test_modeling_openai.py 8.16 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
18
import unittest

19
from transformers import is_torch_available
thomwolf's avatar
thomwolf committed
20

21
from .test_configuration_common import ConfigTester
22
from .test_modeling_common import ModelTesterMixin, ids_tensor
Aymeric Augustin's avatar
Aymeric Augustin committed
23
24
25
from .utils import CACHE_DIR, require_torch, slow, torch_device


26
if is_torch_available():
27
28
29
30
31
32
33
34
    from transformers import (
        OpenAIGPTConfig,
        OpenAIGPTModel,
        OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP,
        OpenAIGPTLMHeadModel,
        OpenAIGPTDoubleHeadsModel,
    )

35

36
@require_torch
37
class OpenAIGPTModelTest(ModelTesterMixin, unittest.TestCase):
38

39
40
41
    all_model_classes = (
        (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel) if is_torch_available() else ()
    )
42
43

    class OpenAIGPTModelTester(object):
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            is_training=True,
            use_token_type_ids=True,
            use_labels=True,
            vocab_size=99,
            hidden_size=32,
            num_hidden_layers=5,
            num_attention_heads=4,
            intermediate_size=37,
            hidden_act="gelu",
            hidden_dropout_prob=0.1,
            attention_probs_dropout_prob=0.1,
            max_position_embeddings=512,
            type_vocab_size=16,
            type_sequence_label_size=2,
            initializer_range=0.02,
            num_labels=3,
            num_choices=4,
            scope=None,
        ):
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_token_type_ids = use_token_type_ids
            self.use_labels = use_labels
            self.vocab_size = vocab_size
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.intermediate_size = intermediate_size
            self.hidden_act = hidden_act
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.type_sequence_label_size = type_sequence_label_size
            self.initializer_range = initializer_range
            self.num_labels = num_labels
            self.num_choices = num_choices
            self.scope = scope

        def prepare_config_and_inputs(self):
            input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

            token_type_ids = None
            if self.use_token_type_ids:
                token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

            sequence_labels = None
            token_labels = None
            choice_labels = None
            if self.use_labels:
                sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
                choice_labels = ids_tensor([self.batch_size], self.num_choices)

            config = OpenAIGPTConfig(
thomwolf's avatar
thomwolf committed
106
                vocab_size=self.vocab_size,
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
                n_embd=self.hidden_size,
                n_layer=self.num_hidden_layers,
                n_head=self.num_attention_heads,
                # intermediate_size=self.intermediate_size,
                # hidden_act=self.hidden_act,
                # hidden_dropout_prob=self.hidden_dropout_prob,
                # attention_probs_dropout_prob=self.attention_probs_dropout_prob,
                n_positions=self.max_position_embeddings,
                n_ctx=self.max_position_embeddings
                # type_vocab_size=self.type_vocab_size,
                # initializer_range=self.initializer_range
            )

            head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

            return config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels

        def check_loss_output(self, result):
125
            self.parent.assertListEqual(list(result["loss"].size()), [])
126
127
128

        def create_and_check_openai_gpt_model(self, config, input_ids, head_mask, token_type_ids, *args):
            model = OpenAIGPTModel(config=config)
129
            model.to(torch_device)
130
131
132
133
134
135
            model.eval()

            model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask)
            model(input_ids, token_type_ids=token_type_ids)
            (sequence_output,) = model(input_ids)

136
            result = {"sequence_output": sequence_output}
137
            self.parent.assertListEqual(
138
139
                list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size]
            )
140
141
142

        def create_and_check_lm_head_model(self, config, input_ids, head_mask, token_type_ids, *args):
            model = OpenAIGPTLMHeadModel(config)
143
            model.to(torch_device)
144
145
146
147
            model.eval()

            loss, lm_logits = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)

148
            result = {"loss": loss, "lm_logits": lm_logits}
149

150
            self.parent.assertListEqual(list(result["loss"].size()), [])
151
            self.parent.assertListEqual(
152
153
                list(result["lm_logits"].size()), [self.batch_size, self.seq_length, self.vocab_size]
            )
154
155
156

        def create_and_check_double_lm_head_model(self, config, input_ids, head_mask, token_type_ids, *args):
            model = OpenAIGPTDoubleHeadsModel(config)
157
            model.to(torch_device)
158
159
160
161
            model.eval()

            loss, lm_logits, mc_logits = model(input_ids, token_type_ids=token_type_ids, lm_labels=input_ids)

162
            result = {"loss": loss, "lm_logits": lm_logits}
163

164
            self.parent.assertListEqual(list(result["loss"].size()), [])
165
            self.parent.assertListEqual(
166
167
                list(result["lm_logits"].size()), [self.batch_size, self.seq_length, self.vocab_size]
            )
168
169
170

        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
171
172
173
174
175
176
177
178
179
180
            (
                config,
                input_ids,
                head_mask,
                token_type_ids,
                sequence_labels,
                token_labels,
                choice_labels,
            ) = config_and_inputs
            inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask}
181
182
183
184
185
186

            return config, inputs_dict

    def setUp(self):
        self.model_tester = OpenAIGPTModelTest.OpenAIGPTModelTester(self)
        self.config_tester = ConfigTester(self, config_class=OpenAIGPTConfig, n_embd=37)
thomwolf's avatar
thomwolf committed
187
188

    def test_config(self):
189
        self.config_tester.run_common_tests()
thomwolf's avatar
thomwolf committed
190

191
192
193
194
195
196
197
198
199
200
201
    def test_openai_gpt_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_openai_gpt_model(*config_and_inputs)

    def test_openai_gpt_lm_head_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_lm_head_model(*config_and_inputs)

    def test_openai_gpt_double_lm_head_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_double_lm_head_model(*config_and_inputs)
thomwolf's avatar
thomwolf committed
202

203
    @slow
204
205
    def test_model_from_pretrained(self):
        for model_name in list(OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
206
            model = OpenAIGPTModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
207
            self.assertIsNotNone(model)