run_ner.py 25.9 KB
Newer Older
1
#!/usr/bin/env python
2
# coding=utf-8
3
# Copyright 2020 The HuggingFace Team All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
17
18
"""
Fine-tuning the library models for token classification.
"""
Sylvain Gugger's avatar
Sylvain Gugger committed
19
20
# You can also adapt this script on your own token classification task and datasets. Pointers for this are left as
# comments.
21

22
23
import logging
import os
24
import sys
Julien Chaumond's avatar
Julien Chaumond committed
25
from dataclasses import dataclass, field
26
from typing import Optional
27

28
import datasets
29
import numpy as np
30
from datasets import ClassLabel, load_dataset
Aymeric Augustin's avatar
Aymeric Augustin committed
31

32
import evaluate
33
import transformers
Aymeric Augustin's avatar
Aymeric Augustin committed
34
from transformers import (
35
36
37
    AutoConfig,
    AutoModelForTokenClassification,
    AutoTokenizer,
38
    DataCollatorForTokenClassification,
Julien Chaumond's avatar
Julien Chaumond committed
39
    HfArgumentParser,
40
    PretrainedConfig,
41
    PreTrainedTokenizerFast,
Julien Chaumond's avatar
Julien Chaumond committed
42
43
44
    Trainer,
    TrainingArguments,
    set_seed,
Aymeric Augustin's avatar
Aymeric Augustin committed
45
)
46
from transformers.trainer_utils import get_last_checkpoint
47
from transformers.utils import check_min_version, send_example_telemetry
48
from transformers.utils.versions import require_version
Aymeric Augustin's avatar
Aymeric Augustin committed
49
50


51
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Sylvain Gugger's avatar
Sylvain Gugger committed
52
check_min_version("4.26.0.dev0")
Sylvain Gugger's avatar
Sylvain Gugger committed
53

54
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt")
55

56
57
58
logger = logging.getLogger(__name__)


Julien Chaumond's avatar
Julien Chaumond committed
59
60
61
62
63
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """
64

Julien Chaumond's avatar
Julien Chaumond committed
65
66
    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
67
    )
Julien Chaumond's avatar
Julien Chaumond committed
68
69
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
70
    )
Julien Chaumond's avatar
Julien Chaumond committed
71
72
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
73
    )
Julien Chaumond's avatar
Julien Chaumond committed
74
    cache_dir: Optional[str] = field(
75
76
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
77
    )
78
79
80
81
82
83
84
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
85
            "help": (
86
                "Will use the token generated when running `huggingface-cli login` (necessary to use this script "
Sylvain Gugger's avatar
Sylvain Gugger committed
87
88
                "with private models)."
            )
89
90
        },
    )
91
92
93
94
    ignore_mismatched_sizes: bool = field(
        default=False,
        metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
    )
95
96


Julien Chaumond's avatar
Julien Chaumond committed
97
98
99
100
101
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """
102

103
104
105
106
107
108
    task_name: Optional[str] = field(default="ner", metadata={"help": "The name of the task (ner, pos...)."})
    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
109
    )
110
111
112
113
    train_file: Optional[str] = field(
        default=None, metadata={"help": "The input training data file (a csv or JSON file)."}
    )
    validation_file: Optional[str] = field(
114
        default=None,
115
        metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."},
116
    )
117
118
119
    test_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input test data file to predict on (a csv or JSON file)."},
120
    )
121
122
123
124
125
126
    text_column_name: Optional[str] = field(
        default=None, metadata={"help": "The column name of text to input in the file (a csv or JSON file)."}
    )
    label_column_name: Optional[str] = field(
        default=None, metadata={"help": "The column name of label to input in the file (a csv or JSON file)."}
    )
Julien Chaumond's avatar
Julien Chaumond committed
127
128
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
129
    )
130
131
132
133
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
134
135
136
    max_seq_length: int = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
137
138
139
140
            "help": (
                "The maximum total input sequence length after tokenization. If set, sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
141
142
        },
    )
143
144
145
    pad_to_max_length: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
146
147
148
149
150
            "help": (
                "Whether to pad all samples to model maximum sentence length. "
                "If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
                "efficient on GPU but very bad for TPU."
            )
151
152
        },
    )
153
154
155
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
156
157
158
159
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
160
161
        },
    )
162
    max_eval_samples: Optional[int] = field(
163
164
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
165
166
167
168
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
169
170
        },
    )
171
    max_predict_samples: Optional[int] = field(
172
173
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
174
175
176
177
            "help": (
                "For debugging purposes or quicker training, truncate the number of prediction examples to this "
                "value if set."
            )
178
179
        },
    )
180
181
182
    label_all_tokens: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
183
184
185
186
            "help": (
                "Whether to put the label for one word on all tokens of generated by that word or just on the "
                "one (in which case the other tokens will have a padding index)."
            )
187
188
        },
    )
189
190
191
192
    return_entity_level_metrics: bool = field(
        default=False,
        metadata={"help": "Whether to return all the entity levels during evaluation or just the overall ones."},
    )
193
194
195
196
197
198
199
200
201
202
203
204

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
        self.task_name = self.task_name.lower()
205

Julien Chaumond's avatar
Julien Chaumond committed
206
207
208
209
210
211
212

def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
213
214
215
216
217
218
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()
219

220
221
222
223
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_ner", model_args, data_args)

224
    # Setup logging
225
    logging.basicConfig(
226
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
227
        datefmt="%m/%d/%Y %H:%M:%S",
228
        handlers=[logging.StreamHandler(sys.stdout)],
229
    )
230
231
232
233
234
235
236

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
237
238

    # Log on each process the small summary:
239
    logger.warning(
240
241
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
242
    )
243
    logger.info(f"Training/evaluation parameters {training_args}")
244

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

260
    # Set seed before initializing model.
Julien Chaumond's avatar
Julien Chaumond committed
261
    set_seed(training_args.seed)
262

263
264
265
266
267
268
269
270
271
272
273
    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
274
        raw_datasets = load_dataset(
275
276
277
278
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
279
        )
280
281
282
283
284
285
286
287
288
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
        extension = data_args.train_file.split(".")[-1]
289
        raw_datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
290
291
292
293
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    if training_args.do_train:
294
295
        column_names = raw_datasets["train"].column_names
        features = raw_datasets["train"].features
296
    else:
297
298
        column_names = raw_datasets["validation"].column_names
        features = raw_datasets["validation"].features
299
300
301
302
303
304
305
306
307
308
309
310
311
312

    if data_args.text_column_name is not None:
        text_column_name = data_args.text_column_name
    elif "tokens" in column_names:
        text_column_name = "tokens"
    else:
        text_column_name = column_names[0]

    if data_args.label_column_name is not None:
        label_column_name = data_args.label_column_name
    elif f"{data_args.task_name}_tags" in column_names:
        label_column_name = f"{data_args.task_name}_tags"
    else:
        label_column_name = column_names[1]
313

Sylvain Gugger's avatar
Sylvain Gugger committed
314
315
    # In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
    # unique labels.
316
317
318
319
320
321
322
323
    def get_label_list(labels):
        unique_labels = set()
        for label in labels:
            unique_labels = unique_labels | set(label)
        label_list = list(unique_labels)
        label_list.sort()
        return label_list

324
325
326
327
    # If the labels are of type ClassLabel, they are already integers and we have the map stored somewhere.
    # Otherwise, we have to get the list of labels manually.
    labels_are_int = isinstance(features[label_column_name].feature, ClassLabel)
    if labels_are_int:
Sylvain Gugger's avatar
Sylvain Gugger committed
328
        label_list = features[label_column_name].feature.names
329
        label_to_id = {i: i for i in range(len(label_list))}
Sylvain Gugger's avatar
Sylvain Gugger committed
330
    else:
331
        label_list = get_label_list(raw_datasets["train"][label_column_name])
332
        label_to_id = {l: i for i, l in enumerate(label_list)}
333

334
    num_labels = len(label_list)
335

336
    # Load pretrained model and tokenizer
Julien Chaumond's avatar
Julien Chaumond committed
337
338
339
340
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
341
    config = AutoConfig.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
342
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
343
        num_labels=num_labels,
344
        finetuning_task=data_args.task_name,
Julien Chaumond's avatar
Julien Chaumond committed
345
        cache_dir=model_args.cache_dir,
346
347
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
348
    )
349
350

    tokenizer_name_or_path = model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path
351
    if config.model_type in {"bloom", "gpt2", "roberta"}:
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
        tokenizer = AutoTokenizer.from_pretrained(
            tokenizer_name_or_path,
            cache_dir=model_args.cache_dir,
            use_fast=True,
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
            add_prefix_space=True,
        )
    else:
        tokenizer = AutoTokenizer.from_pretrained(
            tokenizer_name_or_path,
            cache_dir=model_args.cache_dir,
            use_fast=True,
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
        )

369
    model = AutoModelForTokenClassification.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
370
371
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
372
        config=config,
Julien Chaumond's avatar
Julien Chaumond committed
373
        cache_dir=model_args.cache_dir,
374
375
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
376
        ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
377
    )
378

379
380
381
    # Tokenizer check: this script requires a fast tokenizer.
    if not isinstance(tokenizer, PreTrainedTokenizerFast):
        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
382
383
384
            "This example script only works for models that have a fast tokenizer. Checkout the big table of models at"
            " https://huggingface.co/transformers/index.html#supported-frameworks to find the model types that meet"
            " this requirement"
385
386
        )

387
    # Model has labels -> use them.
388
    if model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id:
389
390
391
392
393
394
395
396
        if list(sorted(model.config.label2id.keys())) == list(sorted(label_list)):
            # Reorganize `label_list` to match the ordering of the model.
            if labels_are_int:
                label_to_id = {i: int(model.config.label2id[l]) for i, l in enumerate(label_list)}
                label_list = [model.config.id2label[i] for i in range(num_labels)]
            else:
                label_list = [model.config.id2label[i] for i in range(num_labels)]
                label_to_id = {l: i for i, l in enumerate(label_list)}
397
398
399
        else:
            logger.warning(
                "Your model seems to have been trained with labels, but they don't match the dataset: ",
Sylvain Gugger's avatar
Sylvain Gugger committed
400
401
                f"model labels: {list(sorted(model.config.label2id.keys()))}, dataset labels:"
                f" {list(sorted(label_list))}.\nIgnoring the model labels as a result.",
402
403
            )

404
405
406
    # Set the correspondences label/ID inside the model config
    model.config.label2id = {l: i for i, l in enumerate(label_list)}
    model.config.id2label = {i: l for i, l in enumerate(label_list)}
407
408
409
410
411
412
413
414
415

    # Map that sends B-Xxx label to its I-Xxx counterpart
    b_to_i_label = []
    for idx, label in enumerate(label_list):
        if label.startswith("B-") and label.replace("B-", "I-") in label_list:
            b_to_i_label.append(label_list.index(label.replace("B-", "I-")))
        else:
            b_to_i_label.append(idx)

416
417
418
419
420
421
422
423
424
425
    # Preprocessing the dataset
    # Padding strategy
    padding = "max_length" if data_args.pad_to_max_length else False

    # Tokenize all texts and align the labels with them.
    def tokenize_and_align_labels(examples):
        tokenized_inputs = tokenizer(
            examples[text_column_name],
            padding=padding,
            truncation=True,
426
            max_length=data_args.max_seq_length,
427
428
            # We use this argument because the texts in our dataset are lists of words (with a label for each word).
            is_split_into_words=True,
Julien Chaumond's avatar
Julien Chaumond committed
429
        )
430
        labels = []
431
432
433
        for i, label in enumerate(examples[label_column_name]):
            word_ids = tokenized_inputs.word_ids(batch_index=i)
            previous_word_idx = None
434
            label_ids = []
435
436
437
438
            for word_idx in word_ids:
                # Special tokens have a word id that is None. We set the label to -100 so they are automatically
                # ignored in the loss function.
                if word_idx is None:
439
                    label_ids.append(-100)
440
441
442
                # We set the label for the first token of each word.
                elif word_idx != previous_word_idx:
                    label_ids.append(label_to_id[label[word_idx]])
443
444
445
                # For the other tokens in a word, we set the label to either the current label or -100, depending on
                # the label_all_tokens flag.
                else:
446
447
448
449
                    if data_args.label_all_tokens:
                        label_ids.append(b_to_i_label[label_to_id[label[word_idx]]])
                    else:
                        label_ids.append(-100)
450
                previous_word_idx = word_idx
451
452
453
454
455

            labels.append(label_ids)
        tokenized_inputs["labels"] = labels
        return tokenized_inputs

456
    if training_args.do_train:
457
        if "train" not in raw_datasets:
458
            raise ValueError("--do_train requires a train dataset")
459
        train_dataset = raw_datasets["train"]
460
        if data_args.max_train_samples is not None:
461
462
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
463
464
465
466
467
468
469
470
        with training_args.main_process_first(desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                tokenize_and_align_labels,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )
471
472

    if training_args.do_eval:
473
        if "validation" not in raw_datasets:
474
            raise ValueError("--do_eval requires a validation dataset")
475
        eval_dataset = raw_datasets["validation"]
476
        if data_args.max_eval_samples is not None:
477
478
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
479
480
481
482
483
484
485
486
        with training_args.main_process_first(desc="validation dataset map pre-processing"):
            eval_dataset = eval_dataset.map(
                tokenize_and_align_labels,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )
487
488

    if training_args.do_predict:
489
        if "test" not in raw_datasets:
490
            raise ValueError("--do_predict requires a test dataset")
491
        predict_dataset = raw_datasets["test"]
492
        if data_args.max_predict_samples is not None:
493
494
            max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
            predict_dataset = predict_dataset.select(range(max_predict_samples))
495
496
497
498
499
500
501
502
        with training_args.main_process_first(desc="prediction dataset map pre-processing"):
            predict_dataset = predict_dataset.map(
                tokenize_and_align_labels,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )
Julien Chaumond's avatar
Julien Chaumond committed
503

504
    # Data collator
505
    data_collator = DataCollatorForTokenClassification(tokenizer, pad_to_multiple_of=8 if training_args.fp16 else None)
Julien Chaumond's avatar
Julien Chaumond committed
506

507
    # Metrics
508
    metric = evaluate.load("seqeval")
509

510
511
512
    def compute_metrics(p):
        predictions, labels = p
        predictions = np.argmax(predictions, axis=2)
Julien Chaumond's avatar
Julien Chaumond committed
513

514
515
516
517
518
519
520
521
522
        # Remove ignored index (special tokens)
        true_predictions = [
            [label_list[p] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
        true_labels = [
            [label_list[l] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
Julien Chaumond's avatar
Julien Chaumond committed
523

524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
        results = metric.compute(predictions=true_predictions, references=true_labels)
        if data_args.return_entity_level_metrics:
            # Unpack nested dictionaries
            final_results = {}
            for key, value in results.items():
                if isinstance(value, dict):
                    for n, v in value.items():
                        final_results[f"{key}_{n}"] = v
                else:
                    final_results[key] = value
            return final_results
        else:
            return {
                "precision": results["overall_precision"],
                "recall": results["overall_recall"],
                "f1": results["overall_f1"],
                "accuracy": results["overall_accuracy"],
            }
Julien Chaumond's avatar
Julien Chaumond committed
542
543
544
545
546

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
547
548
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
549
550
        tokenizer=tokenizer,
        data_collator=data_collator,
Julien Chaumond's avatar
Julien Chaumond committed
551
552
        compute_metrics=compute_metrics,
    )
553
554

    # Training
Julien Chaumond's avatar
Julien Chaumond committed
555
    if training_args.do_train:
556
557
558
559
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
560
561
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
562
        metrics = train_result.metrics
563
        trainer.save_model()  # Saves the tokenizer too for easy upload
564

565
566
567
568
569
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

570
571
572
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
573

574
    # Evaluation
575
    if training_args.do_eval:
Julien Chaumond's avatar
Julien Chaumond committed
576
577
        logger.info("*** Evaluate ***")

578
579
        metrics = trainer.evaluate()

580
581
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
Julien Chaumond's avatar
Julien Chaumond committed
582

583
584
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
Julien Chaumond's avatar
Julien Chaumond committed
585
586

    # Predict
587
    if training_args.do_predict:
588
589
        logger.info("*** Predict ***")

590
        predictions, labels, metrics = trainer.predict(predict_dataset, metric_key_prefix="predict")
591
        predictions = np.argmax(predictions, axis=2)
Julien Chaumond's avatar
Julien Chaumond committed
592

593
594
595
596
597
        # Remove ignored index (special tokens)
        true_predictions = [
            [label_list[p] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
Julien Chaumond's avatar
Julien Chaumond committed
598

599
600
        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)
Julien Chaumond's avatar
Julien Chaumond committed
601

602
        # Save predictions
603
        output_predictions_file = os.path.join(training_args.output_dir, "predictions.txt")
604
        if trainer.is_world_process_zero():
605
            with open(output_predictions_file, "w") as writer:
606
607
                for prediction in true_predictions:
                    writer.write(" ".join(prediction) + "\n")
608

609
610
611
612
613
614
615
616
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "token-classification"}
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name
Sylvain Gugger's avatar
Sylvain Gugger committed
617

618
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
619
        trainer.push_to_hub(**kwargs)
620
621
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
622

623

624
625
626
627
628
def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


629
630
if __name__ == "__main__":
    main()