test_modeling_openai.py 7.95 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
18
import unittest

19
from transformers import is_torch_available
20
from transformers.testing_utils import require_torch, slow, torch_device
thomwolf's avatar
thomwolf committed
21

22
from .test_configuration_common import ConfigTester
23
from .test_modeling_common import ModelTesterMixin, ids_tensor
Aymeric Augustin's avatar
Aymeric Augustin committed
24
25


26
if is_torch_available():
27
    import torch
28
29
30
    from transformers import (
        OpenAIGPTConfig,
        OpenAIGPTModel,
31
        OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
32
33
34
35
        OpenAIGPTLMHeadModel,
        OpenAIGPTDoubleHeadsModel,
    )

36

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
class OpenAIGPTModelTester:
    def __init__(
        self, parent,
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = OpenAIGPTConfig(
            vocab_size=self.vocab_size,
            n_embd=self.hidden_size,
            n_layer=self.num_hidden_layers,
            n_head=self.num_attention_heads,
            # intermediate_size=self.intermediate_size,
            # hidden_act=self.hidden_act,
            # hidden_dropout_prob=self.hidden_dropout_prob,
            # attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            n_positions=self.max_position_embeddings,
Sylvain Gugger's avatar
Sylvain Gugger committed
88
            n_ctx=self.max_position_embeddings,
89
90
            # type_vocab_size=self.type_vocab_size,
            # initializer_range=self.initializer_range
Sylvain Gugger's avatar
Sylvain Gugger committed
91
            return_dict=True,
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
        )

        head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

        return (
            config,
            input_ids,
            head_mask,
            token_type_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        )

    def check_loss_output(self, result):
        self.parent.assertListEqual(list(result["loss"].size()), [])

    def create_and_check_openai_gpt_model(self, config, input_ids, head_mask, token_type_ids, *args):
        model = OpenAIGPTModel(config=config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
114
115
116
        result = model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)
117
118

        self.parent.assertListEqual(
Sylvain Gugger's avatar
Sylvain Gugger committed
119
            list(result["last_hidden_state"].size()), [self.batch_size, self.seq_length, self.hidden_size],
120
121
122
123
124
125
126
        )

    def create_and_check_lm_head_model(self, config, input_ids, head_mask, token_type_ids, *args):
        model = OpenAIGPTLMHeadModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
127
        result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
128
129
        self.parent.assertListEqual(list(result["loss"].size()), [])
        self.parent.assertListEqual(
Sylvain Gugger's avatar
Sylvain Gugger committed
130
            list(result["logits"].size()), [self.batch_size, self.seq_length, self.vocab_size],
131
132
133
134
135
136
137
        )

    def create_and_check_double_lm_head_model(self, config, input_ids, head_mask, token_type_ids, *args):
        model = OpenAIGPTDoubleHeadsModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
138
139
        result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
        self.parent.assertListEqual(list(result["lm_loss"].size()), [])
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
        self.parent.assertListEqual(
            list(result["lm_logits"].size()), [self.batch_size, self.seq_length, self.vocab_size],
        )

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            head_mask,
            token_type_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {
            "input_ids": input_ids,
            "token_type_ids": token_type_ids,
            "head_mask": head_mask,
        }

        return config, inputs_dict


164
@require_torch
165
class OpenAIGPTModelTest(ModelTesterMixin, unittest.TestCase):
166

167
168
169
    all_model_classes = (
        (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel) if is_torch_available() else ()
    )
170
171
172
    all_generative_model_classes = (
        (OpenAIGPTLMHeadModel,) if is_torch_available() else ()
    )  # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
173
174

    def setUp(self):
175
        self.model_tester = OpenAIGPTModelTester(self)
176
        self.config_tester = ConfigTester(self, config_class=OpenAIGPTConfig, n_embd=37)
thomwolf's avatar
thomwolf committed
177
178

    def test_config(self):
179
        self.config_tester.run_common_tests()
thomwolf's avatar
thomwolf committed
180

181
182
183
184
185
186
187
188
189
190
191
    def test_openai_gpt_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_openai_gpt_model(*config_and_inputs)

    def test_openai_gpt_lm_head_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_lm_head_model(*config_and_inputs)

    def test_openai_gpt_double_lm_head_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_double_lm_head_model(*config_and_inputs)
thomwolf's avatar
thomwolf committed
192

193
    @slow
194
    def test_model_from_pretrained(self):
195
        for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
196
            model = OpenAIGPTModel.from_pretrained(model_name)
197
            self.assertIsNotNone(model)
198
199


200
@require_torch
201
202
203
204
class OPENAIGPTModelLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_openai_gpt(self):
        model = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt")
205
        model.to(torch_device)
patrickvonplaten's avatar
patrickvonplaten committed
206
        input_ids = torch.tensor([[481, 4735, 544]], dtype=torch.long, device=torch_device)  # the president is
207
208
        expected_output_ids = [
            481,
patrickvonplaten's avatar
patrickvonplaten committed
209
            4735,
210
            544,
patrickvonplaten's avatar
patrickvonplaten committed
211
212
213
214
215
216
217
218
219
220
221
            246,
            963,
            870,
            762,
            239,
            244,
            40477,
            244,
            249,
            719,
            881,
222
            487,
patrickvonplaten's avatar
patrickvonplaten committed
223
            544,
224
            240,
patrickvonplaten's avatar
patrickvonplaten committed
225
226
227
228
229
230
            244,
            603,
            481,
        ]  # the president is a very good man. " \n " i\'m sure he is, " said the

        output_ids = model.generate(input_ids, do_sample=False)
231
        self.assertListEqual(output_ids[0].tolist(), expected_output_ids)