test_modeling_openai.py 7.71 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
18
import unittest

19
from transformers import is_torch_available
20
from transformers.testing_utils import require_torch, slow, torch_device
thomwolf's avatar
thomwolf committed
21

22
from .test_configuration_common import ConfigTester
23
from .test_modeling_common import ModelTesterMixin, ids_tensor
Aymeric Augustin's avatar
Aymeric Augustin committed
24
25


26
if is_torch_available():
27
    import torch
28
29
30
    from transformers import (
        OpenAIGPTConfig,
        OpenAIGPTModel,
31
        OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
32
33
34
35
        OpenAIGPTLMHeadModel,
        OpenAIGPTDoubleHeadsModel,
    )

36

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
class OpenAIGPTModelTester:
    def __init__(
        self, parent,
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = OpenAIGPTConfig(
            vocab_size=self.vocab_size,
            n_embd=self.hidden_size,
            n_layer=self.num_hidden_layers,
            n_head=self.num_attention_heads,
            # intermediate_size=self.intermediate_size,
            # hidden_act=self.hidden_act,
            # hidden_dropout_prob=self.hidden_dropout_prob,
            # attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            n_positions=self.max_position_embeddings,
Sylvain Gugger's avatar
Sylvain Gugger committed
88
            n_ctx=self.max_position_embeddings,
89
90
            # type_vocab_size=self.type_vocab_size,
            # initializer_range=self.initializer_range
Sylvain Gugger's avatar
Sylvain Gugger committed
91
            return_dict=True,
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
        )

        head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

        return (
            config,
            input_ids,
            head_mask,
            token_type_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        )

    def create_and_check_openai_gpt_model(self, config, input_ids, head_mask, token_type_ids, *args):
        model = OpenAIGPTModel(config=config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
111
112
113
        result = model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)
114

Stas Bekman's avatar
Stas Bekman committed
115
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
116
117
118
119
120
121

    def create_and_check_lm_head_model(self, config, input_ids, head_mask, token_type_ids, *args):
        model = OpenAIGPTLMHeadModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
122
        result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
Stas Bekman's avatar
Stas Bekman committed
123
124
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
125
126
127
128
129
130

    def create_and_check_double_lm_head_model(self, config, input_ids, head_mask, token_type_ids, *args):
        model = OpenAIGPTDoubleHeadsModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
131
        result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
Stas Bekman's avatar
Stas Bekman committed
132
133
        self.parent.assertEqual(result.lm_loss.shape, ())
        self.parent.assertEqual(result.lm_logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            head_mask,
            token_type_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {
            "input_ids": input_ids,
            "token_type_ids": token_type_ids,
            "head_mask": head_mask,
        }

        return config, inputs_dict


155
@require_torch
156
class OpenAIGPTModelTest(ModelTesterMixin, unittest.TestCase):
157

158
159
160
    all_model_classes = (
        (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel) if is_torch_available() else ()
    )
161
162
163
    all_generative_model_classes = (
        (OpenAIGPTLMHeadModel,) if is_torch_available() else ()
    )  # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
164
165

    def setUp(self):
166
        self.model_tester = OpenAIGPTModelTester(self)
167
        self.config_tester = ConfigTester(self, config_class=OpenAIGPTConfig, n_embd=37)
thomwolf's avatar
thomwolf committed
168
169

    def test_config(self):
170
        self.config_tester.run_common_tests()
thomwolf's avatar
thomwolf committed
171

172
173
174
175
176
177
178
179
180
181
182
    def test_openai_gpt_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_openai_gpt_model(*config_and_inputs)

    def test_openai_gpt_lm_head_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_lm_head_model(*config_and_inputs)

    def test_openai_gpt_double_lm_head_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_double_lm_head_model(*config_and_inputs)
thomwolf's avatar
thomwolf committed
183

184
    @slow
185
    def test_model_from_pretrained(self):
186
        for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
187
            model = OpenAIGPTModel.from_pretrained(model_name)
188
            self.assertIsNotNone(model)
189
190


191
@require_torch
192
193
194
195
class OPENAIGPTModelLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_openai_gpt(self):
        model = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt")
196
        model.to(torch_device)
patrickvonplaten's avatar
patrickvonplaten committed
197
        input_ids = torch.tensor([[481, 4735, 544]], dtype=torch.long, device=torch_device)  # the president is
198
199
        expected_output_ids = [
            481,
patrickvonplaten's avatar
patrickvonplaten committed
200
            4735,
201
            544,
patrickvonplaten's avatar
patrickvonplaten committed
202
203
204
205
206
207
208
209
210
211
212
            246,
            963,
            870,
            762,
            239,
            244,
            40477,
            244,
            249,
            719,
            881,
213
            487,
patrickvonplaten's avatar
patrickvonplaten committed
214
            544,
215
            240,
patrickvonplaten's avatar
patrickvonplaten committed
216
217
218
219
220
221
            244,
            603,
            481,
        ]  # the president is a very good man. " \n " i\'m sure he is, " said the

        output_ids = model.generate(input_ids, do_sample=False)
222
        self.assertListEqual(output_ids[0].tolist(), expected_output_ids)