"...git@developer.sourcefind.cn:hehl2/torchaudio.git" did not exist on "3f562547feadc48330959294f7ddc9810dec3fd5"
modeling_tf_utils.py 63.8 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TF general model utils."""
Julien Plu's avatar
Julien Plu committed
17

18
import functools
Julien Plu's avatar
Julien Plu committed
19
import inspect
thomwolf's avatar
thomwolf committed
20
import os
21
import re
Julien Plu's avatar
Julien Plu committed
22
import warnings
Sylvain Gugger's avatar
Sylvain Gugger committed
23
from typing import Dict, List, Optional, Union
thomwolf's avatar
thomwolf committed
24

Aymeric Augustin's avatar
Aymeric Augustin committed
25
import h5py
Julien Chaumond's avatar
Julien Chaumond committed
26
import numpy as np
thomwolf's avatar
thomwolf committed
27
import tensorflow as tf
Julien Plu's avatar
Julien Plu committed
28
from tensorflow.python.keras import backend as K
thomwolf's avatar
thomwolf committed
29
from tensorflow.python.keras.saving import hdf5_format
thomwolf's avatar
thomwolf committed
30
31

from .configuration_utils import PretrainedConfig
Julien Plu's avatar
Julien Plu committed
32
33
34
35
36
37
38
39
40
from .file_utils import (
    DUMMY_INPUTS,
    TF2_WEIGHTS_NAME,
    WEIGHTS_NAME,
    ModelOutput,
    cached_path,
    hf_bucket_url,
    is_remote_url,
)
41
from .generation_tf_utils import TFGenerationMixin
Julien Plu's avatar
Julien Plu committed
42
from .tokenization_utils_base import BatchEncoding
Lysandre Debut's avatar
Lysandre Debut committed
43
from .utils import logging
thomwolf's avatar
thomwolf committed
44

Aymeric Augustin's avatar
Aymeric Augustin committed
45

Lysandre Debut's avatar
Lysandre Debut committed
46
logger = logging.get_logger(__name__)
thomwolf's avatar
thomwolf committed
47

48

49
class TFModelUtilsMixin:
Julien Chaumond's avatar
Julien Chaumond committed
50
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
51
    A few utilities for :obj:`tf.keras.Model`, to be used as a mixin.
Julien Chaumond's avatar
Julien Chaumond committed
52
53
54
55
    """

    def num_parameters(self, only_trainable: bool = False) -> int:
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
56
57
58
59
60
61
62
63
        Get the number of (optionally, trainable) parameters in the model.

        Args:
            only_trainable (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to return only the number of trainable parameters

        Returns:
            :obj:`int`: The number of parameters.
Julien Chaumond's avatar
Julien Chaumond committed
64
65
66
67
68
69
70
        """
        if only_trainable:
            return int(sum(np.prod(w.shape.as_list()) for w in self.trainable_variables))
        else:
            return self.count_params()


71
def keras_serializable(cls):
72
73
74
75
    """
    Decorate a Keras Layer class to support Keras serialization.

    This is done by:
Sylvain Gugger's avatar
Sylvain Gugger committed
76
77
78
79
80

    1. Adding a :obj:`transformers_config` dict to the Keras config dictionary in :obj:`get_config` (called by Keras at
       serialization time.
    2. Wrapping :obj:`__init__` to accept that :obj:`transformers_config` dict (passed by Keras at deserialization
       time) and convert it to a config object for the actual layer initializer.
Sylvain Gugger's avatar
Sylvain Gugger committed
81
82
    3. Registering the class as a custom object in Keras (if the Tensorflow version supports this), so that it does not
       need to be supplied in :obj:`custom_objects` in the call to :obj:`tf.keras.models.load_model`.
Sylvain Gugger's avatar
Sylvain Gugger committed
83
84
85
86
87
88
89
90

    Args:
        cls (a :obj:`tf.keras.layers.Layers subclass`):
            Typically a :obj:`TF.MainLayer` class in this project, in general must accept a :obj:`config` argument to
            its initializer.

    Returns:
        The same class object, with modifications for Keras deserialization.
91
    """
92
    initializer = cls.__init__
93

94
95
96
97
    config_class = getattr(cls, "config_class", None)
    if config_class is None:
        raise AttributeError("Must set `config_class` to use @keras_serializable")

98
    @functools.wraps(initializer)
99
    def wrapped_init(self, *args, **kwargs):
100
101
102
103
        config = args[0] if args and isinstance(args[0], PretrainedConfig) else kwargs.pop("config", None)

        if isinstance(config, dict):
            config = config_class.from_dict(config)
104
            initializer(self, config, *args, **kwargs)
105
106
107
108
109
        elif isinstance(config, PretrainedConfig):
            if len(args) > 0:
                initializer(self, *args, **kwargs)
            else:
                initializer(self, config, *args, **kwargs)
110
        else:
111
112
113
            raise ValueError("Must pass either `config` (PretrainedConfig) or `config` (dict)")

        self._config = config
Julien Plu's avatar
Julien Plu committed
114
        self._kwargs = kwargs
115

116
117
118
119
120
121
122
123
    cls.__init__ = wrapped_init

    if not hasattr(cls, "get_config"):
        raise TypeError("Only use @keras_serializable on tf.keras.layers.Layer subclasses")
    if hasattr(cls.get_config, "_is_default"):

        def get_config(self):
            cfg = super(cls, self).get_config()
124
            cfg["config"] = self._config.to_dict()
Julien Plu's avatar
Julien Plu committed
125
            cfg.update(self._kwargs)
126
127
128
129
            return cfg

        cls.get_config = get_config

130
    cls._keras_serializable = True
131
132
133
    if hasattr(tf.keras.utils, "register_keras_serializable"):
        cls = tf.keras.utils.register_keras_serializable()(cls)
    return cls
134
135


136
class TFCausalLanguageModelingLoss:
Sylvain Gugger's avatar
Sylvain Gugger committed
137
138
139
140
141
142
143
144
145
    """
    Loss function suitable for causal language modeling (CLM), that is, the task of guessing the next token.

    .. note::

        Any label of -100 will be ignored (along with the corresponding logits) in the loss computation.

    """

146
147
148
149
    def compute_loss(self, labels, logits):
        loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
            from_logits=True, reduction=tf.keras.losses.Reduction.NONE
        )
150
        # make sure only labels that are not equal to -100 do not affect loss
151
        active_loss = tf.not_equal(tf.reshape(labels, (-1,)), -100)
152
153
154
155
156
        reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, shape_list(logits)[2])), active_loss)
        labels = tf.boolean_mask(tf.reshape(labels, (-1,)), active_loss)
        return loss_fn(labels, reduced_logits)


Julien Plu's avatar
Julien Plu committed
157
class TFQuestionAnsweringLoss:
Sylvain Gugger's avatar
Sylvain Gugger committed
158
    """
159
    Loss function suitable for question answering.
Sylvain Gugger's avatar
Sylvain Gugger committed
160
161
    """

Julien Plu's avatar
Julien Plu committed
162
163
164
165
166
167
168
169
170
171
172
    def compute_loss(self, labels, logits):
        loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
            from_logits=True, reduction=tf.keras.losses.Reduction.NONE
        )
        start_loss = loss_fn(labels["start_position"], logits[0])
        end_loss = loss_fn(labels["end_position"], logits[1])

        return (start_loss + end_loss) / 2.0


class TFTokenClassificationLoss:
Sylvain Gugger's avatar
Sylvain Gugger committed
173
174
175
176
177
178
179
180
181
    """
    Loss function suitable for token classification.

    .. note::

        Any label of -100 will be ignored (along with the corresponding logits) in the loss computation.

    """

Julien Plu's avatar
Julien Plu committed
182
183
184
185
    def compute_loss(self, labels, logits):
        loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
            from_logits=True, reduction=tf.keras.losses.Reduction.NONE
        )
186
187
        # make sure only labels that are not equal to -100
        # are taken into account as loss
188
        if tf.math.reduce_any(labels == -1):
Julien Plu's avatar
Julien Plu committed
189
190
191
192
            warnings.warn("Using `-1` to mask the loss for the token is deprecated. Please use `-100` instead.")
            active_loss = tf.reshape(labels, (-1,)) != -1
        else:
            active_loss = tf.reshape(labels, (-1,)) != -100
Julien Plu's avatar
Julien Plu committed
193
194
195
196
197
198
199
        reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, shape_list(logits)[2])), active_loss)
        labels = tf.boolean_mask(tf.reshape(labels, (-1,)), active_loss)

        return loss_fn(labels, reduced_logits)


class TFSequenceClassificationLoss:
Sylvain Gugger's avatar
Sylvain Gugger committed
200
201
202
203
    """
    Loss function suitable for sequence classification.
    """

Julien Plu's avatar
Julien Plu committed
204
    def compute_loss(self, labels, logits):
205
        if len(shape_list(logits)) == 1 or shape_list(logits)[1] == 1:
Julien Plu's avatar
Julien Plu committed
206
207
208
209
210
211
212
213
214
            loss_fn = tf.keras.losses.MeanSquaredError(reduction=tf.keras.losses.Reduction.NONE)
        else:
            loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
                from_logits=True, reduction=tf.keras.losses.Reduction.NONE
            )

        return loss_fn(labels, logits)


Sylvain Gugger's avatar
Sylvain Gugger committed
215
216
217
218
219
220
class TFMultipleChoiceLoss(TFSequenceClassificationLoss):
    """Loss function suitable for multiple choice tasks."""


class TFMaskedLanguageModelingLoss(TFCausalLanguageModelingLoss):
    """
Lysandre's avatar
Lysandre committed
221
    Loss function suitable for masked language modeling (MLM), that is, the task of guessing the masked tokens.
Sylvain Gugger's avatar
Sylvain Gugger committed
222

Lysandre's avatar
Lysandre committed
223
    .. note::
Sylvain Gugger's avatar
Sylvain Gugger committed
224

Lysandre's avatar
Lysandre committed
225
226
         Any label of -100 will be ignored (along with the corresponding logits) in the loss computation.
    """
Julien Plu's avatar
Julien Plu committed
227
228


229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
class TFNextSentencePredictionLoss:
    """
    Loss function suitable for next sentence prediction (NSP), that is, the task of guessing the next sentence.

    .. note::
         Any label of -100 will be ignored (along with the corresponding logits) in the loss computation.
    """

    def compute_loss(self, labels, logits):
        loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
            from_logits=True, reduction=tf.keras.losses.Reduction.NONE
        )
        # make sure only labels that are not equal to -100
        # are taken into account as loss
        next_sentence_active_loss = tf.not_equal(tf.reshape(labels, (-1,)), -100)
        next_sentence_reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, 2)), next_sentence_active_loss)
        next_sentence_label = tf.boolean_mask(tf.reshape(labels, (-1,)), next_sentence_active_loss)

        return loss_fn(next_sentence_label, next_sentence_reduced_logits)


250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
def booleans_processing(config, **kwargs):
    """
    Process the input booleans of each model in order to be sure they are compliant with the execution mode (eager or
    graph)

    Args:
        config (:class:`~transformers.PretrainedConfig`):
            The config of the running model.
        **kwargs:
            The boolean parameters

    Returns:
        A dictionary with the proper values for each boolean
    """
    final_booleans = {}

    if tf.executing_eagerly():
        final_booleans["output_attentions"] = (
            kwargs["output_attentions"] if kwargs["output_attentions"] is not None else config.output_attentions
        )
        final_booleans["output_hidden_states"] = (
            kwargs["output_hidden_states"]
            if kwargs["output_hidden_states"] is not None
            else config.output_hidden_states
        )
Julien Plu's avatar
Julien Plu committed
275
276
277
        final_booleans["return_dict"] = (
            kwargs["return_dict"] if kwargs["return_dict"] is not None else config.return_dict
        )
278
279
280

        if "use_cache" in kwargs:
            final_booleans["use_cache"] = kwargs["use_cache"] if kwargs["use_cache"] is not None else config.use_cache
Julien Plu's avatar
Julien Plu committed
281

282
283
284
285
286
287
288
289
290
291
292
293
294
295
    else:
        if (
            kwargs["output_attentions"] is not None
            or kwargs["output_hidden_states"] is not None
            or ("use_cache" in kwargs and kwargs["use_cache"] is not None)
        ):
            logger.warning(
                "The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model."
                "They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`)."
            )

        final_booleans["output_attentions"] = config.output_attentions
        final_booleans["output_hidden_states"] = config.output_hidden_states

Julien Plu's avatar
Julien Plu committed
296
297
298
        if kwargs["return_dict"] is not None:
            logger.warning("The parameter `return_dict` cannot be set in graph mode and will always be set to `True`.")
        final_booleans["return_dict"] = True
299
300
301
302
303
304
305
306
307

        if "use_cache" in kwargs:
            final_booleans["use_cache"] = config.use_cache

    return final_booleans


def input_processing(func, config, input_ids, **kwargs):
    """
Julien Plu's avatar
Julien Plu committed
308
309
310
    Process the input of each TensorFlow model including the booleans. In case of a list of symbolic inputs, each input
    has to be named accordingly to the parameters name, i.e. `input_ids = tf.keras.Input(shape=(128,), dtype='int32',
    name="input_ids")` otherwise the order of the tensors will not be guaranteed during the training.
311
312
313
314
315
316
317
318
319
320
321
322

    Args:
        func (:obj:`callable`):
            The callable function of the TensorFlow model.
        config (:class:`~transformers.PretrainedConfig`):
            The config of the running model.
        **kwargs:
            The inputs of the model.

    Returns:
        Two lists, one for the missing layers, and another one for the unexpected layers.
    """
Julien Plu's avatar
Julien Plu committed
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
    signature = dict(inspect.signature(func).parameters)
    signature.pop("kwargs", None)
    parameter_names = list(signature.keys())
    output = {}
    allowed_types = (tf.Tensor, bool, int, ModelOutput, tuple, list, dict)

    if "inputs" in kwargs["kwargs_call"]:
        warnings.warn(
            "The `inputs` argument is deprecated and will be removed in a future version, use `input_ids` instead.",
            FutureWarning,
        )

        output["input_ids"] = kwargs["kwargs_call"].pop("inputs")

    if "decoder_cached_states" in kwargs["kwargs_call"]:
        warnings.warn(
            "The `decoder_cached_states` argument is deprecated and will be removed in a future version, use `past_key_values` instead.",
            FutureWarning,
        )
        output["past_key_values"] = kwargs["kwargs_call"].pop("decoder_cached_states")

    if len(kwargs["kwargs_call"]) > 0:
        raise ValueError(
            f"The following keyword arguments are not supported by this model: {list(kwargs['kwargs_call'].keys())}."
        )

    for k, v in kwargs.items():
        if isinstance(v, allowed_types) or v is None:
            output[k] = v
        else:
Julien Plu's avatar
Julien Plu committed
353
            raise ValueError(f"Data of type {type(v)} is not allowed only {allowed_types} is accepted for {k}.")
Julien Plu's avatar
Julien Plu committed
354
355
356
357
358
359
360
361
362
363
364
365

    if isinstance(input_ids, (tuple, list)):
        for i, input in enumerate(input_ids):
            # EagerTensors don't allow to use the .name property so we check for a real Tensor
            if type(input) == tf.Tensor:
                # Tensor names have always the pattern name:device_id then we check only the
                # name and not the device id
                tensor_name = input.name.split(":")[0]

                if tensor_name in parameter_names:
                    output[tensor_name] = input
                else:
Julien Plu's avatar
Julien Plu committed
366
                    output[parameter_names[i]] = input
Julien Plu's avatar
Julien Plu committed
367
368
369
370
            elif isinstance(input, allowed_types) or input is None:
                output[parameter_names[i]] = input
            else:
                raise ValueError(
Julien Plu's avatar
Julien Plu committed
371
                    f"Data of type {type(input)} is not allowed only {allowed_types} is accepted for {parameter_names[i]}."
Julien Plu's avatar
Julien Plu committed
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
                )
    elif isinstance(input_ids, (dict, BatchEncoding)):
        if "inputs" in input_ids:
            warnings.warn(
                "The `inputs` argument is deprecated and will be removed in a future version, use `input_ids` instead.",
                FutureWarning,
            )

            output["input_ids"] = input_ids.pop("inputs")

        if "decoder_cached_states" in input_ids:
            warnings.warn(
                "The `decoder_cached_states` argument is deprecated and will be removed in a future version, use `past_key_values` instead.",
                FutureWarning,
            )
            output["past_key_values"] = input_ids.pop("decoder_cached_states")

        for k, v in dict(input_ids).items():
390
            if isinstance(v, allowed_types) or v is None:
Julien Plu's avatar
Julien Plu committed
391
                output[k] = v
392
393
394
395
396
397
            elif k not in parameter_names and "args" not in parameter_names:
                logger.warn(
                    f"The parameter {k} does not belongs to the parameter list {parameter_names} and will be ignored."
                )
                continue
            else:
Julien Plu's avatar
Julien Plu committed
398
                raise ValueError(f"Data of type {type(v)} is not allowed only {allowed_types} is accepted for {k}.")
Julien Plu's avatar
Julien Plu committed
399
400
401
402
403
    else:
        if isinstance(input_ids, tf.Tensor) or input_ids is None:
            output[parameter_names[0]] = input_ids
        else:
            raise ValueError(
Julien Plu's avatar
Julien Plu committed
404
                f"Data of type {type(input_ids)} is not allowed only {allowed_types} is accepted for {parameter_names[0]}."
Julien Plu's avatar
Julien Plu committed
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
            )

    for name in parameter_names:
        if name not in list(output.keys()) and name != "args":
            output[name] = kwargs.pop(name, signature[name].default)

    # When creating a SavedModel TF calls the method with LayerCall.__call__(args, **kwargs)
    # So to respect the proper output we have to add this exception
    if "args" in output:
        if output["args"] is not None and type(output["args"]) == tf.Tensor:
            tensor_name = output["args"].name.split(":")[0]
            output[tensor_name] = output["args"]
        else:
            # `args` in this case is always the first parameter, then `input_ids`
            output["input_ids"] = output["args"]

        del output["args"]

    if "kwargs" in output:
        del output["kwargs"]

426
427
428
429
430
431
432
433
434
435
436
437
438
    boolean_dict = {
        k: v
        for k, v in output.items()
        if k in ["return_dict", "output_attentions", "output_hidden_states", "use_cache"]
    }

    output.update(
        booleans_processing(
            config=config,
            **boolean_dict,
        )
    )

Julien Plu's avatar
Julien Plu committed
439
440
441
    return output


Julien Plu's avatar
Julien Plu committed
442
def load_tf_weights(model, resolved_archive_file):
Julien Plu's avatar
Julien Plu committed
443
    """
Julien Plu's avatar
Julien Plu committed
444
    Detect missing and unexpected layers and load the TF weights accordingly to their names and shapes.
Julien Plu's avatar
Julien Plu committed
445
446
447
448
449
450
451
452
453
454
455
456
457

    Args:
        model (:obj:`tf.keras.models.Model`):
            The model to load the weights into.
        resolved_archive_file (:obj:`str`):
            The location of the H5 file.

    Returns:
        Two lists, one for the missing layers, and another one for the unexpected layers.
    """
    missing_layers = []
    unexpected_layers = []

Julien Plu's avatar
Julien Plu committed
458
    # Read the H5 file
Julien Plu's avatar
Julien Plu committed
459
    with h5py.File(resolved_archive_file, "r") as f:
Julien Plu's avatar
Julien Plu committed
460
461
        # Retrieve the name of each layer from the H5 file
        saved_h5_model_layers_name = set(hdf5_format.load_attributes_from_hdf5_group(f, "layer_names"))
Julien Plu's avatar
Julien Plu committed
462

Julien Plu's avatar
Julien Plu committed
463
464
        # Find the missing layers from the high level list of layers
        missing_layers = list(set([layer.name for layer in model.layers]) - saved_h5_model_layers_name)
Julien Plu's avatar
Julien Plu committed
465

Julien Plu's avatar
Julien Plu committed
466
467
468
469
        # Find the unexpected layers from the high level list of layers
        unexpected_layers = list(saved_h5_model_layers_name - set([layer.name for layer in model.layers]))
        saved_weight_names_set = set()
        symbolic_weights_names = set()
Julien Plu's avatar
Julien Plu committed
470
471
        weight_value_tuples = []

Julien Plu's avatar
Julien Plu committed
472
473
        # Compute missing and unexpected sub layers
        # Store the weights in list of tuples that looks like [(weight_object, value_of_weight),...]
Julien Plu's avatar
Julien Plu committed
474
        for layer in model.layers:
Julien Plu's avatar
Julien Plu committed
475
476
477
478
479
            # if layer_name from the H5 file belongs to the layers from the instantiated model
            if layer.name in saved_h5_model_layers_name:
                # Get the H5 layer object from its name
                h5_layer_object = f[layer.name]
                # Get all the weights as a list from the layer object
Julien Plu's avatar
Julien Plu committed
480
                symbolic_weights = layer.trainable_weights + layer.non_trainable_weights
Julien Plu's avatar
Julien Plu committed
481
                saved_weights = {}
Julien Plu's avatar
Julien Plu committed
482

Julien Plu's avatar
Julien Plu committed
483
484
485
486
                # Create a dict from the H5 saved model that looks like {"weight_name": weight_value}
                # And a set with only the names
                for weight_name in hdf5_format.load_attributes_from_hdf5_group(h5_layer_object, "weight_names"):
                    # TF names always start with the model name so we ignore it
Julien Plu's avatar
Julien Plu committed
487
                    name = "/".join(weight_name.split("/")[1:])
Julien Plu's avatar
Julien Plu committed
488
                    saved_weights[name] = np.asarray(h5_layer_object[weight_name])
Julien Plu's avatar
Julien Plu committed
489

Julien Plu's avatar
Julien Plu committed
490
491
492
493
                    # Add the updated name to the final list for computing missing/unexpected values
                    saved_weight_names_set.add(name)

                # Loop over each weights from the instantiated model and compare with the weights from the H5 file
Julien Plu's avatar
Julien Plu committed
494
                for symbolic_weight in symbolic_weights:
Julien Plu's avatar
Julien Plu committed
495
496
497
498
499
500
501
                    # TF names always start with the model name so we ignore it
                    symbolic_weight_name = "/".join(symbolic_weight.name.split("/")[1:])

                    # here we check if the current weight is among the weights from the H5 file
                    # If yes, get the weight_value of the corresponding weight from the H5 file
                    # If not, make the value to None
                    saved_weight_value = saved_weights.get(symbolic_weight_name, None)
Julien Plu's avatar
Julien Plu committed
502

Julien Plu's avatar
Julien Plu committed
503
504
                    # Add the updated name to the final list for computing missing/unexpected values
                    symbolic_weights_names.add(symbolic_weight_name)
Julien Plu's avatar
Julien Plu committed
505

Julien Plu's avatar
Julien Plu committed
506
507
508
                    # If the current weight is found
                    if saved_weight_value is not None:
                        # Check if the shape of the current weight and the one from the H5 file are different
Julien Plu's avatar
Julien Plu committed
509
                        if K.int_shape(symbolic_weight) != saved_weight_value.shape:
Julien Plu's avatar
Julien Plu committed
510
511
                            # If yes we reshape the weight from the H5 file accordingly to the current weight
                            # If the two shapes are not compatible we raise an issue
Julien Plu's avatar
Julien Plu committed
512
513
514
515
516
517
518
519
                            try:
                                array = np.reshape(saved_weight_value, K.int_shape(symbolic_weight))
                            except AssertionError as e:
                                e.args += (K.int_shape(symbolic_weight), saved_weight_value.shape)
                                raise e
                        else:
                            array = saved_weight_value

Julien Plu's avatar
Julien Plu committed
520
                        # We create the tuple that will be loaded and add it to the final list
Julien Plu's avatar
Julien Plu committed
521
522
                        weight_value_tuples.append((symbolic_weight, array))

Julien Plu's avatar
Julien Plu committed
523
    # Load all the weights
Julien Plu's avatar
Julien Plu committed
524
525
    K.batch_set_value(weight_value_tuples)

Julien Plu's avatar
Julien Plu committed
526
527
528
529
530
531
    # Compute the missing and unexpected layers
    missing_layers.extend(list(symbolic_weights_names - saved_weight_names_set))
    unexpected_layers.extend(list(saved_weight_names_set - symbolic_weights_names))

    return missing_layers, unexpected_layers

Julien Plu's avatar
Julien Plu committed
532

533
class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin, TFGenerationMixin):
534
535
    r"""
    Base class for all TF models.
thomwolf's avatar
thomwolf committed
536

537
538
    :class:`~transformers.TFPreTrainedModel` takes care of storing the configuration of the models and handles methods
    for loading, downloading and saving models as well as a few methods common to all models to:
thomwolf's avatar
thomwolf committed
539

540
541
        * resize the input embeddings,
        * prune heads in the self-attention heads.
thomwolf's avatar
thomwolf committed
542

543
    Class attributes (overridden by derived classes):
Sylvain Gugger's avatar
Sylvain Gugger committed
544

545
546
547
548
        - **config_class** (:class:`~transformers.PretrainedConfig`) -- A subclass of
          :class:`~transformers.PretrainedConfig` to use as configuration class for this model architecture.
        - **base_model_prefix** (:obj:`str`) -- A string indicating the attribute associated to the base model in
          derived classes of the same architecture adding modules on top of the base model.
thomwolf's avatar
thomwolf committed
549
550
551
    """
    config_class = None
    base_model_prefix = ""
552
553
554
555
556
557
    # a list of re pattern of tensor names to ignore from the model when loading the model weights
    # (and avoid unnecessary warnings).
    _keys_to_ignore_on_load_missing = None
    # a list of re pattern of tensor names to ignore from the weights when loading the model weights
    # (and avoid unnecessary warnings).
    _keys_to_ignore_on_load_unexpected = None
thomwolf's avatar
thomwolf committed
558

559
    @property
560
561
    def dummy_inputs(self) -> Dict[str, tf.Tensor]:
        """
Julien Plu's avatar
Julien Plu committed
562
563
564
565
        Dummy inputs to build the network.

        Returns:
            :obj:`Dict[str, tf.Tensor]`: The dummy inputs.
566
        """
Julien Plu's avatar
Julien Plu committed
567
568
569
        return {
            "input_ids": tf.constant(DUMMY_INPUTS),
        }
thomwolf's avatar
thomwolf committed
570
571

    def __init__(self, config, *inputs, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
572
        super().__init__(*inputs, **kwargs)
thomwolf's avatar
thomwolf committed
573
574
575
576
577
578
        if not isinstance(config, PretrainedConfig):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `PretrainedConfig`. "
                "To create a model from a pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
579
580
                )
            )
581
        # Save config and origin of the pretrained weights if given in model
thomwolf's avatar
thomwolf committed
582
        self.config = config
583
        self.name_or_path = config.name_or_path
thomwolf's avatar
thomwolf committed
584

Julien Plu's avatar
Julien Plu committed
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
    @tf.function(
        input_signature=[
            {
                "input_ids": tf.TensorSpec((None, None), tf.int32, name="input_ids"),
                "attention_mask": tf.TensorSpec((None, None), tf.int32, name="attention_mask"),
                "token_type_ids": tf.TensorSpec((None, None), tf.int32, name="token_type_ids"),
            }
        ]
    )
    def serving(self, inputs):
        """
        Method used for serving the model.

        Args:
            inputs (:obj:`Dict[str, tf.Tensor]`):
                The input of the saved model as a dictionnary of tensors.
        """
        output = self.call(inputs)

        return self.serving_output(output)

    def serving_output(output):
        """
        Prepare the output of the saved model. Each model must implement this function.

        Args:
            output (:obj:`~transformers.TFBaseModelOutput`):
                The output returned by the model.
        """
        raise NotImplementedError

616
    def get_input_embeddings(self) -> tf.keras.layers.Layer:
617
618
619
620
        """
        Returns the model's input embeddings.

        Returns:
621
            :obj:`tf.keras.layers.Layer`: A torch module mapping vocabulary to hidden states.
622
623
        """
        base_model = getattr(self, self.base_model_prefix, self)
Julien Plu's avatar
Julien Plu committed
624

625
626
627
628
629
        if base_model is not self:
            return base_model.get_input_embeddings()
        else:
            raise NotImplementedError

630
631
    def set_input_embeddings(self, value):
        """
632
        Set model's input embeddings.
633
634
635
636
637
638
639
640
641
642
643

        Args:
            value (:obj:`tf.keras.layers.Layer`):
                A module mapping vocabulary to hidden states.
        """
        base_model = getattr(self, self.base_model_prefix, self)
        if base_model is not self:
            base_model.set_input_embeddings(value)
        else:
            raise NotImplementedError

644
    def get_output_embeddings(self) -> tf.keras.layers.Layer:
645
        """
646
        Returns the model's output embeddings
647
648

        Returns:
649
            :obj:`tf.keras.layers.Layer`: A torch module mapping hidden states to vocabulary.
650
651
652
        """
        return None  # Overwrite for models with output embeddings

653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
    def get_output_layer_with_bias(self) -> Union[None, tf.keras.layers.Layer]:
        """
        Get the layer that handles a bias attribute in case the model has an LM head with weights tied to the
        embeddings.

        Return:
            :obj:`tf.keras.layers.Layer`: The layer that handles the bias, None if not an LM model.
        """
        return None

    def get_prefix_bias_name(self) -> Union[None, str]:
        """
        Get the concatenated prefix name of the bias from the model name to the parent layer.

        Return:
            :obj:`str`: The prefix name of the bias.
        """
        return None

672
673
674
    def resize_token_embeddings(self, new_num_tokens=None) -> tf.Variable:
        """
        Resizes input token embeddings matrix of the model if :obj:`new_num_tokens != config.vocab_size`.
675

676
        Takes care of tying weights embeddings afterwards if the model class has a :obj:`tie_weights()` method.
677

678
679
680
681
        Arguments:
            new_num_tokens (:obj:`int`, `optional`):
                The number of new tokens in the embedding matrix. Increasing the size will add newly initialized
                vectors at the end. Reducing the size will remove vectors from the end. If not provided or :obj:`None`,
682
                just returns a pointer to the input tokens :obj:`tf.Variable` module of the model without doing
683
684
685
686
                anything.

        Return:
            :obj:`tf.Variable`: Pointer to the input tokens Embeddings Module of the model.
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
        """
        model_embeds = self._resize_token_embeddings(new_num_tokens)
        if new_num_tokens is None:
            return model_embeds

        return model_embeds

    def _resize_token_embeddings(self, new_num_tokens):
        # get_input_embeddings and set_input_embeddings need to be implemented in base layer.
        base_model = getattr(self, self.base_model_prefix, self)
        old_embeddings = base_model.get_input_embeddings()
        new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens)
        base_model.set_input_embeddings(new_embeddings)
        # Update base model and current model config
        self.config.vocab_size = new_num_tokens
        base_model.vocab_size = new_num_tokens
        return base_model.get_input_embeddings()

    def _get_word_embeddings(self, embeddings):
        if hasattr(embeddings, "word_embeddings"):
            # TFBertEmbeddings, TFAlbertEmbeddings, TFElectraEmbeddings
            return embeddings.word_embeddings
        elif hasattr(embeddings, "weight"):
            # TFSharedEmbeddings
            return embeddings.weight
        else:
713
714
715
716
717
718
719
720
721
722
723
            # Here we build the word embeddings weights if not exists.
            # And then we retry to get the attribute once built.
            embeddings.build([])
            if hasattr(embeddings, "word_embeddings"):
                # TFBertEmbeddings, TFAlbertEmbeddings, TFElectraEmbeddings
                return embeddings.word_embeddings
            elif hasattr(embeddings, "weight"):
                # TFSharedEmbeddings
                return embeddings.weight
            else:
                raise ValueError("word embedding is not defined.")
724

725
726
727
728
    def _get_resized_embeddings(self, old_embeddings, new_num_tokens=None) -> tf.Variable:
        """
        Build a resized Embedding Module from a provided token Embedding Module. Increasing the size will add newly
        initialized vectors at the end. Reducing the size will remove vectors from the end
thomwolf's avatar
thomwolf committed
729
730

        Args:
731
732
733
            old_embeddings (:obj:`tf.Variable`):
                Old embeddings to be resized.
            new_num_tokens (:obj:`int`, `optional`):
thomwolf's avatar
thomwolf committed
734
                New number of tokens in the embedding matrix.
735
736
737

                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
                vectors from the end. If not provided or :obj:`None`, just returns a pointer to the input tokens
738
                :obj:`tf.Variable`` module of the model without doing anything.
739
740
741
742

        Return:
            :obj:`tf.Variable`: Pointer to the resized Embedding Module or the old Embedding Module if
            :obj:`new_num_tokens` is :obj:`None`
thomwolf's avatar
thomwolf committed
743
        """
744
        word_embeddings = self._get_word_embeddings(old_embeddings)
745
746
        bias_layer = self.get_output_layer_with_bias()

747
748
        if new_num_tokens is None:
            return word_embeddings
749

750
        old_num_tokens, old_embedding_dim = word_embeddings.shape
751

752
753
754
755
756
757
        if old_num_tokens == new_num_tokens:
            return word_embeddings

        # initialize new embeddings
        # todo: initializer range is not always passed in config.
        init_range = getattr(self.config, "initializer_range", 0.02)
758
759
760
761
762
763
764
765
766
        name = (
            self.name
            + "/"
            + self.base_model_prefix
            + "/"
            + old_embeddings.name
            + "/"
            + word_embeddings.name.split(":")[0]
        )
767
        new_embeddings = self.add_weight(
768
            name=name,
769
770
771
772
            shape=[new_num_tokens, old_embedding_dim],
            initializer=get_initializer(init_range),
            dtype=tf.float32,
        )
773
        init_weights = tf.make_ndarray(tf.make_tensor_proto(new_embeddings.value()))
thomwolf's avatar
thomwolf committed
774

775
776
        # Copy token embeddings from the previous weights
        num_tokens_to_copy = min(old_num_tokens, new_num_tokens)
777
        init_weights[:num_tokens_to_copy] = word_embeddings.value()[:num_tokens_to_copy, :]
778
        new_embeddings.assign(init_weights)
thomwolf's avatar
thomwolf committed
779

780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
        if bias_layer is not None:
            if not hasattr(bias_layer, "bias"):
                bias_layer.build([])

            # Second check in order to be sure the attribute has been properly created
            if not hasattr(bias_layer, "bias"):
                raise ValueError("bias is not defined.")

            # initialize bias
            init_bias = np.zeros((new_num_tokens,))
            init_bias[:num_tokens_to_copy] = bias_layer.bias.value()[
                :num_tokens_to_copy
            ]  # tf.make_ndarray(tf.make_tensor_proto(bias_layer.bias.value()))[:num_tokens_to_copy]

            bias_layer.bias = self.add_weight(
                shape=(new_num_tokens,),
                initializer="zeros",
                trainable=True,
                name=self.get_prefix_bias_name() + "/bias",
            )

            bias_layer.bias.assign(init_bias)

        output_embeddings = self.get_output_embeddings()

        if output_embeddings is not None:
            if self.get_input_embeddings() != output_embeddings:
                if not hasattr(output_embeddings, "decoder"):
                    output_embeddings.build([])

                # Second check in order to be sure the attribute has been properly created
                if not hasattr(output_embeddings, "decoder"):
                    raise ValueError("decoder is not defined.")

                # initialize decoder
                init_weights = np.zeros((new_num_tokens, old_embedding_dim))
                init_weights[:num_tokens_to_copy] = output_embeddings.decoder.value()[:num_tokens_to_copy, :]

                output_embeddings.decoder = self.add_weight(
                    shape=(new_num_tokens, old_embedding_dim),
                    initializer="zeros",
                    trainable=True,
                    name=self.get_prefix_bias_name() + "/decoder/weight",
                )
                output_embeddings.decoder.assign(init_weights)

826
        return new_embeddings
thomwolf's avatar
thomwolf committed
827
828

    def prune_heads(self, heads_to_prune):
829
830
        """
        Prunes heads of the base model.
thomwolf's avatar
thomwolf committed
831

832
833
        Arguments:
            heads_to_prune (:obj:`Dict[int, List[int]]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
834
835
836
                Dictionary with keys being selected layer indices (:obj:`int`) and associated values being the list of
                heads to prune in said layer (list of :obj:`int`). For instance {1: [0, 2], 2: [2, 3]} will prune heads
                0 and 2 on layer 1 and heads 2 and 3 on layer 2.
thomwolf's avatar
thomwolf committed
837
838
839
        """
        raise NotImplementedError

Julien Plu's avatar
Julien Plu committed
840
    def save_pretrained(self, save_directory, saved_model=False, version=1):
841
842
        """
        Save a model and its configuration file to a directory, so that it can be re-loaded using the
Sylvain Gugger's avatar
Sylvain Gugger committed
843
        :func:`~transformers.TFPreTrainedModel.from_pretrained` class method.
844
845
846
847

        Arguments:
            save_directory (:obj:`str`):
                Directory to which to save. Will be created if it doesn't exist.
Julien Plu's avatar
Julien Plu committed
848
849
850
851
852
853
            saved_model (:obj:`bool`, `optional`, defaults to :obj:`False`):
                If the model has to be saved in saved model format as well or not.
            version (:obj:`int`, `optional`, defaults to 1):
                The version of the saved model. A saved model needs to be versioned in order to be properly loaded by
                TensorFlow Serving as detailed in the official documentation
                https://www.tensorflow.org/tfx/serving/serving_basic
thomwolf's avatar
thomwolf committed
854
        """
855
856
857
858
        if os.path.isfile(save_directory):
            logger.error("Provided path ({}) should be a directory, not a file".format(save_directory))
            return
        os.makedirs(save_directory, exist_ok=True)
thomwolf's avatar
thomwolf committed
859

Julien Plu's avatar
Julien Plu committed
860
861
862
863
864
        if saved_model:
            saved_model_dir = os.path.join(save_directory, "saved_model", str(version))
            self.save(saved_model_dir, include_optimizer=False, signatures=self.serving)
            logger.info(f"Saved model created in {saved_model_dir}")

thomwolf's avatar
thomwolf committed
865
866
867
868
869
870
        # Save configuration file
        self.config.save_pretrained(save_directory)

        # If we save using the predefined names, we can load using `from_pretrained`
        output_model_file = os.path.join(save_directory, TF2_WEIGHTS_NAME)
        self.save_weights(output_model_file)
thomwolf's avatar
thomwolf committed
871
        logger.info("Model weights saved in {}".format(output_model_file))
thomwolf's avatar
thomwolf committed
872
873
874

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
875
876
        r"""
        Instantiate a pretrained TF 2.0 model from a pre-trained model configuration.
thomwolf's avatar
thomwolf committed
877

878
879
880
        The warning `Weights from XXX not initialized from pretrained model` means that the weights of XXX do not come
        pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
        task.
thomwolf's avatar
thomwolf committed
881

882
883
        The warning `Weights from XXX not used in YYY` means that the layer XXX is not used by YYY, therefore those
        weights are discarded.
thomwolf's avatar
thomwolf committed
884
885

        Parameters:
886
887
888
            pretrained_model_name_or_path (:obj:`str`, `optional`):
                Can be either:

889
890
891
                    - A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co.
                      Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under
                      a user or organization name, like ``dbmdz/bert-base-german-cased``.
892
893
                    - A path to a `directory` containing model weights saved using
                      :func:`~transformersTF.PreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``.
Sylvain Gugger's avatar
Sylvain Gugger committed
894
                    - A path or url to a `PyTorch state_dict save file` (e.g, ``./pt_model/pytorch_model.bin``). In
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
                      this case, ``from_pt`` should be set to :obj:`True` and a configuration object should be provided
                      as ``config`` argument. This loading path is slower than converting the PyTorch model in a
                      TensorFlow model using the provided conversion scripts and loading the TensorFlow model
                      afterwards.
                    - :obj:`None` if you are both providing the configuration and state dictionary (resp. with keyword
                      arguments ``config`` and ``state_dict``).
            model_args (sequence of positional arguments, `optional`):
                All remaning positional arguments will be passed to the underlying model's ``__init__`` method.
            config (:obj:`Union[PretrainedConfig, str]`, `optional`):
                Can be either:

                    - an instance of a class derived from :class:`~transformers.PretrainedConfig`,
                    - a string valid as input to :func:`~transformers.PretrainedConfig.from_pretrained`.

                Configuration for the model to use instead of an automatically loaded configuation. Configuration can
                be automatically loaded when:

912
913
                    - The model is a model provided by the library (loaded with the `model id` string of a pretrained
                      model).
914
                    - The model was saved using :func:`~transformers.TFPreTrainedModel.save_pretrained` and is reloaded
915
916
                      by supplying the save directory.
                    - The model is loaded by supplying a local directory as ``pretrained_model_name_or_path`` and a
917
918
919
920
921
922
923
924
925
926
927
928
929
930
                      configuration JSON file named `config.json` is found in the directory.
            from_pt: (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Load the model weights from a PyTorch state_dict save file (see docstring of
                ``pretrained_model_name_or_path`` argument).
            cache_dir (:obj:`str`, `optional`):
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
            force_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
            proxies: (:obj:`Dict[str, str], `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
931
932
                A dictionary of proxy servers to use by protocol or endpoint, e.g., :obj:`{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
933
            output_loading_info(:obj:`bool`, `optional`, defaults to :obj:`False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
934
                Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages.
935
936
            local_files_only(:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to only look at local files (e.g., not try doanloading the model).
937
938
939
            use_auth_token (:obj:`str` or `bool`, `optional`):
                The token to use as HTTP bearer authorization for remote files. If :obj:`True`, will use the token
                generated when running :obj:`transformers-cli login` (stored in :obj:`~/.huggingface`).
Julien Chaumond's avatar
Julien Chaumond committed
940
941
942
943
            revision(:obj:`str`, `optional`, defaults to :obj:`"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so ``revision`` can be any
                identifier allowed by git.
944
            mirror(:obj:`str`, `optional`, defaults to :obj:`None`):
Sylvain Gugger's avatar
Sylvain Gugger committed
945
946
947
                Mirror source to accelerate downloads in China. If you are from China and have an accessibility
                problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
                Please refer to the mirror site for more information.
948
949
            kwargs (remaining dictionary of keyword arguments, `optional`):
                Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
950
                :obj:`output_attentions=True`). Behaves differently depending on whether a ``config`` is provided or
951
952
953
954
955
956
957
958
959
960
                automatically loaded:

                    - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the
                      underlying model's ``__init__`` method (we assume all relevant updates to the configuration have
                      already been done)
                    - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class
                      initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of
                      ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute
                      with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration
                      attribute will be passed to the underlying model's ``__init__`` function.
thomwolf's avatar
thomwolf committed
961

962
963
964
965
        .. note::

            Passing :obj:`use_auth_token=True` is required when you want to use a private model.

thomwolf's avatar
thomwolf committed
966
967
        Examples::

968
            >>> from transformers import BertConfig, TFBertModel
969
            >>> # Download model and configuration from huggingface.co and cache.
970
971
972
973
974
975
976
977
978
            >>> model = TFBertModel.from_pretrained('bert-base-uncased')
            >>> # Model was saved using `save_pretrained('./test/saved_model/')` (for example purposes, not runnable).
            >>> model = TFBertModel.from_pretrained('./test/saved_model/')
            >>> # Update configuration during loading.
            >>> model = TFBertModel.from_pretrained('bert-base-uncased', output_attentions=True)
            >>> assert model.config.output_attentions == True
            >>> # Loading from a Pytorch model file instead of a TensorFlow checkpoint (slower, for example purposes, not runnable).
            >>> config = BertConfig.from_json_file('./pt_model/my_pt_model_config.json')
            >>> model = TFBertModel.from_pretrained('./pt_model/my_pytorch_model.bin', from_pt=True, config=config)
thomwolf's avatar
thomwolf committed
979
980

        """
981
982
983
984
985
986
987
        config = kwargs.pop("config", None)
        cache_dir = kwargs.pop("cache_dir", None)
        from_pt = kwargs.pop("from_pt", False)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        output_loading_info = kwargs.pop("output_loading_info", False)
988
        local_files_only = kwargs.pop("local_files_only", False)
989
        use_auth_token = kwargs.pop("use_auth_token", None)
Julien Chaumond's avatar
Julien Chaumond committed
990
        revision = kwargs.pop("revision", None)
991
        mirror = kwargs.pop("mirror", None)
thomwolf's avatar
thomwolf committed
992

993
994
995
        # Load config if we don't provide a configuration
        if not isinstance(config, PretrainedConfig):
            config_path = config if config is not None else pretrained_model_name_or_path
thomwolf's avatar
thomwolf committed
996
            config, model_kwargs = cls.config_class.from_pretrained(
997
998
999
1000
                config_path,
                *model_args,
                cache_dir=cache_dir,
                return_unused_kwargs=True,
thomwolf's avatar
thomwolf committed
1001
                force_download=force_download,
1002
                resume_download=resume_download,
1003
1004
                proxies=proxies,
                local_files_only=local_files_only,
1005
                use_auth_token=use_auth_token,
Julien Chaumond's avatar
Julien Chaumond committed
1006
                revision=revision,
1007
                **kwargs,
thomwolf's avatar
thomwolf committed
1008
1009
1010
1011
1012
            )
        else:
            model_kwargs = kwargs

        # Load model
thomwolf's avatar
thomwolf committed
1013
        if pretrained_model_name_or_path is not None:
1014
            if os.path.isdir(pretrained_model_name_or_path):
1015
1016
1017
1018
                if from_pt and os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)):
                    # Load from a PyTorch checkpoint in priority if from_pt
                    archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
                elif os.path.isfile(os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)):
thomwolf's avatar
thomwolf committed
1019
1020
1021
                    # Load from a TF 2.0 checkpoint
                    archive_file = os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)
                else:
1022
1023
1024
1025
1026
                    raise EnvironmentError(
                        "Error no file named {} found in directory {} or `from_pt` set to False".format(
                            [WEIGHTS_NAME, TF2_WEIGHTS_NAME], pretrained_model_name_or_path
                        )
                    )
Julien Chaumond's avatar
Julien Chaumond committed
1027
            elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
thomwolf's avatar
thomwolf committed
1028
                archive_file = pretrained_model_name_or_path
1029
1030
            elif os.path.isfile(pretrained_model_name_or_path + ".index"):
                archive_file = pretrained_model_name_or_path + ".index"
thomwolf's avatar
thomwolf committed
1031
            else:
thomwolf's avatar
thomwolf committed
1032
                archive_file = hf_bucket_url(
Julien Chaumond's avatar
Julien Chaumond committed
1033
1034
                    pretrained_model_name_or_path,
                    filename=(WEIGHTS_NAME if from_pt else TF2_WEIGHTS_NAME),
Julien Chaumond's avatar
Julien Chaumond committed
1035
                    revision=revision,
1036
                    mirror=mirror,
thomwolf's avatar
thomwolf committed
1037
                )
thomwolf's avatar
thomwolf committed
1038
1039

            try:
1040
                # Load from URL or cache if already cached
1041
1042
1043
1044
1045
                resolved_archive_file = cached_path(
                    archive_file,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
1046
1047
                    resume_download=resume_download,
                    local_files_only=local_files_only,
1048
                    use_auth_token=use_auth_token,
1049
                )
Julien Chaumond's avatar
Julien Chaumond committed
1050
1051
            except EnvironmentError as err:
                logger.error(err)
1052
1053
1054
1055
1056
1057
                msg = (
                    f"Can't load weights for '{pretrained_model_name_or_path}'. Make sure that:\n\n"
                    f"- '{pretrained_model_name_or_path}' is a correct model identifier listed on 'https://huggingface.co/models'\n\n"
                    f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing a file named one of {TF2_WEIGHTS_NAME}, {WEIGHTS_NAME}.\n\n"
                )
                raise EnvironmentError(msg)
thomwolf's avatar
thomwolf committed
1058
1059
            if resolved_archive_file == archive_file:
                logger.info("loading weights file {}".format(archive_file))
thomwolf's avatar
thomwolf committed
1060
            else:
1061
                logger.info("loading weights file {} from cache at {}".format(archive_file, resolved_archive_file))
thomwolf's avatar
thomwolf committed
1062
        else:
thomwolf's avatar
thomwolf committed
1063
            resolved_archive_file = None
thomwolf's avatar
thomwolf committed
1064

1065
1066
        config.name_or_path = pretrained_model_name_or_path

thomwolf's avatar
thomwolf committed
1067
1068
1069
1070
        # Instantiate model.
        model = cls(config, *model_args, **model_kwargs)

        if from_pt:
Julien Plu's avatar
Julien Plu committed
1071
1072
            from .modeling_tf_pytorch_utils import load_pytorch_checkpoint_in_tf2_model

thomwolf's avatar
thomwolf committed
1073
            # Load from a PyTorch checkpoint
thomwolf's avatar
thomwolf committed
1074
            return load_pytorch_checkpoint_in_tf2_model(model, resolved_archive_file, allow_missing_keys=True)
thomwolf's avatar
thomwolf committed
1075

Julien Plu's avatar
Julien Plu committed
1076
        model(model.dummy_inputs)  # build the network with dummy inputs
thomwolf's avatar
thomwolf committed
1077

thomwolf's avatar
thomwolf committed
1078
        assert os.path.isfile(resolved_archive_file), "Error retrieving file {}".format(resolved_archive_file)
thomwolf's avatar
thomwolf committed
1079
1080
        # 'by_name' allow us to do transfer learning by skipping/adding layers
        # see https://github.com/tensorflow/tensorflow/blob/00fad90125b18b80fe054de1055770cfb8fe4ba3/tensorflow/python/keras/engine/network.py#L1339-L1357
1081
        try:
Julien Plu's avatar
Julien Plu committed
1082
            missing_keys, unexpected_keys = load_tf_weights(model, resolved_archive_file)
1083
        except OSError:
1084
1085
1086
1087
            raise OSError(
                "Unable to load weights from h5 file. "
                "If you tried to load a TF 2.0 model from a PyTorch checkpoint, please set from_pt=True. "
            )
thomwolf's avatar
thomwolf committed
1088

Julien Plu's avatar
Julien Plu committed
1089
        model(model.dummy_inputs)  # Make sure restore ops are run
thomwolf's avatar
thomwolf committed
1090

1091
1092
        if cls._keys_to_ignore_on_load_missing is not None:
            for pat in cls._keys_to_ignore_on_load_missing:
1093
1094
                missing_keys = [k for k in missing_keys if re.search(pat, k) is None]

1095
1096
        if cls._keys_to_ignore_on_load_unexpected is not None:
            for pat in cls._keys_to_ignore_on_load_unexpected:
Julien Plu's avatar
Julien Plu committed
1097
1098
                unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

1099
1100
        if len(unexpected_keys) > 0:
            logger.warning(
Julien Plu's avatar
Julien Plu committed
1101
                f"Some layers from the model checkpoint at {pretrained_model_name_or_path} were not used when "
1102
1103
                f"initializing {model.__class__.__name__}: {unexpected_keys}\n"
                f"- This IS expected if you are initializing {model.__class__.__name__} from the checkpoint of a model trained on another task "
1104
                f"or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n"
1105
1106
1107
1108
                f"- This IS NOT expected if you are initializing {model.__class__.__name__} from the checkpoint of a model that you expect "
                f"to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)."
            )
        else:
Julien Plu's avatar
Julien Plu committed
1109
1110
            logger.warning(f"All model checkpoint layers were used when initializing {model.__class__.__name__}.\n")

thomwolf's avatar
thomwolf committed
1111
        if len(missing_keys) > 0:
1112
            logger.warning(
Julien Plu's avatar
Julien Plu committed
1113
                f"Some layers of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} "
1114
1115
                f"and are newly initialized: {missing_keys}\n"
                f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference."
1116
            )
1117
1118
        else:
            logger.warning(
Julien Plu's avatar
Julien Plu committed
1119
                f"All the layers of {model.__class__.__name__} were initialized from the model checkpoint at {pretrained_model_name_or_path}.\n"
1120
                f"If your task is similar to the task the model of the checkpoint was trained on, "
1121
                f"you can already use {model.__class__.__name__} for predictions without further training."
1122
            )
Julien Plu's avatar
Julien Plu committed
1123

thomwolf's avatar
thomwolf committed
1124
        if output_loading_info:
Julien Plu's avatar
Julien Plu committed
1125
1126
            loading_info = {"missing_keys": missing_keys, "unexpected_keys": unexpected_keys}

thomwolf's avatar
thomwolf committed
1127
1128
            return model, loading_info

thomwolf's avatar
thomwolf committed
1129
        return model
thomwolf's avatar
WIP  
thomwolf committed
1130

1131

thomwolf's avatar
WIP  
thomwolf committed
1132
class TFConv1D(tf.keras.layers.Layer):
Sylvain Gugger's avatar
Sylvain Gugger committed
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
    """
    1D-convolutional layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2).

    Basically works like a linear layer but the weights are transposed.

    Args:
        nf (:obj:`int`):
            The number of output features.
        nx (:obj:`int`):
            The number of input features.
        initializer_range (:obj:`float`, `optional`, defaults to 0.02):
            The standard deviation to use to initialize the weights.
        kwargs:
            Additional keyword arguments passed along to the :obj:`__init__` of :obj:`tf.keras.layers.Layer`.
    """

thomwolf's avatar
thomwolf committed
1149
    def __init__(self, nf, nx, initializer_range=0.02, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
1150
        super().__init__(**kwargs)
thomwolf's avatar
WIP  
thomwolf committed
1151
        self.nf = nf
thomwolf's avatar
thomwolf committed
1152
        self.nx = nx
thomwolf's avatar
thomwolf committed
1153
        self.initializer_range = initializer_range
thomwolf's avatar
thomwolf committed
1154
1155
1156

    def build(self, input_shape):
        self.weight = self.add_weight(
1157
1158
1159
            "weight", shape=[self.nx, self.nf], initializer=get_initializer(self.initializer_range)
        )
        self.bias = self.add_weight("bias", shape=[1, self.nf], initializer=tf.zeros_initializer())
thomwolf's avatar
thomwolf committed
1160

thomwolf's avatar
WIP  
thomwolf committed
1161
    def call(self, x):
thomwolf's avatar
thomwolf committed
1162
        bz, sl = shape_list(x)[:2]
thomwolf's avatar
thomwolf committed
1163

thomwolf's avatar
thomwolf committed
1164
        x = tf.reshape(x, [-1, self.nx])
thomwolf's avatar
thomwolf committed
1165
        x = tf.matmul(x, self.weight) + self.bias
thomwolf's avatar
thomwolf committed
1166
1167

        x = tf.reshape(x, [bz, sl, self.nf])
thomwolf's avatar
thomwolf committed
1168

thomwolf's avatar
WIP  
thomwolf committed
1169
        return x
thomwolf's avatar
thomwolf committed
1170
1171


thomwolf's avatar
thomwolf committed
1172
class TFSharedEmbeddings(tf.keras.layers.Layer):
Stas Bekman's avatar
Stas Bekman committed
1173
    r"""
Sylvain Gugger's avatar
Sylvain Gugger committed
1174
    Construct shared token embeddings.
1175

Sylvain Gugger's avatar
Sylvain Gugger committed
1176
1177
    The weights of the embedding layer is usually shared with the weights of the linear decoder when doing language
    modeling.
Sylvain Gugger's avatar
Sylvain Gugger committed
1178
1179
1180

    Args:
        vocab_size (:obj:`int`):
1181
            The size of the vocabulary, e.g., the number of unique tokens.
Sylvain Gugger's avatar
Sylvain Gugger committed
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
        hidden_size (:obj:`int`):
            The size of the embedding vectors.
        initializer_range (:obj:`float`, `optional`):
            The standard deviation to use when initializing the weights. If no value is provided, it will default to
            :math:`1/\sqrt{hidden\_size}`.
        kwargs:
            Additional keyword arguments passed along to the :obj:`__init__` of :obj:`tf.keras.layers.Layer`.
    """

    def __init__(self, vocab_size: int, hidden_size: int, initializer_range: Optional[float] = None, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
1192
        super().__init__(**kwargs)
thomwolf's avatar
thomwolf committed
1193
1194
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
1195
        self.initializer_range = hidden_size ** -0.5 if initializer_range is None else initializer_range
thomwolf's avatar
thomwolf committed
1196
1197

    def build(self, input_shape):
Sylvain Gugger's avatar
Sylvain Gugger committed
1198
1199
1200
        """
        Build shared token embedding layer Shared weights logic adapted from
        https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24
thomwolf's avatar
thomwolf committed
1201
1202
        """
        self.weight = self.add_weight(
1203
1204
            "weight", shape=[self.vocab_size, self.hidden_size], initializer=get_initializer(self.initializer_range)
        )
Julien Chaumond's avatar
Julien Chaumond committed
1205
        super().build(input_shape)
thomwolf's avatar
thomwolf committed
1206

Julien Plu's avatar
Julien Plu committed
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
    def get_config(self):
        config = {
            "vocab_size": self.vocab_size,
            "hidden_size": self.hidden_size,
            "initializer_range": self.initializer_range,
        }
        base_config = super().get_config()

        return dict(list(base_config.items()) + list(config.items()))

Sylvain Gugger's avatar
Sylvain Gugger committed
1217
1218
1219
1220
    def call(self, inputs: tf.Tensor, mode: str = "embedding") -> tf.Tensor:
        """
        Get token embeddings of inputs or decode final hidden state.

thomwolf's avatar
thomwolf committed
1221
        Args:
Sylvain Gugger's avatar
Sylvain Gugger committed
1222
1223
1224
1225
1226
1227
1228
1229
            inputs (:obj:`tf.Tensor`):
                In embedding mode, should be an int64 tensor with shape :obj:`[batch_size, length]`.

                In linear mode, should be a float tensor with shape :obj:`[batch_size, length, hidden_size]`.
            mode (:obj:`str`, defaults to :obj:`"embedding"`):
               A valid value is either :obj:`"embedding"` or :obj:`"linear"`, the first one indicates that the layer
               should be used as an embedding layer, the second one that the layer should be used as a linear decoder.

thomwolf's avatar
thomwolf committed
1230
        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
1231
            :obj:`tf.Tensor`: In embedding mode, the output is a float32 embedding tensor, with shape
Sylvain Gugger's avatar
Sylvain Gugger committed
1232
1233
            :obj:`[batch_size, length, embedding_size]`.

1234
            In linear mode, the output is a float32 with shape :obj:`[batch_size, length, vocab_size]`.
Sylvain Gugger's avatar
Sylvain Gugger committed
1235

thomwolf's avatar
thomwolf committed
1236
        Raises:
Sylvain Gugger's avatar
Sylvain Gugger committed
1237
            ValueError: if :obj:`mode` is not valid.
1238

Sylvain Gugger's avatar
Sylvain Gugger committed
1239
1240
        Shared weights logic is adapted from `here
        <https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24>`__.
thomwolf's avatar
thomwolf committed
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
        """
        if mode == "embedding":
            return self._embedding(inputs)
        elif mode == "linear":
            return self._linear(inputs)
        else:
            raise ValueError("mode {} is not valid.".format(mode))

    def _embedding(self, input_ids):
        """Applies embedding based on inputs tensor."""
        return tf.gather(self.weight, input_ids)

    def _linear(self, inputs):
        """
Julien Plu's avatar
Julien Plu committed
1255
        Computes logits by running inputs through a linear layer.
thomwolf's avatar
thomwolf committed
1256

Julien Plu's avatar
Julien Plu committed
1257
1258
1259
1260
1261
1262
1263
        Args:
            inputs: A float32 tensor with shape [..., hidden_size]

        Returns:
            float32 tensor with shape [..., vocab_size].
        """
        first_dims = shape_list(inputs)[:-1]
thomwolf's avatar
thomwolf committed
1264
1265
1266
1267
1268
1269
        x = tf.reshape(inputs, [-1, self.hidden_size])
        logits = tf.matmul(x, self.weight, transpose_b=True)

        return tf.reshape(logits, first_dims + [self.vocab_size])


thomwolf's avatar
thomwolf committed
1270
class TFSequenceSummary(tf.keras.layers.Layer):
Julien Plu's avatar
Julien Plu committed
1271
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
1272
1273
1274
1275
    Compute a single vector summary of a sequence hidden states.

    Args:
        config (:class:`~transformers.PretrainedConfig`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1276
1277
            The config used by the model. Relevant arguments in the config class of the model are (refer to the actual
            config class of your model for the default values it uses):
Sylvain Gugger's avatar
Sylvain Gugger committed
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289

            - **summary_type** (:obj:`str`) -- The method to use to make this summary. Accepted values are:

                - :obj:`"last"` -- Take the last token hidden state (like XLNet)
                - :obj:`"first"` -- Take the first token hidden state (like Bert)
                - :obj:`"mean"` -- Take the mean of all tokens hidden states
                - :obj:`"cls_index"` -- Supply a Tensor of classification token position (GPT/GPT-2)
                - :obj:`"attn"` -- Not implemented now, use multi-head attention

            - **summary_use_proj** (:obj:`bool`) -- Add a projection after the vector extraction.
            - **summary_proj_to_labels** (:obj:`bool`) -- If :obj:`True`, the projection outputs to
              :obj:`config.num_labels` classes (otherwise to :obj:`config.hidden_size`).
Sylvain Gugger's avatar
Sylvain Gugger committed
1290
            - **summary_activation** (:obj:`Optional[str]`) -- Set to :obj:`"tanh"` to add a tanh activation to the
Sylvain Gugger's avatar
Sylvain Gugger committed
1291
1292
1293
1294
1295
1296
1297
1298
1299
              output, another string or :obj:`None` will add no activation.
            - **summary_first_dropout** (:obj:`float`) -- Optional dropout probability before the projection and
              activation.
            - **summary_last_dropout** (:obj:`float`)-- Optional dropout probability after the projection and
              activation.

        initializer_range (:obj:`float`, defaults to 0.02): The standard deviation to use to initialize the weights.
        kwargs:
            Additional keyword arguments passed along to the :obj:`__init__` of :obj:`tf.keras.layers.Layer`.
thomwolf's avatar
thomwolf committed
1300
    """
1301

Sylvain Gugger's avatar
Sylvain Gugger committed
1302
    def __init__(self, config: PretrainedConfig, initializer_range: float = 0.02, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
1303
        super().__init__(**kwargs)
thomwolf's avatar
thomwolf committed
1304

1305
1306
        self.summary_type = config.summary_type if hasattr(config, "summary_use_proj") else "last"
        if self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
1307
1308
1309
1310
1311
            # We should use a standard multi-head attention module with absolute positional embedding for that.
            # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276
            # We can probably just use the multi-head attention module of PyTorch >=1.1.0
            raise NotImplementedError

1312
        self.has_summary = hasattr(config, "summary_use_proj") and config.summary_use_proj
1313
        if self.has_summary:
1314
            if hasattr(config, "summary_proj_to_labels") and config.summary_proj_to_labels and config.num_labels > 0:
thomwolf's avatar
thomwolf committed
1315
1316
1317
                num_classes = config.num_labels
            else:
                num_classes = config.hidden_size
1318
1319
1320
            self.summary = tf.keras.layers.Dense(
                num_classes, kernel_initializer=get_initializer(initializer_range), name="summary"
            )
thomwolf's avatar
thomwolf committed
1321

1322
        self.has_activation = hasattr(config, "summary_activation") and config.summary_activation == "tanh"
1323
        if self.has_activation:
1324
            self.activation = tf.keras.activations.tanh
thomwolf's avatar
thomwolf committed
1325

1326
        self.has_first_dropout = hasattr(config, "summary_first_dropout") and config.summary_first_dropout > 0
1327
        if self.has_first_dropout:
thomwolf's avatar
thomwolf committed
1328
1329
            self.first_dropout = tf.keras.layers.Dropout(config.summary_first_dropout)

1330
        self.has_last_dropout = hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0
1331
        if self.has_last_dropout:
thomwolf's avatar
thomwolf committed
1332
1333
            self.last_dropout = tf.keras.layers.Dropout(config.summary_last_dropout)

Julien Plu's avatar
Julien Plu committed
1334
    def call(self, inputs, cls_index=None, training=False):
thomwolf's avatar
thomwolf committed
1335
1336
1337
1338
1339
1340
1341
        if not isinstance(inputs, (dict, tuple, list)):
            hidden_states = inputs
        elif isinstance(inputs, (tuple, list)):
            hidden_states = inputs[0]
            cls_index = inputs[1] if len(inputs) > 1 else None
            assert len(inputs) <= 2, "Too many inputs."
        else:
1342
            hidden_states = inputs.get("hidden_states")
1343
            cls_index = inputs.get("cls_index", None)
thomwolf's avatar
thomwolf committed
1344

1345
        if self.summary_type == "last":
thomwolf's avatar
thomwolf committed
1346
            output = hidden_states[:, -1]
1347
        elif self.summary_type == "first":
thomwolf's avatar
thomwolf committed
1348
            output = hidden_states[:, 0]
1349
        elif self.summary_type == "mean":
Lysandre's avatar
Lysandre committed
1350
            output = tf.reduce_mean(hidden_states, axis=1)
1351
        elif self.summary_type == "cls_index":
1352
            hidden_shape = shape_list(hidden_states)  # e.g. [batch, num choices, seq length, hidden dims]
thomwolf's avatar
thomwolf committed
1353
            if cls_index is None:
1354
1355
1356
                cls_index = tf.fill(
                    hidden_shape[:-2], hidden_shape[-2] - 1
                )  # A tensor full of shape [batch] or [batch, num choices] full of sequence length
1357
1358
1359
1360
            cls_shape = shape_list(cls_index)
            if len(cls_shape) <= len(hidden_shape) - 2:
                cls_index = cls_index[..., tf.newaxis]
            # else:
1361
1362
            # cls_index = cls_index[..., tf.newaxis]
            # cls_index = cls_index.expand((-1,) * (cls_index.dim()-1) + (hidden_states.size(-1),))
thomwolf's avatar
thomwolf committed
1363
            # shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states
1364
            output = tf.gather(hidden_states, cls_index, batch_dims=len(hidden_shape) - 2)
1365
1366
1367
1368
            output = tf.squeeze(
                output, axis=len(hidden_shape) - 2
            )  # shape of output: (batch, num choices, hidden_size)
        elif self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
1369
1370
            raise NotImplementedError

1371
1372
        if self.has_first_dropout:
            output = self.first_dropout(output, training=training)
thomwolf's avatar
thomwolf committed
1373

1374
        if self.has_summary:
1375
            output = self.summary(output)
thomwolf's avatar
thomwolf committed
1376

1377
        if self.has_activation:
thomwolf's avatar
thomwolf committed
1378
1379
            output = self.activation(output)

1380
1381
        if self.has_last_dropout:
            output = self.last_dropout(output, training=training)
thomwolf's avatar
thomwolf committed
1382
1383
1384

        return output

1385

Julien Plu's avatar
Julien Plu committed
1386
def shape_list(tensor: tf.Tensor) -> List[int]:
Sylvain Gugger's avatar
Sylvain Gugger committed
1387
1388
1389
1390
    """
    Deal with dynamic shape in tensorflow cleanly.

    Args:
Julien Plu's avatar
Julien Plu committed
1391
        tensor (:obj:`tf.Tensor`): The tensor we want the shape of.
Sylvain Gugger's avatar
Sylvain Gugger committed
1392
1393
1394
1395

    Returns:
        :obj:`List[int]`: The shape of the tensor as a list.
    """
Julien Plu's avatar
Julien Plu committed
1396
    dynamic = tf.shape(tensor)
Julien Plu's avatar
Julien Plu committed
1397
1398

    if tensor.shape == tf.TensorShape(None):
1399
        return dynamic
Julien Plu's avatar
Julien Plu committed
1400
1401
1402

    static = tensor.shape.as_list()

thomwolf's avatar
thomwolf committed
1403
    return [dynamic[i] if s is None else s for i, s in enumerate(static)]
thomwolf's avatar
thomwolf committed
1404

1405

Sylvain Gugger's avatar
Sylvain Gugger committed
1406
1407
1408
1409
def get_initializer(initializer_range: float = 0.02) -> tf.initializers.TruncatedNormal:
    """
    Creates a :obj:`tf.initializers.TruncatedNormal` with the given range.

Julien Chaumond's avatar
Julien Chaumond committed
1410
    Args:
Sylvain Gugger's avatar
Sylvain Gugger committed
1411
1412
        initializer_range (`float`, defaults to 0.02): Standard deviation of the initializer range.

Julien Chaumond's avatar
Julien Chaumond committed
1413
    Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
1414
        :obj:`tf.initializers.TruncatedNormal`: The truncated normal initializer.
Julien Chaumond's avatar
Julien Chaumond committed
1415
1416
    """
    return tf.keras.initializers.TruncatedNormal(stddev=initializer_range)
1417
1418


Sam Shleifer's avatar
Sam Shleifer committed
1419
1420
class TFWrappedEmbeddings:
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
1421
1422
1423
    this class wraps a the TFSharedEmbeddingTokens layer into a python 'no-keras-layer' class to avoid problem with
    weight restoring. Also it makes sure that the layer is called from the correct scope to avoid problem with
    saving/storing the correct weights
Sam Shleifer's avatar
Sam Shleifer committed
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
    """

    def __init__(self, layer, abs_scope_name=None):
        self._layer = layer
        self._abs_scope_name = abs_scope_name

    def call(self, inputs, mode="embedding"):
        if self._abs_scope_name is None:
            return self._layer.call(inputs, mode)

        # if an abs scope name is given to the embedding variable, call variable from absolute scope
        with tf.compat.v1.variable_scope(self._abs_scope_name, auxiliary_name_scope=False) as abs_scope_name:
            with tf.name_scope(abs_scope_name.original_name_scope):
                return self._layer.call(inputs, mode)

    def __call__(self, inputs, mode="embedding"):
        if self._abs_scope_name is None:
            return self._layer(inputs, mode)

        # if an abs scope name is given to the embedding variable, call variable from absolute scope
        with tf.compat.v1.variable_scope(self._abs_scope_name, auxiliary_name_scope=False) as abs_scope_name:
            with tf.name_scope(abs_scope_name.original_name_scope):
                return self._layer(inputs, mode)