, ``AutoConfig`` and ``AutoTokenizer`` will di