finetune.py 18.8 KB
Newer Older
1
2
#!/usr/bin/env python

3
4
5
6
import argparse
import glob
import logging
import os
7
import sys
8
import time
9
from collections import defaultdict
10
11
from pathlib import Path
from typing import Dict, List, Tuple
12

13
14
import numpy as np
import pytorch_lightning as pl
15
16
17
import torch
from torch.utils.data import DataLoader

18
from callbacks import Seq2SeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback
19
from transformers import MBartTokenizer, T5ForConditionalGeneration
Sylvain Gugger's avatar
Sylvain Gugger committed
20
from transformers.models.bart.modeling_bart import shift_tokens_right
21
22
23
24
25
26
27
from utils import (
    ROUGE_KEYS,
    LegacySeq2SeqDataset,
    Seq2SeqDataset,
    assert_all_frozen,
    calculate_bleu,
    calculate_rouge,
28
    check_output_dir,
29
    flatten_list,
30
    freeze_embeds,
31
32
33
34
35
36
    freeze_params,
    get_git_info,
    label_smoothed_nll_loss,
    lmap,
    pickle_save,
    save_git_info,
37
    save_json,
38
39
    use_task_specific_params,
)
40
41


42
43
44
45
46
# need the parent dir module
sys.path.insert(2, str(Path(__file__).resolve().parents[1]))
from lightning_base import BaseTransformer, add_generic_args, generic_train  # noqa


47
48
49
logger = logging.getLogger(__name__)


50
51
52
class SummarizationModule(BaseTransformer):
    mode = "summarization"
    loss_names = ["loss"]
53
    metric_names = ROUGE_KEYS
54
    default_val_metric = "rouge2"
55

56
    def __init__(self, hparams, **kwargs):
57
58
        if hparams.sortish_sampler and hparams.gpus > 1:
            hparams.replace_sampler_ddp = False
59
60
61
62
63
64
        elif hparams.max_tokens_per_batch is not None:
            if hparams.gpus > 1:
                raise NotImplementedError("Dynamic Batch size does not work for multi-gpu training")
            if hparams.sortish_sampler:
                raise ValueError("--sortish_sampler and --max_tokens_per_batch may not be used simultaneously")

65
66
67
        super().__init__(hparams, num_labels=None, mode=self.mode, **kwargs)
        use_task_specific_params(self.model, "summarization")
        save_git_info(self.hparams.output_dir)
68
        self.metrics_save_path = Path(self.output_dir) / "metrics.json"
69
        self.hparams_save_path = Path(self.output_dir) / "hparams.pkl"
70
        pickle_save(self.hparams, self.hparams_save_path)
71
        self.step_count = 0
72
        self.metrics = defaultdict(list)
73
74
        self.model_type = self.config.model_type
        self.vocab_size = self.config.tgt_vocab_size if self.model_type == "fsmt" else self.config.vocab_size
75

76
77
78
        self.dataset_kwargs: dict = dict(
            data_dir=self.hparams.data_dir,
            max_source_length=self.hparams.max_source_length,
79
            prefix=self.model.config.prefix or "",
80
        )
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
        n_observations_per_split = {
            "train": self.hparams.n_train,
            "val": self.hparams.n_val,
            "test": self.hparams.n_test,
        }
        self.n_obs = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()}

        self.target_lens = {
            "train": self.hparams.max_target_length,
            "val": self.hparams.val_max_target_length,
            "test": self.hparams.test_max_target_length,
        }
        assert self.target_lens["train"] <= self.target_lens["val"], f"target_lens: {self.target_lens}"
        assert self.target_lens["train"] <= self.target_lens["test"], f"target_lens: {self.target_lens}"
        if self.hparams.freeze_embeds:
96
            freeze_embeds(self.model)
97
        if self.hparams.freeze_encoder:
98
99
100
            freeze_params(self.model.get_encoder())
            assert_all_frozen(self.model.get_encoder())

101
        self.hparams.git_sha = get_git_info()["repo_sha"]
102
        self.num_workers = hparams.num_workers
103
        self.decoder_start_token_id = None  # default to config
104
105
106
        if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer, MBartTokenizer):
            self.decoder_start_token_id = self.tokenizer.lang_code_to_id[hparams.tgt_lang]
            self.model.config.decoder_start_token_id = self.decoder_start_token_id
107
108
109
        self.dataset_class = (
            Seq2SeqDataset if hasattr(self.tokenizer, "prepare_seq2seq_batch") else LegacySeq2SeqDataset
        )
110
        self.already_saved_batch = False
111
        self.eval_beams = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams
112
113
114
115
        if self.hparams.eval_max_gen_length is not None:
            self.eval_max_length = self.hparams.eval_max_gen_length
        else:
            self.eval_max_length = self.model.config.max_length
116
117
118
119
        if self.hparams.eval_min_gen_length is not None:
            self.eval_min_length = self.hparams.eval_min_gen_length
        else:
            self.eval_min_length = self.model.config.min_length
120
        self.val_metric = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric
121

122
123
124
125
126
127
128
129
130
131
132
    def save_readable_batch(self, batch: Dict[str, torch.Tensor]) -> Dict[str, List[str]]:
        """A debugging utility"""
        readable_batch = {
            k: self.tokenizer.batch_decode(v.tolist()) if "mask" not in k else v.shape for k, v in batch.items()
        }
        save_json(readable_batch, Path(self.output_dir) / "text_batch.json")
        save_json({k: v.tolist() for k, v in batch.items()}, Path(self.output_dir) / "tok_batch.json")

        self.already_saved_batch = True
        return readable_batch

133
134
135
136
137
138
    def forward(self, input_ids, **kwargs):
        return self.model(input_ids, **kwargs)

    def ids_to_clean_text(self, generated_ids: List[int]):
        gen_text = self.tokenizer.batch_decode(
            generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
139
        )
140
        return lmap(str.strip, gen_text)
141

142
    def _step(self, batch: dict) -> Tuple:
143
        pad_token_id = self.tokenizer.pad_token_id
144
145
        src_ids, src_mask = batch["input_ids"], batch["attention_mask"]
        tgt_ids = batch["labels"]
146
        if isinstance(self.model, T5ForConditionalGeneration):
147
            decoder_input_ids = self.model._shift_right(tgt_ids)
148
        else:
149
            decoder_input_ids = shift_tokens_right(tgt_ids, pad_token_id)
150
151
152
        if not self.already_saved_batch:  # This would be slightly better if it only happened on rank zero
            batch["decoder_input_ids"] = decoder_input_ids
            self.save_readable_batch(batch)
153

154
        outputs = self(src_ids, attention_mask=src_mask, decoder_input_ids=decoder_input_ids, use_cache=False)
155
        lm_logits = outputs["logits"]
156
        if self.hparams.label_smoothing == 0:
157
            # Same behavior as modeling_bart.py, besides ignoring pad_token_id
158
            ce_loss_fct = torch.nn.CrossEntropyLoss(ignore_index=pad_token_id)
159

160
            assert lm_logits.shape[-1] == self.vocab_size
161
            loss = ce_loss_fct(lm_logits.view(-1, lm_logits.shape[-1]), tgt_ids.view(-1))
162
        else:
163
            lprobs = torch.nn.functional.log_softmax(lm_logits, dim=-1)
164
            loss, nll_loss = label_smoothed_nll_loss(
165
                lprobs, tgt_ids, self.hparams.label_smoothing, ignore_index=pad_token_id
166
            )
167
168
        return (loss,)

169
170
171
172
    @property
    def pad(self) -> int:
        return self.tokenizer.pad_token_id

173
174
    def training_step(self, batch, batch_idx) -> Dict:
        loss_tensors = self._step(batch)
175

176
        logs = {name: loss for name, loss in zip(self.loss_names, loss_tensors)}
177
        # tokens per batch
178
        logs["tpb"] = batch["input_ids"].ne(self.pad).sum() + batch["labels"].ne(self.pad).sum()
179
180
181
182
        logs["bs"] = batch["input_ids"].shape[0]
        logs["src_pad_tok"] = batch["input_ids"].eq(self.pad).sum()
        logs["src_pad_frac"] = batch["input_ids"].eq(self.pad).float().mean()
        # TODO(SS): make a wandb summary metric for this
183
184
185
186
187
        return {"loss": loss_tensors[0], "log": logs}

    def validation_step(self, batch, batch_idx) -> Dict:
        return self._generative_step(batch)

188
    def validation_epoch_end(self, outputs, prefix="val") -> Dict:
189
190
191
        self.step_count += 1
        losses = {k: torch.stack([x[k] for x in outputs]).mean() for k in self.loss_names}
        loss = losses["loss"]
192
193
194
195
196
197
198
199
200
201
202
        generative_metrics = {
            k: np.array([x[k] for x in outputs]).mean() for k in self.metric_names + ["gen_time", "gen_len"]
        }
        metric_val = (
            generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric]
        )
        metric_tensor: torch.FloatTensor = torch.tensor(metric_val).type_as(loss)
        generative_metrics.update({k: v.item() for k, v in losses.items()})
        losses.update(generative_metrics)
        all_metrics = {f"{prefix}_avg_{k}": x for k, x in losses.items()}
        all_metrics["step_count"] = self.step_count
203
        self.metrics[prefix].append(all_metrics)  # callback writes this to self.metrics_save_path
204
        preds = flatten_list([x["preds"] for x in outputs])
205
206
207
208
209
210
        return {
            "log": all_metrics,
            "preds": preds,
            f"{prefix}_loss": loss,
            f"{prefix}_{self.val_metric}": metric_tensor,
        }
211
212
213

    def calc_generative_metrics(self, preds, target) -> Dict:
        return calculate_rouge(preds, target)
214

215
    def _generative_step(self, batch: dict) -> dict:
216
        t0 = time.time()
217
218

        # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens')
219
        generated_ids = self.model.generate(
220
221
            batch["input_ids"],
            attention_mask=batch["attention_mask"],
222
223
            use_cache=True,
            decoder_start_token_id=self.decoder_start_token_id,
224
            num_beams=self.eval_beams,
225
            max_length=self.eval_max_length,
226
            min_length=self.eval_min_length,
227
        )
228
229
        gen_time = (time.time() - t0) / batch["input_ids"].shape[0]
        preds: List[str] = self.ids_to_clean_text(generated_ids)
230
        target: List[str] = self.ids_to_clean_text(batch["labels"])
231
232
        loss_tensors = self._step(batch)
        base_metrics = {name: loss for name, loss in zip(self.loss_names, loss_tensors)}
233
        rouge: Dict = self.calc_generative_metrics(preds, target)
234
        summ_len = np.mean(lmap(len, generated_ids))
235
        base_metrics.update(gen_time=gen_time, gen_len=summ_len, preds=preds, target=target, **rouge)
236
        return base_metrics
237

238
239
    def test_step(self, batch, batch_idx):
        return self._generative_step(batch)
240
241

    def test_epoch_end(self, outputs):
242
        return self.validation_epoch_end(outputs, prefix="test")
243

244
    def get_dataset(self, type_path) -> Seq2SeqDataset:
245
246
        n_obs = self.n_obs[type_path]
        max_target_length = self.target_lens[type_path]
247
        dataset = self.dataset_class(
248
249
250
251
252
253
254
255
            self.tokenizer,
            type_path=type_path,
            n_obs=n_obs,
            max_target_length=max_target_length,
            **self.dataset_kwargs,
        )
        return dataset

256
    def get_dataloader(self, type_path: str, batch_size: int, shuffle: bool = False) -> DataLoader:
257
        dataset = self.get_dataset(type_path)
258

259
        if self.hparams.sortish_sampler and type_path != "test" and type_path != "val":
260
            sampler = dataset.make_sortish_sampler(batch_size, distributed=self.hparams.gpus > 1)
261
262
263
264
265
266
267
268
269
            return DataLoader(
                dataset,
                batch_size=batch_size,
                collate_fn=dataset.collate_fn,
                shuffle=False,
                num_workers=self.num_workers,
                sampler=sampler,
            )

270
        elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val":
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
            batch_sampler = dataset.make_dynamic_sampler(
                self.hparams.max_tokens_per_batch, distributed=self.hparams.gpus > 1
            )
            return DataLoader(
                dataset,
                batch_sampler=batch_sampler,
                collate_fn=dataset.collate_fn,
                # shuffle=False,
                num_workers=self.num_workers,
                # batch_size=None,
            )
        else:
            return DataLoader(
                dataset,
                batch_size=batch_size,
                collate_fn=dataset.collate_fn,
                shuffle=shuffle,
                num_workers=self.num_workers,
                sampler=None,
            )
291
292

    def train_dataloader(self) -> DataLoader:
293
        dataloader = self.get_dataloader("train", batch_size=self.hparams.train_batch_size, shuffle=True)
294
295
        return dataloader

296
297
    def val_dataloader(self) -> DataLoader:
        return self.get_dataloader("val", batch_size=self.hparams.eval_batch_size)
298

299
300
    def test_dataloader(self) -> DataLoader:
        return self.get_dataloader("test", batch_size=self.hparams.eval_batch_size)
301
302
303
304

    @staticmethod
    def add_model_specific_args(parser, root_dir):
        BaseTransformer.add_model_specific_args(parser, root_dir)
305
        add_generic_args(parser, root_dir)
306
        parser.add_argument(
307
            "--max_source_length",
308
309
310
311
312
            default=1024,
            type=int,
            help="The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded.",
        )
313
314
315
316
317
318
319
        parser.add_argument(
            "--max_target_length",
            default=56,
            type=int,
            help="The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded.",
        )
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
        parser.add_argument(
            "--val_max_target_length",
            default=142,  # these defaults are optimized for CNNDM. For xsum, see README.md.
            type=int,
            help="The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded.",
        )
        parser.add_argument(
            "--test_max_target_length",
            default=142,
            type=int,
            help="The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded.",
        )
        parser.add_argument("--freeze_encoder", action="store_true")
        parser.add_argument("--freeze_embeds", action="store_true")
        parser.add_argument("--sortish_sampler", action="store_true", default=False)
337
        parser.add_argument("--overwrite_output_dir", action="store_true", default=False)
338
        parser.add_argument("--max_tokens_per_batch", type=int, default=None)
339
        parser.add_argument("--logger_name", type=str, choices=["default", "wandb", "wandb_shared"], default="default")
340
341
342
        parser.add_argument("--n_train", type=int, default=-1, required=False, help="# examples. -1 means use all.")
        parser.add_argument("--n_val", type=int, default=500, required=False, help="# examples. -1 means use all.")
        parser.add_argument("--n_test", type=int, default=-1, required=False, help="# examples. -1 means use all.")
343
344
345
        parser.add_argument(
            "--task", type=str, default="summarization", required=False, help="# examples. -1 means use all."
        )
346
        parser.add_argument("--label_smoothing", type=float, default=0.0, required=False)
347
348
        parser.add_argument("--src_lang", type=str, default="", required=False)
        parser.add_argument("--tgt_lang", type=str, default="", required=False)
349
        parser.add_argument("--eval_beams", type=int, default=None, required=False)
350
351
352
        parser.add_argument(
            "--val_metric", type=str, default=None, required=False, choices=["bleu", "rouge2", "loss", None]
        )
353
        parser.add_argument("--eval_max_gen_length", type=int, default=None, help="never generate more than n tokens")
354
        parser.add_argument("--eval_min_gen_length", type=int, default=None, help="never generate shorter than n tokens")
355
        parser.add_argument("--save_top_k", type=int, default=1, required=False, help="How many checkpoints to save")
356
357
358
359
360
361
362
        parser.add_argument(
            "--early_stopping_patience",
            type=int,
            default=-1,
            required=False,
            help="-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So val_check_interval will effect it.",
        )
363
364
365
        return parser


366
367
368
369
class TranslationModule(SummarizationModule):
    mode = "translation"
    loss_names = ["loss"]
    metric_names = ["bleu"]
370
    default_val_metric = "bleu"
371

372
373
374
375
376
    def __init__(self, hparams, **kwargs):
        super().__init__(hparams, **kwargs)
        self.dataset_kwargs["src_lang"] = hparams.src_lang
        self.dataset_kwargs["tgt_lang"] = hparams.tgt_lang

377
    def calc_generative_metrics(self, preds, target) -> dict:
378
        return calculate_bleu(preds, target)
379
380


381
382
def main(args, model=None) -> SummarizationModule:
    Path(args.output_dir).mkdir(exist_ok=True)
383
384
    check_output_dir(args, expected_items=3)

385
    if model is None:
386
        if "summarization" in args.task:
387
388
389
            model: SummarizationModule = SummarizationModule(args)
        else:
            model: SummarizationModule = TranslationModule(args)
390
    dataset = Path(args.data_dir).name
391
    if (
392
        args.logger_name == "default"
393
394
395
396
397
        or args.fast_dev_run
        or str(args.output_dir).startswith("/tmp")
        or str(args.output_dir).startswith("/var")
    ):
        logger = True  # don't pollute wandb logs unnecessarily
398
    elif args.logger_name == "wandb":
399
400
        from pytorch_lightning.loggers import WandbLogger

401
402
        project = os.environ.get("WANDB_PROJECT", dataset)
        logger = WandbLogger(name=model.output_dir.name, project=project)
403

404
    elif args.logger_name == "wandb_shared":
405
406
        from pytorch_lightning.loggers import WandbLogger

407
        logger = WandbLogger(name=model.output_dir.name, project=f"hf_{dataset}")
408
409
410
411
412

    if args.early_stopping_patience >= 0:
        es_callback = get_early_stopping_callback(model.val_metric, args.early_stopping_patience)
    else:
        es_callback = False
413
414

    lower_is_better = args.val_metric == "loss"
415
416
417
418
    trainer: pl.Trainer = generic_train(
        model,
        args,
        logging_callback=Seq2SeqLoggingCallback(),
419
420
421
        checkpoint_callback=get_checkpoint_callback(
            args.output_dir, model.val_metric, args.save_top_k, lower_is_better
        ),
422
        early_stopping_callback=es_callback,
423
424
        logger=logger,
    )
425
    pickle_save(model.hparams, model.output_dir / "hparams.pkl")
426
427
428
429
430
431
432
433
434
    if not args.do_predict:
        return model

    model.hparams.test_checkpoint = ""
    checkpoints = list(sorted(glob.glob(os.path.join(args.output_dir, "*.ckpt"), recursive=True)))
    if checkpoints:
        model.hparams.test_checkpoint = checkpoints[-1]
        trainer.resume_from_checkpoint = checkpoints[-1]
    trainer.logger.log_hyperparams(model.hparams)
435
436
437

    # test() without a model tests using the best checkpoint automatically
    trainer.test()
438
    return model
439
440
441
442


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
443
    parser = pl.Trainer.add_argparse_args(parser)
444
    parser = SummarizationModule.add_model_specific_args(parser, os.getcwd())
445

446
447
448
    args = parser.parse_args()

    main(args)