test_modeling_openai.py 9.24 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
18
import unittest

19
from transformers import is_torch_available
thomwolf's avatar
thomwolf committed
20

21
from .test_configuration_common import ConfigTester
22
from .test_modeling_common import ModelTesterMixin, ids_tensor
Aymeric Augustin's avatar
Aymeric Augustin committed
23
24
25
from .utils import CACHE_DIR, require_torch, slow, torch_device


26
if is_torch_available():
27
    import torch
28
29
30
31
32
33
34
35
    from transformers import (
        OpenAIGPTConfig,
        OpenAIGPTModel,
        OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP,
        OpenAIGPTLMHeadModel,
        OpenAIGPTDoubleHeadsModel,
    )

36

37
@require_torch
38
class OpenAIGPTModelTest(ModelTesterMixin, unittest.TestCase):
39

40
41
42
    all_model_classes = (
        (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel) if is_torch_available() else ()
    )
43
44
45
    all_generative_model_classes = (
        (OpenAIGPTLMHeadModel,) if is_torch_available() else ()
    )  # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
46
47

    class OpenAIGPTModelTester(object):
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            is_training=True,
            use_token_type_ids=True,
            use_labels=True,
            vocab_size=99,
            hidden_size=32,
            num_hidden_layers=5,
            num_attention_heads=4,
            intermediate_size=37,
            hidden_act="gelu",
            hidden_dropout_prob=0.1,
            attention_probs_dropout_prob=0.1,
            max_position_embeddings=512,
            type_vocab_size=16,
            type_sequence_label_size=2,
            initializer_range=0.02,
            num_labels=3,
            num_choices=4,
            scope=None,
        ):
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_token_type_ids = use_token_type_ids
            self.use_labels = use_labels
            self.vocab_size = vocab_size
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.intermediate_size = intermediate_size
            self.hidden_act = hidden_act
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.type_sequence_label_size = type_sequence_label_size
            self.initializer_range = initializer_range
            self.num_labels = num_labels
            self.num_choices = num_choices
            self.scope = scope

        def prepare_config_and_inputs(self):
            input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

            token_type_ids = None
            if self.use_token_type_ids:
                token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

            sequence_labels = None
            token_labels = None
            choice_labels = None
            if self.use_labels:
                sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
                choice_labels = ids_tensor([self.batch_size], self.num_choices)

            config = OpenAIGPTConfig(
thomwolf's avatar
thomwolf committed
110
                vocab_size=self.vocab_size,
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
                n_embd=self.hidden_size,
                n_layer=self.num_hidden_layers,
                n_head=self.num_attention_heads,
                # intermediate_size=self.intermediate_size,
                # hidden_act=self.hidden_act,
                # hidden_dropout_prob=self.hidden_dropout_prob,
                # attention_probs_dropout_prob=self.attention_probs_dropout_prob,
                n_positions=self.max_position_embeddings,
                n_ctx=self.max_position_embeddings
                # type_vocab_size=self.type_vocab_size,
                # initializer_range=self.initializer_range
            )

            head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

            return config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels

        def check_loss_output(self, result):
129
            self.parent.assertListEqual(list(result["loss"].size()), [])
130
131
132

        def create_and_check_openai_gpt_model(self, config, input_ids, head_mask, token_type_ids, *args):
            model = OpenAIGPTModel(config=config)
133
            model.to(torch_device)
134
135
136
137
138
139
            model.eval()

            model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask)
            model(input_ids, token_type_ids=token_type_ids)
            (sequence_output,) = model(input_ids)

140
            result = {"sequence_output": sequence_output}
141
            self.parent.assertListEqual(
142
143
                list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size]
            )
144
145
146

        def create_and_check_lm_head_model(self, config, input_ids, head_mask, token_type_ids, *args):
            model = OpenAIGPTLMHeadModel(config)
147
            model.to(torch_device)
148
149
150
151
            model.eval()

            loss, lm_logits = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)

152
            result = {"loss": loss, "lm_logits": lm_logits}
153

154
            self.parent.assertListEqual(list(result["loss"].size()), [])
155
            self.parent.assertListEqual(
156
157
                list(result["lm_logits"].size()), [self.batch_size, self.seq_length, self.vocab_size]
            )
158
159
160

        def create_and_check_double_lm_head_model(self, config, input_ids, head_mask, token_type_ids, *args):
            model = OpenAIGPTDoubleHeadsModel(config)
161
            model.to(torch_device)
162
163
164
165
            model.eval()

            loss, lm_logits, mc_logits = model(input_ids, token_type_ids=token_type_ids, lm_labels=input_ids)

166
            result = {"loss": loss, "lm_logits": lm_logits}
167

168
            self.parent.assertListEqual(list(result["loss"].size()), [])
169
            self.parent.assertListEqual(
170
171
                list(result["lm_logits"].size()), [self.batch_size, self.seq_length, self.vocab_size]
            )
172
173
174

        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
175
176
177
178
179
180
181
182
183
184
            (
                config,
                input_ids,
                head_mask,
                token_type_ids,
                sequence_labels,
                token_labels,
                choice_labels,
            ) = config_and_inputs
            inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask}
185
186
187
188
189
190

            return config, inputs_dict

    def setUp(self):
        self.model_tester = OpenAIGPTModelTest.OpenAIGPTModelTester(self)
        self.config_tester = ConfigTester(self, config_class=OpenAIGPTConfig, n_embd=37)
thomwolf's avatar
thomwolf committed
191
192

    def test_config(self):
193
        self.config_tester.run_common_tests()
thomwolf's avatar
thomwolf committed
194

195
196
197
198
199
200
201
202
203
204
205
    def test_openai_gpt_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_openai_gpt_model(*config_and_inputs)

    def test_openai_gpt_lm_head_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_lm_head_model(*config_and_inputs)

    def test_openai_gpt_double_lm_head_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_double_lm_head_model(*config_and_inputs)
thomwolf's avatar
thomwolf committed
206

207
    @slow
208
209
    def test_model_from_pretrained(self):
        for model_name in list(OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
210
            model = OpenAIGPTModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
211
            self.assertIsNotNone(model)
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244


class OPENAIGPTModelLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_openai_gpt(self):
        model = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt")
        input_ids = torch.Tensor([[481, 2585, 544, 4957]]).long()  # The dog is cute
        expected_output_ids = [
            481,
            2585,
            544,
            4957,
            669,
            512,
            761,
            5990,
            271,
            645,
            487,
            535,
            976,
            2479,
            240,
            487,
            804,
            1296,
            2891,
            512,
        ]  # the dog is cute when you're annoyed : if he's really stupid, he 'll stop fighting you
        torch.manual_seed(0)

        output_ids = model.generate(input_ids)
        self.assertListEqual(output_ids[0].tolist(), expected_output_ids)