"vscode:/vscode.git/clone" did not exist on "95e00d08082d6e87e6c61d1f78b401f4ec337317"
finetune.py 18.7 KB
Newer Older
1
2
3
4
5
import argparse
import glob
import logging
import os
import time
6
from collections import defaultdict
7
8
from pathlib import Path
from typing import Dict, List, Tuple
9

10
11
import numpy as np
import pytorch_lightning as pl
12
13
14
import torch
from torch.utils.data import DataLoader

15
from lightning_base import BaseTransformer, add_generic_args, generic_train
16
17
from transformers import MBartTokenizer, T5ForConditionalGeneration
from transformers.modeling_bart import shift_tokens_right
18
19
20


try:
21
    from .callbacks import Seq2SeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback
22
    from .utils import (
23
        ROUGE_KEYS,
24
        LegacySeq2SeqDataset,
25
        Seq2SeqDataset,
26
        assert_all_frozen,
27
        calculate_bleu,
28
        calculate_rouge,
29
30
31
        flatten_list,
        freeze_params,
        get_git_info,
32
        label_smoothed_nll_loss,
33
34
35
36
37
        lmap,
        pickle_save,
        save_git_info,
        save_json,
        use_task_specific_params,
38
    )
39
except ImportError:
40
    from callbacks import Seq2SeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback
41
    from utils import (
42
        ROUGE_KEYS,
43
        LegacySeq2SeqDataset,
44
45
        Seq2SeqDataset,
        assert_all_frozen,
46
        calculate_bleu,
47
        calculate_rouge,
48
49
50
        flatten_list,
        freeze_params,
        get_git_info,
51
        label_smoothed_nll_loss,
52
53
54
55
56
        lmap,
        pickle_save,
        save_git_info,
        save_json,
        use_task_specific_params,
57
    )
58
59
60
61

logger = logging.getLogger(__name__)


62
63
64
class SummarizationModule(BaseTransformer):
    mode = "summarization"
    loss_names = ["loss"]
65
    metric_names = ROUGE_KEYS
66
    default_val_metric = "rouge2"
67

68
    def __init__(self, hparams, **kwargs):
69
70
        if hparams.sortish_sampler and hparams.gpus > 1:
            hparams.replace_sampler_ddp = False
71
72
73
74
75
76
        elif hparams.max_tokens_per_batch is not None:
            if hparams.gpus > 1:
                raise NotImplementedError("Dynamic Batch size does not work for multi-gpu training")
            if hparams.sortish_sampler:
                raise ValueError("--sortish_sampler and --max_tokens_per_batch may not be used simultaneously")

77
78
79
        super().__init__(hparams, num_labels=None, mode=self.mode, **kwargs)
        use_task_specific_params(self.model, "summarization")
        save_git_info(self.hparams.output_dir)
80
        self.metrics_save_path = Path(self.output_dir) / "metrics.json"
81
        self.hparams_save_path = Path(self.output_dir) / "hparams.pkl"
82
        pickle_save(self.hparams, self.hparams_save_path)
83
        self.step_count = 0
84
        self.metrics = defaultdict(list)
85

86
87
88
        self.dataset_kwargs: dict = dict(
            data_dir=self.hparams.data_dir,
            max_source_length=self.hparams.max_source_length,
89
            prefix=self.model.config.prefix or "",
90
        )
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
        n_observations_per_split = {
            "train": self.hparams.n_train,
            "val": self.hparams.n_val,
            "test": self.hparams.n_test,
        }
        self.n_obs = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()}

        self.target_lens = {
            "train": self.hparams.max_target_length,
            "val": self.hparams.val_max_target_length,
            "test": self.hparams.test_max_target_length,
        }
        assert self.target_lens["train"] <= self.target_lens["val"], f"target_lens: {self.target_lens}"
        assert self.target_lens["train"] <= self.target_lens["test"], f"target_lens: {self.target_lens}"
        if self.hparams.freeze_embeds:
            self.freeze_embeds()
        if self.hparams.freeze_encoder:
108
109
110
            freeze_params(self.model.get_encoder())
            assert_all_frozen(self.model.get_encoder())

111
        self.hparams.git_sha = get_git_info()["repo_sha"]
112
        self.num_workers = hparams.num_workers
113
        self.decoder_start_token_id = None  # default to config
114
115
116
        if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer, MBartTokenizer):
            self.decoder_start_token_id = self.tokenizer.lang_code_to_id[hparams.tgt_lang]
            self.model.config.decoder_start_token_id = self.decoder_start_token_id
117
118
119
        self.dataset_class = (
            Seq2SeqDataset if hasattr(self.tokenizer, "prepare_seq2seq_batch") else LegacySeq2SeqDataset
        )
120
121
        self.eval_beams = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams
        assert self.eval_beams >= 1, f"got self.eval_beams={self.eval_beams}. Need an integer > 1"
122
123
124
125
        if self.hparams.eval_max_gen_length is not None:
            self.eval_max_length = self.hparams.eval_max_gen_length
        else:
            self.eval_max_length = self.model.config.max_length
126
        self.val_metric = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric
127
128
129

    def freeze_embeds(self):
        """Freeze token embeddings and positional embeddings for bart, just token embeddings for t5."""
130
        try:
131
132
133
134
            freeze_params(self.model.model.shared)
            for d in [self.model.model.encoder, self.model.model.decoder]:
                freeze_params(d.embed_positions)
                freeze_params(d.embed_tokens)
135
        except AttributeError:
136
137
138
139
140
141
142
143
144
145
            freeze_params(self.model.shared)
            for d in [self.model.encoder, self.model.decoder]:
                freeze_params(d.embed_tokens)

    def forward(self, input_ids, **kwargs):
        return self.model(input_ids, **kwargs)

    def ids_to_clean_text(self, generated_ids: List[int]):
        gen_text = self.tokenizer.batch_decode(
            generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
146
        )
147
        return lmap(str.strip, gen_text)
148

149
    def _step(self, batch: dict) -> Tuple:
150
        pad_token_id = self.tokenizer.pad_token_id
151
152
        src_ids, src_mask = batch["input_ids"], batch["attention_mask"]
        tgt_ids = batch["labels"]
153
        if isinstance(self.model, T5ForConditionalGeneration):
154
            decoder_input_ids = self.model._shift_right(tgt_ids)
155
        else:
156
            decoder_input_ids = shift_tokens_right(tgt_ids, pad_token_id)
157

158
159
        outputs = self(src_ids, attention_mask=src_mask, decoder_input_ids=decoder_input_ids, use_cache=False)
        lm_logits = outputs[0]
160
        if self.hparams.label_smoothing == 0:
161
            # Same behavior as modeling_bart.py, besides ignoring pad_token_id
162
            ce_loss_fct = torch.nn.CrossEntropyLoss(ignore_index=pad_token_id)
163

164
            assert lm_logits.shape[-1] == self.model.config.vocab_size
165
            loss = ce_loss_fct(lm_logits.view(-1, lm_logits.shape[-1]), tgt_ids.view(-1))
166
        else:
167
            lprobs = torch.nn.functional.log_softmax(lm_logits, dim=-1)
168
            loss, nll_loss = label_smoothed_nll_loss(
169
                lprobs, tgt_ids, self.hparams.label_smoothing, ignore_index=pad_token_id
170
            )
171
172
        return (loss,)

173
174
175
176
    @property
    def pad(self) -> int:
        return self.tokenizer.pad_token_id

177
178
    def training_step(self, batch, batch_idx) -> Dict:
        loss_tensors = self._step(batch)
179

180
        logs = {name: loss for name, loss in zip(self.loss_names, loss_tensors)}
181
        # tokens per batch
182
        logs["tpb"] = batch["input_ids"].ne(self.pad).sum() + batch["labels"].ne(self.pad).sum()
183
184
185
186
        logs["bs"] = batch["input_ids"].shape[0]
        logs["src_pad_tok"] = batch["input_ids"].eq(self.pad).sum()
        logs["src_pad_frac"] = batch["input_ids"].eq(self.pad).float().mean()
        # TODO(SS): make a wandb summary metric for this
187
188
189
190
191
        return {"loss": loss_tensors[0], "log": logs}

    def validation_step(self, batch, batch_idx) -> Dict:
        return self._generative_step(batch)

192
    def validation_epoch_end(self, outputs, prefix="val") -> Dict:
193
194
195
        self.step_count += 1
        losses = {k: torch.stack([x[k] for x in outputs]).mean() for k in self.loss_names}
        loss = losses["loss"]
196
197
198
199
200
201
202
203
204
205
206
207
        generative_metrics = {
            k: np.array([x[k] for x in outputs]).mean() for k in self.metric_names + ["gen_time", "gen_len"]
        }
        metric_val = (
            generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric]
        )
        metric_tensor: torch.FloatTensor = torch.tensor(metric_val).type_as(loss)
        generative_metrics.update({k: v.item() for k, v in losses.items()})
        losses.update(generative_metrics)
        all_metrics = {f"{prefix}_avg_{k}": x for k, x in losses.items()}
        all_metrics["step_count"] = self.step_count
        self.save_metrics(all_metrics, prefix)  # writes to self.metrics_save_path
208
        preds = flatten_list([x["preds"] for x in outputs])
209
210
211
212
213
214
        return {
            "log": all_metrics,
            "preds": preds,
            f"{prefix}_loss": loss,
            f"{prefix}_{self.val_metric}": metric_tensor,
        }
215
216
217
218

    def save_metrics(self, latest_metrics, type_path) -> None:
        self.metrics[type_path].append(latest_metrics)
        save_json(self.metrics, self.metrics_save_path)
219

220
221
    def calc_generative_metrics(self, preds, target) -> Dict:
        return calculate_rouge(preds, target)
222

223
    def _generative_step(self, batch: dict) -> dict:
224
        t0 = time.time()
225
226

        # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens')
227
        generated_ids = self.model.generate(
228
229
            batch["input_ids"],
            attention_mask=batch["attention_mask"],
230
231
            use_cache=True,
            decoder_start_token_id=self.decoder_start_token_id,
232
            num_beams=self.eval_beams,
233
            max_length=self.eval_max_length,
234
        )
235
236
        gen_time = (time.time() - t0) / batch["input_ids"].shape[0]
        preds: List[str] = self.ids_to_clean_text(generated_ids)
237
        target: List[str] = self.ids_to_clean_text(batch["labels"])
238
239
        loss_tensors = self._step(batch)
        base_metrics = {name: loss for name, loss in zip(self.loss_names, loss_tensors)}
240
        rouge: Dict = self.calc_generative_metrics(preds, target)
241
        summ_len = np.mean(lmap(len, generated_ids))
242
        base_metrics.update(gen_time=gen_time, gen_len=summ_len, preds=preds, target=target, **rouge)
243
        return base_metrics
244

245
246
    def test_step(self, batch, batch_idx):
        return self._generative_step(batch)
247
248

    def test_epoch_end(self, outputs):
249
        return self.validation_epoch_end(outputs, prefix="test")
250

251
    def get_dataset(self, type_path) -> Seq2SeqDataset:
252
253
        n_obs = self.n_obs[type_path]
        max_target_length = self.target_lens[type_path]
254
        dataset = self.dataset_class(
255
256
257
258
259
260
261
262
            self.tokenizer,
            type_path=type_path,
            n_obs=n_obs,
            max_target_length=max_target_length,
            **self.dataset_kwargs,
        )
        return dataset

263
    def get_dataloader(self, type_path: str, batch_size: int, shuffle: bool = False) -> DataLoader:
264
        dataset = self.get_dataset(type_path)
265
266

        if self.hparams.sortish_sampler and type_path != "test":
267
            sampler = dataset.make_sortish_sampler(batch_size, distributed=self.hparams.gpus > 1)
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
            return DataLoader(
                dataset,
                batch_size=batch_size,
                collate_fn=dataset.collate_fn,
                shuffle=False,
                num_workers=self.num_workers,
                sampler=sampler,
            )

        elif self.hparams.max_tokens_per_batch is not None and type_path != "test":
            batch_sampler = dataset.make_dynamic_sampler(
                self.hparams.max_tokens_per_batch, distributed=self.hparams.gpus > 1
            )
            return DataLoader(
                dataset,
                batch_sampler=batch_sampler,
                collate_fn=dataset.collate_fn,
                # shuffle=False,
                num_workers=self.num_workers,
                # batch_size=None,
            )
        else:
            return DataLoader(
                dataset,
                batch_size=batch_size,
                collate_fn=dataset.collate_fn,
                shuffle=shuffle,
                num_workers=self.num_workers,
                sampler=None,
            )
298
299

    def train_dataloader(self) -> DataLoader:
300
        dataloader = self.get_dataloader("train", batch_size=self.hparams.train_batch_size, shuffle=True)
301
302
        return dataloader

303
304
    def val_dataloader(self) -> DataLoader:
        return self.get_dataloader("val", batch_size=self.hparams.eval_batch_size)
305

306
307
    def test_dataloader(self) -> DataLoader:
        return self.get_dataloader("test", batch_size=self.hparams.eval_batch_size)
308
309
310
311

    @staticmethod
    def add_model_specific_args(parser, root_dir):
        BaseTransformer.add_model_specific_args(parser, root_dir)
312
        add_generic_args(parser, root_dir)
313
        parser.add_argument(
314
            "--max_source_length",
315
316
317
318
319
            default=1024,
            type=int,
            help="The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded.",
        )
320
321
322
323
324
325
326
        parser.add_argument(
            "--max_target_length",
            default=56,
            type=int,
            help="The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded.",
        )
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
        parser.add_argument(
            "--val_max_target_length",
            default=142,  # these defaults are optimized for CNNDM. For xsum, see README.md.
            type=int,
            help="The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded.",
        )
        parser.add_argument(
            "--test_max_target_length",
            default=142,
            type=int,
            help="The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded.",
        )
        parser.add_argument("--freeze_encoder", action="store_true")
        parser.add_argument("--freeze_embeds", action="store_true")
        parser.add_argument("--sortish_sampler", action="store_true", default=False)
344
        parser.add_argument("--max_tokens_per_batch", type=int, default=None)
345
        parser.add_argument("--logger_name", type=str, choices=["default", "wandb", "wandb_shared"], default="default")
346
347
348
        parser.add_argument("--n_train", type=int, default=-1, required=False, help="# examples. -1 means use all.")
        parser.add_argument("--n_val", type=int, default=500, required=False, help="# examples. -1 means use all.")
        parser.add_argument("--n_test", type=int, default=-1, required=False, help="# examples. -1 means use all.")
349
350
351
        parser.add_argument(
            "--task", type=str, default="summarization", required=False, help="# examples. -1 means use all."
        )
352
        parser.add_argument("--label_smoothing", type=float, default=0.0, required=False)
353
354
        parser.add_argument("--src_lang", type=str, default="", required=False)
        parser.add_argument("--tgt_lang", type=str, default="", required=False)
355
        parser.add_argument("--eval_beams", type=int, default=None, required=False)
356
357
358
        parser.add_argument(
            "--val_metric", type=str, default=None, required=False, choices=["bleu", "rouge2", "loss", None]
        )
359
        parser.add_argument("--eval_max_gen_length", type=int, default=None, help="never generate more than n tokens")
360
        parser.add_argument("--save_top_k", type=int, default=1, required=False, help="How many checkpoints to save")
361
362
363
364
365
366
367
        parser.add_argument(
            "--early_stopping_patience",
            type=int,
            default=-1,
            required=False,
            help="-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So val_check_interval will effect it.",
        )
368
369
370
        return parser


371
372
373
374
class TranslationModule(SummarizationModule):
    mode = "translation"
    loss_names = ["loss"]
    metric_names = ["bleu"]
375
    default_val_metric = "bleu"
376

377
378
379
380
381
    def __init__(self, hparams, **kwargs):
        super().__init__(hparams, **kwargs)
        self.dataset_kwargs["src_lang"] = hparams.src_lang
        self.dataset_kwargs["tgt_lang"] = hparams.tgt_lang

382
    def calc_generative_metrics(self, preds, target) -> dict:
383
        return calculate_bleu(preds, target)
384
385


386
387
388
389
390
def main(args, model=None) -> SummarizationModule:
    Path(args.output_dir).mkdir(exist_ok=True)
    if len(os.listdir(args.output_dir)) > 3 and args.do_train:
        raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
    if model is None:
391
        if "summarization" in args.task:
392
393
394
            model: SummarizationModule = SummarizationModule(args)
        else:
            model: SummarizationModule = TranslationModule(args)
395
    dataset = Path(args.data_dir).name
396
    if (
397
        args.logger_name == "default"
398
399
400
401
402
        or args.fast_dev_run
        or str(args.output_dir).startswith("/tmp")
        or str(args.output_dir).startswith("/var")
    ):
        logger = True  # don't pollute wandb logs unnecessarily
403
    elif args.logger_name == "wandb":
404
405
        from pytorch_lightning.loggers import WandbLogger

406
407
        project = os.environ.get("WANDB_PROJECT", dataset)
        logger = WandbLogger(name=model.output_dir.name, project=project)
408

409
    elif args.logger_name == "wandb_shared":
410
411
        from pytorch_lightning.loggers import WandbLogger

412
        logger = WandbLogger(name=model.output_dir.name, project=f"hf_{dataset}")
413
414
415
416
417

    if args.early_stopping_patience >= 0:
        es_callback = get_early_stopping_callback(model.val_metric, args.early_stopping_patience)
    else:
        es_callback = False
418
419

    lower_is_better = args.val_metric == "loss"
420
421
422
423
    trainer: pl.Trainer = generic_train(
        model,
        args,
        logging_callback=Seq2SeqLoggingCallback(),
424
425
426
        checkpoint_callback=get_checkpoint_callback(
            args.output_dir, model.val_metric, args.save_top_k, lower_is_better
        ),
427
        early_stopping_callback=es_callback,
428
429
        logger=logger,
    )
430
    pickle_save(model.hparams, model.output_dir / "hparams.pkl")
431
432
433
434
435
436
437
438
439
    if not args.do_predict:
        return model

    model.hparams.test_checkpoint = ""
    checkpoints = list(sorted(glob.glob(os.path.join(args.output_dir, "*.ckpt"), recursive=True)))
    if checkpoints:
        model.hparams.test_checkpoint = checkpoints[-1]
        trainer.resume_from_checkpoint = checkpoints[-1]
    trainer.logger.log_hyperparams(model.hparams)
440
441
442

    # test() without a model tests using the best checkpoint automatically
    trainer.test()
443
    return model
444
445
446
447


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
448
    parser = pl.Trainer.add_argparse_args(parser)
449
    parser = SummarizationModule.add_model_specific_args(parser, os.getcwd())
450

451
452
453
    args = parser.parse_args()

    main(args)