"vscode:/vscode.git/clone" did not exist on "181075635d6f8d0596bf2e205fb611389c760ea4"
run_classifier.py 40.6 KB
Newer Older
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning runner."""

thomwolf's avatar
thomwolf committed
18
from __future__ import absolute_import, division, print_function
19

thomwolf's avatar
thomwolf committed
20
import argparse
21
import csv
22
import logging
thomwolf's avatar
thomwolf committed
23
import os
VictorSanh's avatar
VictorSanh committed
24
import random
thomwolf's avatar
thomwolf committed
25
import sys
thomwolf's avatar
thomwolf committed
26
27

import numpy as np
VictorSanh's avatar
VictorSanh committed
28
import torch
thomwolf's avatar
thomwolf committed
29
30
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
                              TensorDataset)
31
from torch.utils.data.distributed import DistributedSampler
thomwolf's avatar
thomwolf committed
32
from tqdm import tqdm, trange
33

34
35
36
37
from torch.nn import CrossEntropyLoss, MSELoss
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import matthews_corrcoef, f1_score

38
39
40
from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE, WEIGHTS_NAME, CONFIG_NAME
from pytorch_pretrained_bert.modeling import BertForSequenceClassification, BertConfig
from pytorch_pretrained_bert.tokenization import BertTokenizer
41
from pytorch_pretrained_bert.optimization import BertAdam, warmup_linear
42

43
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
44
45
46
                    datefmt = '%m/%d/%Y %H:%M:%S',
                    level = logging.INFO)
logger = logging.getLogger(__name__)
47

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

class InputExample(object):
    """A single training/test example for simple sequence classification."""

    def __init__(self, guid, text_a, text_b=None, label=None):
        """Constructs a InputExample.

        Args:
            guid: Unique id for the example.
            text_a: string. The untokenized text of the first sequence. For single
            sequence tasks, only this sequence must be specified.
            text_b: (Optional) string. The untokenized text of the second sequence.
            Only must be specified for sequence pair tasks.
            label: (Optional) string. The label of the example. This should be
            specified for train and dev examples, but not for test examples.
        """
        self.guid = guid
        self.text_a = text_a
        self.text_b = text_b
        self.label = label


class InputFeatures(object):
    """A single set of features of data."""

    def __init__(self, input_ids, input_mask, segment_ids, label_id):
        self.input_ids = input_ids
        self.input_mask = input_mask
        self.segment_ids = segment_ids
        self.label_id = label_id
thomwolf's avatar
thomwolf committed
78

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

class DataProcessor(object):
    """Base class for data converters for sequence classification data sets."""

    def get_train_examples(self, data_dir):
        """Gets a collection of `InputExample`s for the train set."""
        raise NotImplementedError()

    def get_dev_examples(self, data_dir):
        """Gets a collection of `InputExample`s for the dev set."""
        raise NotImplementedError()

    def get_labels(self):
        """Gets the list of labels for this data set."""
        raise NotImplementedError()

    @classmethod
    def _read_tsv(cls, input_file, quotechar=None):
        """Reads a tab separated value file."""
98
        with open(input_file, "r") as f:
99
100
101
            reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
            lines = []
            for line in reader:
thomwolf's avatar
thomwolf committed
102
103
                if sys.version_info[0] == 2:
                    line = list(unicode(cell, 'utf-8') for cell in line)
104
105
                lines.append(line)
            return lines
thomwolf's avatar
thomwolf committed
106
107


VictorSanh's avatar
wip  
VictorSanh committed
108
109
110
111
112
class MrpcProcessor(DataProcessor):
    """Processor for the MRPC data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
thomwolf's avatar
thomwolf committed
113
        logger.info("LOOKING AT {}".format(os.path.join(data_dir, "train.tsv")))
VictorSanh's avatar
wip  
VictorSanh committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type, i)
133
134
135
            text_a = line[3]
            text_b = line[4]
            label = line[0]
VictorSanh's avatar
wip  
VictorSanh committed
136
137
138
139
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

class MnliProcessor(DataProcessor):
    """Processor for the MultiNLI data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")),
            "dev_matched")

    def get_labels(self):
        """See base class."""
        return ["contradiction", "entailment", "neutral"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
165
            guid = "%s-%s" % (set_type, line[0])
166
167
            text_a = line[8]
            text_b = line[9]
168
            label = line[-1]
169
170
171
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples
thomwolf's avatar
thomwolf committed
172

173

174
175
176
177
178
179
180
181
182
183
class MnliMismatchedProcessor(MnliProcessor):
    """Processor for the MultiNLI Mismatched data set (GLUE version)."""

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev_mismatched.tsv")),
            "dev_matched")


184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
class ColaProcessor(DataProcessor):
    """Processor for the CoLA data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            guid = "%s-%s" % (set_type, i)
206
207
            text_a = line[3]
            label = line[1]
208
209
210
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
        return examples
thomwolf's avatar
thomwolf committed
211
212


213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
class Sst2Processor(DataProcessor):
    """Processor for the SST-2 data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type, i)
            text_a = line[0]
            label = line[1]
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
        return examples


244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
class StsbProcessor(DataProcessor):
    """Processor for the STS-B data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return [None]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type, line[0])
            text_a = line[7]
            text_b = line[8]
            label = line[-1]
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples


class QqpProcessor(DataProcessor):
    """Processor for the STS-B data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type, line[0])
            try:
                text_a = line[3]
                text_b = line[4]
                label = line[5]
            except IndexError:
                continue
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples


class QnliProcessor(DataProcessor):
    """Processor for the STS-B data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), 
            "dev_matched")

    def get_labels(self):
        """See base class."""
        return ["entailment", "not_entailment"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type, line[0])
            text_a = line[1]
            text_b = line[2]
            label = line[-1]
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples


class RteProcessor(DataProcessor):
    """Processor for the RTE data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return ["entailment", "not_entailment"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type, line[0])
            text_a = line[1]
            text_b = line[2]
            label = line[-1]
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples


class WnliProcessor(DataProcessor):
    """Processor for the WNLI data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type, line[0])
            text_a = line[1]
            text_b = line[2]
            label = line[-1]
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples


408
409
def convert_examples_to_features(examples, label_list, max_seq_length,
                                 tokenizer, output_mode):
410
411
    """Loads a data file into a list of `InputBatch`s."""

412
    label_map = {label : i for i, label in enumerate(label_list)}
413
414
415

    features = []
    for (ex_index, example) in enumerate(examples):
416
417
418
        if ex_index % 10000 == 0:
            logger.info("Writing example %d of %d" % (ex_index, len(examples)))

419
420
421
422
423
424
425
426
427
428
429
430
        tokens_a = tokenizer.tokenize(example.text_a)

        tokens_b = None
        if example.text_b:
            tokens_b = tokenizer.tokenize(example.text_b)
            # Modifies `tokens_a` and `tokens_b` in place so that the total
            # length is less than the specified length.
            # Account for [CLS], [SEP], [SEP] with "- 3"
            _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
        else:
            # Account for [CLS] and [SEP] with "- 2"
            if len(tokens_a) > max_seq_length - 2:
431
                tokens_a = tokens_a[:(max_seq_length - 2)]
432
433
434
435
436
437
438
439
440
441
442
443
444

        # The convention in BERT is:
        # (a) For sequence pairs:
        #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
        #  type_ids: 0   0  0    0    0     0       0 0    1  1  1  1   1 1
        # (b) For single sequences:
        #  tokens:   [CLS] the dog is hairy . [SEP]
        #  type_ids: 0   0   0   0  0     0 0
        #
        # Where "type_ids" are used to indicate whether this is the first
        # sequence or the second sequence. The embedding vectors for `type=0` and
        # `type=1` were learned during pre-training and are added to the wordpiece
        # embedding vector (and position vector). This is not *strictly* necessary
Weixin Wang's avatar
Weixin Wang committed
445
        # since the [SEP] token unambiguously separates the sequences, but it makes
446
447
448
449
450
        # it easier for the model to learn the concept of sequences.
        #
        # For classification tasks, the first vector (corresponding to [CLS]) is
        # used as as the "sentence vector". Note that this only makes sense because
        # the entire model is fine-tuned.
451
452
        tokens = ["[CLS]"] + tokens_a + ["[SEP]"]
        segment_ids = [0] * len(tokens)
453
454

        if tokens_b:
455
456
            tokens += tokens_b + ["[SEP]"]
            segment_ids += [1] * (len(tokens_b) + 1)
457
458
459
460
461
462
463
464

        input_ids = tokenizer.convert_tokens_to_ids(tokens)

        # The mask has 1 for real tokens and 0 for padding tokens. Only real
        # tokens are attended to.
        input_mask = [1] * len(input_ids)

        # Zero-pad up to the sequence length.
465
466
467
468
        padding = [0] * (max_seq_length - len(input_ids))
        input_ids += padding
        input_mask += padding
        segment_ids += padding
469
470
471
472
473

        assert len(input_ids) == max_seq_length
        assert len(input_mask) == max_seq_length
        assert len(segment_ids) == max_seq_length

474
475
476
477
478
479
480
        if output_mode == "classification":
            label_id = label_map[example.label]
        elif output_mode == "regression":
            label_id = float(example.label)
        else:
            raise KeyError(output_mode)

481
482
483
484
        if ex_index < 5:
            logger.info("*** Example ***")
            logger.info("guid: %s" % (example.guid))
            logger.info("tokens: %s" % " ".join(
485
                    [str(x) for x in tokens]))
486
487
488
489
490
491
492
            logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
            logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
            logger.info(
                    "segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
            logger.info("label: %s (id = %d)" % (example.label, label_id))

        features.append(
thomwolf's avatar
thomwolf committed
493
494
495
496
                InputFeatures(input_ids=input_ids,
                              input_mask=input_mask,
                              segment_ids=segment_ids,
                              label_id=label_id))
497
    return features
thomwolf's avatar
thomwolf committed
498
499


500
501
502
503
504
505
506
507
508
509
510
511
512
513
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
    """Truncates a sequence pair in place to the maximum length."""

    # This is a simple heuristic which will always truncate the longer sequence
    # one token at a time. This makes more sense than truncating an equal percent
    # of tokens from each, since if one sequence is very short then each token
    # that's truncated likely contains more information than a longer sequence.
    while True:
        total_length = len(tokens_a) + len(tokens_b)
        if total_length <= max_length:
            break
        if len(tokens_a) > len(tokens_b):
            tokens_a.pop()
        else:
VictorSanh's avatar
VictorSanh committed
514
515
            tokens_b.pop()

516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565

def simple_accuracy(preds, labels):
    return (preds == labels).mean()


def acc_and_f1(preds, labels):
    acc = simple_accuracy(preds, labels)
    f1 = f1_score(y_true=labels, y_pred=preds)
    return {
        "acc": acc,
        "f1": f1,
        "acc_and_f1": (acc + f1) / 2,
    }


def pearson_and_spearman(preds, labels):
    pearson_corr = pearsonr(preds, labels)[0]
    spearman_corr = spearmanr(preds, labels)[0]
    return {
        "pearson": pearson_corr,
        "spearmanr": spearman_corr,
        "corr": (pearson_corr + spearman_corr) / 2,
    }


def compute_metrics(task_name, preds, labels):
    assert len(preds) == len(labels)
    if task_name == "cola":
        return {"mcc": matthews_corrcoef(labels, preds)}
    elif task_name == "sst-2":
        return {"acc": simple_accuracy(preds, labels)}
    elif task_name == "mrpc":
        return acc_and_f1(preds, labels)
    elif task_name == "sts-b":
        return pearson_and_spearman(preds, labels)
    elif task_name == "qqp":
        return acc_and_f1(preds, labels)
    elif task_name == "mnli":
        return {"acc": simple_accuracy(preds, labels)}
    elif task_name == "mnli-mm":
        return {"acc": simple_accuracy(preds, labels)}
    elif task_name == "qnli":
        return {"acc": simple_accuracy(preds, labels)}
    elif task_name == "rte":
        return {"acc": simple_accuracy(preds, labels)}
    elif task_name == "wnli":
        return {"acc": simple_accuracy(preds, labels)}
    else:
        raise KeyError(task_name)

VictorSanh's avatar
WIP  
VictorSanh committed
566

567
def main():
568
569
570
571
572
573
574
575
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir",
                        default=None,
                        type=str,
                        required=True,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
thomwolf's avatar
thomwolf committed
576
577
    parser.add_argument("--bert_model", default=None, type=str, required=True,
                        help="Bert pre-trained model selected in the list: bert-base-uncased, "
578
579
                        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
                        "bert-base-multilingual-cased, bert-base-chinese.")
580
581
582
583
584
585
586
587
588
    parser.add_argument("--task_name",
                        default=None,
                        type=str,
                        required=True,
                        help="The name of the task to train.")
    parser.add_argument("--output_dir",
                        default=None,
                        type=str,
                        required=True,
589
                        help="The output directory where the model predictions and checkpoints will be written.")
590
591

    ## Other parameters
592
593
594
595
    parser.add_argument("--cache_dir",
                        default="",
                        type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")
596
597
598
599
600
601
602
603
604
605
606
607
    parser.add_argument("--max_seq_length",
                        default=128,
                        type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. \n"
                             "Sequences longer than this will be truncated, and sequences shorter \n"
                             "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
thomwolf's avatar
thomwolf committed
608
609
610
    parser.add_argument("--do_lower_case",
                        action='store_true',
                        help="Set this flag if you are using an uncased model.")
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_proportion",
                        default=0.1,
                        type=float,
                        help="Proportion of training to perform linear learning rate warmup for. "
                             "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
639
640
    parser.add_argument('--seed',
                        type=int,
VictorSanh's avatar
VictorSanh committed
641
642
                        default=42,
                        help="random seed for initialization")
643
644
645
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
646
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
thomwolf's avatar
thomwolf committed
647
648
649
650
    parser.add_argument('--fp16',
                        action='store_true',
                        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument('--loss_scale',
651
652
653
654
                        type=float, default=0,
                        help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
                             "0 (default value): dynamic loss scaling.\n"
                             "Positive power of 2: static loss scaling value.\n")
655
656
    parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
657
658
    args = parser.parse_args()

659
660
661
662
663
664
665
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

VictorSanh's avatar
WIP  
VictorSanh committed
666
667
668
    processors = {
        "cola": ColaProcessor,
        "mnli": MnliProcessor,
669
        "mnli-mm": MnliMismatchedProcessor,
VictorSanh's avatar
WIP  
VictorSanh committed
670
        "mrpc": MrpcProcessor,
671
        "sst-2": Sst2Processor,
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
        "sts-b": StsbProcessor,
        "qqp": QqpProcessor,
        "qnli": QnliProcessor,
        "rte": RteProcessor,
        "wnli": WnliProcessor,
    }

    output_modes = {
        "cola": "classification",
        "mnli": "classification",
        "mrpc": "classification",
        "sst-2": "classification",
        "sts-b": "regression",
        "qqp": "classification",
        "qnli": "classification",
        "rte": "classification",
        "wnli": "classification",
VictorSanh's avatar
WIP  
VictorSanh committed
689
    }
thomwolf's avatar
thomwolf committed
690
691
692
693
694

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
695
        torch.cuda.set_device(args.local_rank)
thomwolf's avatar
thomwolf committed
696
697
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
thomwolf's avatar
thomwolf committed
698
699
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
700
701
    logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
        device, n_gpu, bool(args.local_rank != -1), args.fp16))
thomwolf's avatar
thomwolf committed
702

703
704
705
    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
                            args.gradient_accumulation_steps))
thomwolf's avatar
thomwolf committed
706

707
    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
thomwolf's avatar
thomwolf committed
708

VictorSanh's avatar
VictorSanh committed
709
710
711
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
thomwolf's avatar
thomwolf committed
712
713
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)
thomwolf's avatar
thomwolf committed
714

VictorSanh's avatar
WIP  
VictorSanh committed
715
716
    if not args.do_train and not args.do_eval:
        raise ValueError("At least one of `do_train` or `do_eval` must be True.")
thomwolf's avatar
thomwolf committed
717

718
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train:
thomwolf's avatar
thomwolf committed
719
        raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
thomwolf's avatar
thomwolf committed
720
721
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)
VictorSanh's avatar
WIP  
VictorSanh committed
722
723

    task_name = args.task_name.lower()
thomwolf's avatar
thomwolf committed
724

VictorSanh's avatar
WIP  
VictorSanh committed
725
726
727
728
    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()
729
730
    output_mode = output_modes[task_name]

VictorSanh's avatar
WIP  
VictorSanh committed
731
    label_list = processor.get_labels()
732
    num_labels = len(label_list)
VictorSanh's avatar
WIP  
VictorSanh committed
733

thomwolf's avatar
thomwolf committed
734
    tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
thomwolf's avatar
thomwolf committed
735

VictorSanh's avatar
WIP  
VictorSanh committed
736
    train_examples = None
737
    num_train_optimization_steps = None
VictorSanh's avatar
WIP  
VictorSanh committed
738
739
    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir)
740
741
742
743
        num_train_optimization_steps = int(
            len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()
thomwolf's avatar
thomwolf committed
744

thomwolf's avatar
thomwolf committed
745
    # Prepare model
746
    cache_dir = args.cache_dir if args.cache_dir else os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(args.local_rank))
747
    model = BertForSequenceClassification.from_pretrained(args.bert_model,
748
              cache_dir=cache_dir,
749
              num_labels=num_labels)
thomwolf's avatar
thomwolf committed
750
751
    if args.fp16:
        model.half()
thomwolf's avatar
thomwolf committed
752
    model.to(device)
thomwolf's avatar
thomwolf committed
753
    if args.local_rank != -1:
thomwolf's avatar
thomwolf committed
754
755
756
757
758
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

759
        model = DDP(model)
thomwolf's avatar
thomwolf committed
760
    elif n_gpu > 1:
761
        model = torch.nn.DataParallel(model)
thomwolf's avatar
thomwolf committed
762

thomwolf's avatar
thomwolf committed
763
    # Prepare optimizer
764
765
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
thomwolf's avatar
thomwolf committed
766
    optimizer_grouped_parameters = [
767
768
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
thomwolf's avatar
thomwolf committed
769
        ]
770
    if args.fp16:
thomwolf's avatar
thomwolf committed
771
772
773
774
775
776
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

777
778
779
780
781
782
783
784
785
786
787
788
789
        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
790
                             t_total=num_train_optimization_steps)
thomwolf's avatar
thomwolf committed
791

thomwolf's avatar
thomwolf committed
792
    global_step = 0
Jade Abbott's avatar
Jade Abbott committed
793
    nb_tr_steps = 0
794
    tr_loss = 0
VictorSanh's avatar
WIP  
VictorSanh committed
795
796
    if args.do_train:
        train_features = convert_examples_to_features(
797
            train_examples, label_list, args.max_seq_length, tokenizer, output_mode)
VictorSanh's avatar
WIP  
VictorSanh committed
798
799
800
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
801
        logger.info("  Num steps = %d", num_train_optimization_steps)
802
803
804
        all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
805
806
807
808
809
810

        if output_mode == "classification":
            all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long)
        elif output_mode == "regression":
            all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.float)

811
812
813
814
815
816
817
818
        train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)

        model.train()
819
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
820
821
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
822
823
824
            for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch
825
826
827
828
829
830
831
832
833
834
835

                # define a new function to compute loss values for both output_modes
                logits = model(input_ids, segment_ids, input_mask, labels=None)

                if output_mode == "classification":
                    loss_fct = CrossEntropyLoss()
                    loss = loss_fct(logits.view(-1, num_labels), label_ids.view(-1))
                elif output_mode == "regression":
                    loss_fct = MSELoss()
                    loss = loss_fct(logits.view(-1), label_ids.view(-1))

thomwolf's avatar
thomwolf committed
836
837
                if n_gpu > 1:
                    loss = loss.mean() # mean() to average on multi-gpu.
838
839
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
840
841
842
843
844
845

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

846
                tr_loss += loss.item()
847
                nb_tr_examples += input_ids.size(0)
848
                nb_tr_steps += 1
thomwolf's avatar
thomwolf committed
849
                if (step + 1) % args.gradient_accumulation_steps == 0:
850
851
852
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
853
                        lr_this_step = args.learning_rate * warmup_linear(global_step/num_train_optimization_steps, args.warmup_proportion)
854
855
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
856
857
                    optimizer.step()
                    optimizer.zero_grad()
thomwolf's avatar
thomwolf committed
858
                    global_step += 1
thomwolf's avatar
thomwolf committed
859

860
        # Save a trained model, configuration and tokenizer
861
        model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self
862
863

        # If we save using the predefined names, we can load using `from_pretrained`
864
865
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
866
867
868

        torch.save(model_to_save.state_dict(), output_model_file)
        model_to_save.config.to_json_file(output_config_file)
869
        tokenizer.save_vocabulary(args.output_dir)
870

871
872
        # Load a trained model and vocabulary that you have fine-tuned
        model = BertForSequenceClassification.from_pretrained(args.output_dir, num_labels=num_labels)
873
        tokenizer = BertTokenizer.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
874
875
    else:
        model = BertForSequenceClassification.from_pretrained(args.bert_model, num_labels=num_labels)
876
    model.to(device)
877

878
    if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
VictorSanh's avatar
WIP  
VictorSanh committed
879
880
        eval_examples = processor.get_dev_examples(args.data_dir)
        eval_features = convert_examples_to_features(
881
            eval_examples, label_list, args.max_seq_length, tokenizer, output_mode)
VictorSanh's avatar
wip  
VictorSanh committed
882
883
884
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
885
886
887
        all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
888
889
890
891
892
893

        if output_mode == "classification":
            all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
        elif output_mode == "regression":
            all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.float)

894
        eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
895
896
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
897
898
899
        eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)

        model.eval()
900
901
902
        eval_loss = 0
        nb_eval_steps = 0
        preds = []
903

904
        for input_ids, input_mask, segment_ids, label_ids in tqdm(eval_dataloader, desc="Evaluating"):
905
            input_ids = input_ids.to(device)
thomwolf's avatar
thomwolf committed
906
            input_mask = input_mask.to(device)
907
            segment_ids = segment_ids.to(device)
908
            label_ids = label_ids.to(device)
909

910
            with torch.no_grad():
911
                logits = model(input_ids, segment_ids, input_mask, labels=None)
912

913
914
915
916
917
918
919
920
            # create eval loss and other metric required by the task
            if output_mode == "classification":
                loss_fct = CrossEntropyLoss()
                tmp_eval_loss = loss_fct(logits.view(-1, num_labels), label_ids.view(-1))
            elif output_mode == "regression":
                loss_fct = MSELoss()
                tmp_eval_loss = loss_fct(logits.view(-1), label_ids.view(-1))
            
921
922
            eval_loss += tmp_eval_loss.mean().item()
            nb_eval_steps += 1
923
924
925
926
927
            if len(preds) == 0:
                preds.append(logits.detach().cpu().numpy())
            else:
                preds[0] = np.append(
                    preds[0], logits.detach().cpu().numpy(), axis=0)
VictorSanh's avatar
WIP  
VictorSanh committed
928

929
        eval_loss = eval_loss / nb_eval_steps
930
931
932
        preds = preds[0]
        if output_mode == "classification":
            preds = np.argmax(preds, axis=1)
933
934
        elif output_mode == "regression":
            preds = np.squeeze(preds)
935
        result = compute_metrics(task_name, preds, all_label_ids.numpy())
936
        loss = tr_loss/nb_tr_steps if args.do_train else None
937
938
939
940

        result['eval_loss'] = eval_loss
        result['global_step'] = global_step
        result['loss'] = loss
VictorSanh's avatar
WIP  
VictorSanh committed
941
942

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
VictorSanh's avatar
wip  
VictorSanh committed
943
944
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
VictorSanh's avatar
WIP  
VictorSanh committed
945
            for key in sorted(result.keys()):
VictorSanh's avatar
wip  
VictorSanh committed
946
                logger.info("  %s = %s", key, str(result[key]))
VictorSanh's avatar
WIP  
VictorSanh committed
947
                writer.write("%s = %s\n" % (key, str(result[key])))
948

949
950
951
952
953
        # hack for MNLI-MM
        if task_name == "mnli":
            task_name = "mnli-mm"
            processor = processors[task_name]()

954
955
956
957
958
            if os.path.exists(args.output_dir + '-MM') and os.listdir(args.output_dir + '-MM') and args.do_train:
                raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
            if not os.path.exists(args.output_dir + '-MM'):
                os.makedirs(args.output_dir + '-MM')

959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
            eval_examples = processor.get_dev_examples(args.data_dir)
            eval_features = convert_examples_to_features(
                eval_examples, label_list, args.max_seq_length, tokenizer, output_mode)
            logger.info("***** Running evaluation *****")
            logger.info("  Num examples = %d", len(eval_examples))
            logger.info("  Batch size = %d", args.eval_batch_size)
            all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
            all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
            all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
            all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)

            eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
            # Run prediction for full data
            eval_sampler = SequentialSampler(eval_data)
            eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)

            model.eval()
            eval_loss = 0
            nb_eval_steps = 0
            preds = []

            for input_ids, input_mask, segment_ids, label_ids in tqdm(eval_dataloader, desc="Evaluating"):
                input_ids = input_ids.to(device)
                input_mask = input_mask.to(device)
                segment_ids = segment_ids.to(device)
                label_ids = label_ids.to(device)

                with torch.no_grad():
                    logits = model(input_ids, segment_ids, input_mask, labels=None)
            
                loss_fct = CrossEntropyLoss()
                tmp_eval_loss = loss_fct(logits.view(-1, num_labels), label_ids.view(-1))
            
                eval_loss += tmp_eval_loss.mean().item()
                nb_eval_steps += 1
                if len(preds) == 0:
                    preds.append(logits.detach().cpu().numpy())
                else:
                    preds[0] = np.append(
                        preds[0], logits.detach().cpu().numpy(), axis=0)
999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
            eval_loss = eval_loss / nb_eval_steps
            preds = preds[0]
            preds = np.argmax(preds, axis=1)
            result = compute_metrics(task_name, preds, all_label_ids.numpy())
            loss = tr_loss/nb_tr_steps if args.do_train else None

            result['eval_loss'] = eval_loss
            result['global_step'] = global_step
            result['loss'] = loss

            output_eval_file = os.path.join(args.output_dir + '-MM', "eval_results.txt")
            with open(output_eval_file, "w") as writer:
                logger.info("***** Eval results *****")
                for key in sorted(result.keys()):
                    logger.info("  %s = %s", key, str(result[key]))
                    writer.write("%s = %s\n" % (key, str(result[key])))
1016

VictorSanh's avatar
WIP  
VictorSanh committed
1017
1018
if __name__ == "__main__":
    main()